首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxisome-biogenesis disorders (PBDs), including Zellweger syndrome (ZS), are autosomal recessive diseases caused by a deficiency in peroxisome assembly as well as by a malfunction of peroxisomes, among which>10 genotypes have been identified. We have isolated a human PEX16 cDNA (HsPEX16) by performing an expressed-sequence-tag homology search on a human DNA database, by using yeast PEX16 from Yarrowia lipolytica and then screening the human liver cDNA library. This cDNA encodes a peroxisomal protein (a peroxin Pex16p) made up of 336 amino acids. Among 13 peroxisome-deficiency complementation groups (CGs), HsPEX16 expression morphologically and biochemically restored peroxisome biogenesis only in fibroblasts from a CG-D patient with ZS in Japan (the same group as CG-IX in the United States). Pex16p was localized to peroxisomes through expression study of epitope-tagged Pex16p. One patient (PBDD-01) possessed a homozygous, inactivating nonsense mutation, C-->T at position 526 in a codon (CGA) for 176Arg, that resulted in a termination codon (TGA). This implies that the C-terminal half is required for the biological function of Pex16p. PBDD-01-derived PEX16 cDNA was defective in peroxisome-restoring activity when expressed in the patient's fibroblasts. These results demonstrate that mutation in PEX16 is the genetic cause of CG-D PBDs.  相似文献   

2.
Peroxisome is a single-membrane organelle in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome (ZS). Gene defects of peroxins required for both membrane assembly and matrix protein import are identified: ten mammalian pathogenic peroxins for ten complementation groups of PBDs, are required for matrix protein import; three, Pex3p, Pex16p and Pex19p, are shown to be essential for peroxisome membrane assembly and responsible for the most severe ZS in PBDs of three complementation groups 12, 9, and 14, respectively. Patients with severe ZS with defects of PEX3, PEX16, and PEX19 tend to carry severe mutation such as nonsense mutations, frameshifts and deletions. With respect to the function of these three peroxins in membrane biogenesis, two distinct pathways have been proposed for the import of peroxisomal membrane proteins in mammalian cells: a Pex19p- and Pex3p-dependent class I pathway and a Pex19p- and Pex16p-dependent class II pathway. In class II pathway, Pex19p also forms a soluble complex with newly synthesized Pex3p as the chaperone for Pex3p in the cytosol and directly translocates it to peroxisomes. Pex16p functions as the peroxisomal membrane receptor that is specific to the Pex3p-Pex19p complexes. A model for the import of peroxisomal membrane proteins is suggested, providing new insights into the molecular mechanisms underlying the biogenesis of peroxisomes and its regulation involving Pex3p, Pex19p, and Pex16p. Another model suggests that in Saccharomyces cerevisiae peroxisomes likely emerge from the endoplasmic reticulum. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of peroxisomes in Health and Disease.  相似文献   

3.
Rat cDNA encoding a 372-amino-acid peroxin was isolated, primarily by functional complementation screening, using a peroxisome-deficient Chinese hamster ovary cell mutant, ZPG208, of complementation group 17. The deduced primary sequence showed approximately 25% amino acid identity with the yeast Pex3p, thereby we termed this cDNA rat PEX3 (RnPEX3). Human and Chinese hamster Pex3p showed 96 and 94% identity to rat Pex3p and had 373 amino acids. Pex3p was characterized as an integral membrane protein of peroxisomes, exposing its N- and C-terminal parts to the cytosol. A homozygous, inactivating missense mutation, G to A at position413, in a codon (GGA) for Gly(138) and resulting in a codon (GAA) for Glu was the genetic cause of peroxisome deficiency of complementation group 17 ZPG208. The peroxisome-restoring activity apparently required the full length of Pex3p, whereas its N-terminal part from residues 1 to 40 was sufficient to target a fusion protein to peroxisomes. We also demonstrated that Pex3p binds the farnesylated peroxisomal membrane protein Pex19p. Moreover, upon expression of PEX3 in ZPG208, peroxisomal membrane vesicles were assembled before the import of soluble proteins such as PTS2-tagged green fluorescent protein. Thus, Pex3p assembles membrane vesicles before the matrix proteins are translocated.  相似文献   

4.
We have isolated the Saccharomyces cerevisiae pex12-1 mutant from a screen to identify mutants defective in peroxisome biogenesis. The pex12delta deletion strain fails to import peroxisomal matrix proteins through both the PTS1 and PTS2 pathway. The PEX12 gene was cloned by functional complementation of the pex12-1 mutant strain and encodes a polypeptide of 399 amino acids. ScPex12p is orthologous to Pex12 proteins from other species and like its orthologues, S. cerevisiae Pex12p contains a degenerate RING finger domain of the C3HC4 type in its essential carboxy-terminus. Localization studies demonstrate that Pex12p is an integral peroxisomal membrane protein, with its NH2-terminus facing the peroxisomal lumen and with its COOH-terminus facing the cytosol. Pex12p-deficient cells retain particular structures that contain peroxisomal membrane proteins consistent with the existence of peroxisomal membrane remnants ("ghosts") in pex12A null mutant cells. This finding indicates that pex12delta cells are not impaired in peroxisomal membrane biogenesis. In immunoisolation experiments Pex12p was co-purified with the RING finger protein Pex10p, the PTS1 receptor Pex5p and the docking proteins for the PTS1 and the PTS2 receptor at the peroxisomal membrane, Pex13p and Pex14p. Furthermore, two-hybrid experiments suggest that the two RING finger domains are sufficient for the Pex10p-Pex12p interaction. Our results suggest that Pex12p is a component of the peroxisomal translocation machinery for matrix proteins.  相似文献   

5.
We have cloned the Hansenula polymorpha PEX14 gene by functional complementation of the chemically induced pex14-1 mutant, which lacked normal peroxisomes. The sequence of the PEX14 gene predicts a novel protein product (Pex14p) of 39 kDa which showed no similarity to any known protein and lacked either of the two known peroxisomal targeting signals. Biochemical and electron microscopical analysis indicated that Pex14p is a component of the peroxisomal membrane. The synthesis of Pex14p is induced by peroxisome-inducing growth conditions. In cells of both pex14-1 and a PEX14 disruption mutant, peroxisomal membrane remnants were evident; these contained the H.polymorpha peroxisomal membrane protein Pex3p together with a small amount of the major peroxisomal matrix proteins alcohol oxidase, catalase and dihydroxyacetone synthase, the bulk of which resided in the cytosol. Unexpectedly, overproduction of Pex14p in wild-type H. polymorpha cells resulted in a peroxisome-deficient phenotype typified by the presence of numerous small vesicles which lacked matrix proteins; these were localized in the cytosol. Apparently, the stoichiometry of Pex14p relative to one or more other components of the peroxisome biogenesis machinery appears to be critical for protein import.  相似文献   

6.
We have identified and characterized mutants of the yeast Yarrowia lipolytica that are deficient in protein secretion, in the ability to undergo dimorphic transition from the yeast to the mycelial form, and in peroxisome biogenesis. Mutations in the SEC238, SRP54, PEX1, PEX2, PEX6, and PEX9 genes affect protein secretion, prevent the exit of the precursor form of alkaline extracellular protease from the endoplasmic reticulum, and compromise peroxisome biogenesis. The mutants sec238A, srp54KO, pex2KO, pex6KO, and pex9KO are also deficient in the dimorphic transition from the yeast to the mycelial form and are affected in the export of only plasma membrane and cell wall-associated proteins specific for the mycelial form. Mutations in the SEC238, SRP54, PEX1, and PEX6 genes prevent or significantly delay the exit of two peroxisomal membrane proteins, Pex2p and Pex16p, from the endoplasmic reticulum en route to the peroxisomal membrane. Mutations in the PEX5, PEX16, and PEX17 genes, which have previously been shown to be essential for peroxisome biogenesis, affect the export of plasma membrane and cell wall-associated proteins specific for the mycelial form but do not impair exit from the endoplasmic reticulum of either Pex2p and Pex16p or of proteins destined for secretion. Biochemical analyses of these mutants provide evidence for the existence of four distinct secretory pathways that serve to deliver proteins for secretion, plasma membrane and cell wall synthesis during yeast and mycelial modes of growth, and peroxisome biogenesis. At least two of these secretory pathways, which are involved in the export of proteins to the external medium and in the delivery of proteins for assembly of the peroxisomal membrane, diverge at the level of the endoplasmic reticulum.  相似文献   

7.
Previously we isolated human PEX16 encoding 336-amino acid-long peroxin Pex16p and showed that its dysfunction was responsible for Zellweger syndrome of complementation group D (group 9). Here we have determined the membrane topology of Pex16p by differential permeabilization method: both N- and C-terminal parts are exposed to the cytosol. In the search for Pex16p topogenic sequence, basic amino acids clustered sequence, RKELRKKLPVSLSQQK, at positions 66-81 and the first transmembrane segment locating far downstream, nearly by 40 amino acids, of this basic region were defined to be essential for integration into peroxisome membranes. Localization to peroxisomes of membrane proteins such as Pex14p, Pex13p, and PMP70 was interfered with in CHO-K1 cells by a higher level expression of the pex16 patient-derived dysfunctional but topogenically active Pex16pR176ter comprising resides 1-176 or of the C-terminal cytoplasmic part starting from residues at 244 to the C terminus. Furthermore, Pex16p C-terminal cytoplasmic part severely abrogated peroxisome restoration in pex mutants such as matrix protein import-defective pex12 and membrane assembly impaired pex3 by respective PEX12 and PEX3 expression, whereas the N-terminal cytosolic region did not affect restoration. These results imply that Pex16p functions in peroxisome membrane assembly, more likely upstream of Pex3p.  相似文献   

8.
PEX genes encode peroxins, which are required for the biogenesis of peroxisomes. The Yarrowia lipolytica PEX17 gene encodes the peroxin Pex17p, which is 671 amino acids in length and has a predicted molecular mass of 75,588 Da. Pex17p is peripherally associated with the peroxisomal membrane. The carboxyl-terminal tripeptide, Gly-Thr-Leu, of Pex17p is not necessary for its targeting to peroxisomes. Synthesis of Pex17p is low in cells grown in glucose-containing medium and increases after the cells are shifted to oleic acid-containing medium. Cells of the pex17-1 mutant, the original mutant strain, and the pex17-KA mutant, a strain in which most of the PEX17 gene is deleted, fail to form normal peroxisomes but instead contain numerous large, multimembraned structures. The import of peroxisomal matrix proteins in these mutants is selectively impaired. This selective import is not a function of the nature of the peroxisomal targeting signal. We suggest a regulatory role for Pex17p in the import of a subset of matrix proteins into peroxisomes.  相似文献   

9.
Pex mutants of the yeast Yarrowia lipolytica are defective in peroxisome assembly. The mutant strain pex16-1 lacks morphologically recognizable peroxisomes. Most peroxisomal proteins are mislocalized to a subcellular fraction enriched for cytosol in pex16 strains, but a subset of peroxisomal proteins is localized at, or near, wild-type levels to a fraction typically enriched for peroxisomes. The PEX16 gene was isolated by functional complementation of the pex16-1 strain and encodes a protein, Pex16p, of 391 amino acids (44,479 D). Pex16p has no known homologues. Pex16p is a peripheral protein located at the matrix face of the peroxisomal membrane. Substitution of the carboxylterminal tripeptide Ser-Thr-Leu, which is similar to the consensus sequence of peroxisomal targeting signal 1, does not affect targeting of Pex16p to peroxisomes. Pex16p is synthesized in wild-type cells grown in glucose-containing media, and its levels are modestly increased by growth of cells in oleic acid–containing medium. Overexpression of the PEX16 gene in oleic acid– grown Y. lipolytica leads to the appearance of a small number of enlarged peroxisomes, which contain the normal complement of peroxisomal proteins at levels approaching those of wild-type peroxisomes.  相似文献   

10.
Peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome (ZS) and neonatal adrenoleukodystrophy are autosomal recessive diseases caused by defects in peroxisome assembly, for which 13 genotypes have been identified. Expression of the human peroxin Pex3p cDNA encoding a 373-amino-acid peroxisomal membrane protein morphologically and biochemically restored peroxisome biogenesis, including peroxisomal membrane assembly, in fibroblasts from PBDG-02, a patient with complementation group G (CG-G) ZS. Patient PBDG-02 carried a homozygous, inactivating mutation-a 97-bp deletion of nucleotide residues at positions 942-1038-resulting in a 32-amino-acid truncation and in a frameshift inducing both a 3-amino-acid substitution and a termination codon. Genomic PCR analysis revealed mutation of T-->G at eight bases upstream of the splicing site at the boundary of intron 10 and exon 11 of PEX3 gene, giving rise to a deletion of all of exon 11. When assessed by expression in a pex3 mutant of Chinese hamster ovary cells and the patient's fibroblasts, PBDG-02-derived PEX3 cDNA was found to be defective in peroxisome-restoring activity. These results provide evidence that PEX3 is a novel, pathogenic gene responsible for CG-G PBDs.  相似文献   

11.
We have cloned PEX15 which is required for peroxisome biogenesis in Saccharomyces cerevisiae. pex15Delta cells are characterized by the cytosolic accumulation of peroxisomal matrix proteins containing a PTS1 or PTS2 import signal, whereas peroxisomal membrane proteins are present in peroxisomal remnants. PEX15 encodes a phosphorylated, integral peroxisomal membrane protein (Pex15p). Using multiple in vivo methods to determine the topology, Pex15p was found to be a tail-anchored type II (Ncyt-Clumen) peroxisomal membrane protein with a single transmembrane domain near its carboxy-terminus. Overexpression of Pex15p resulted in impaired peroxisome assembly, and caused profound proliferation of the endoplasmic reticulum (ER) membrane. The lumenal carboxy-terminal tail of Pex15p protrudes into the lumen of these ER membranes, as demonstrated by its O-glycosylation. Accumulation in the ER was also observed at an endogenous expression level when Pex15p was fused to the N-terminus of mature invertase. This resulted in core N-glycosylation of the hybrid protein. The lumenal C-terminal tail of Pex15p is essential for targeting to the peroxisomal membrane. Furthermore, the peroxisomal membrane targeting signal of Pex15p overlaps with an ER targeting signal on this protein. These results indicate that Pex15p may be targeted to peroxisomes via the ER, or to both organelles.  相似文献   

12.
The gene products (peroxins) of at least 29 PEX genes are known to be necessary for peroxisome biogenesis but for most of them their precise function remains to be established. Here we show that Pex15p, an integral peroxisomal membrane protein, in vivo and in vitro binds the AAA peroxin Pex6p. This interaction functionally interconnects these two hitherto unrelated peroxins. Pex15p provides the mechanistic basis for the reversible targeting of Pex6p to peroxisomal membranes. We could demonstrate that the N-terminal part of Pex6p contains the binding site for Pex15p and that the two AAA cassettes D1 and D2 of Pex6p have opposite effects on this interaction. A point mutation in the Walker A motif of D1 (K489A) decreased the binding of Pex6p to Pex15p indicating that the interaction of Pex6p with Pex15p required binding of ATP. Mutations in Walker A (K778A) and B (D831Q) motifs of D2 abolished growth on oleate and led to a considerable larger fraction of peroxisome bound Pex6p. The nature of these mutations suggested that ATP-hydrolysis is required to disconnect Pex6p from Pex15p. On the basis of these results, we propose that Pex6p exerts at least part of its function by an ATP-dependent cycle of recruitment and release to and from Pex15p.  相似文献   

13.
Patients with peroxisome biogenesis disorders (PBD) can be identified by detection of peroxisomes in their fibroblasts, by means of immunocytochemical staining using an anti-catalase antibody. We report here data on three PBD patients with newly identified mutations (del550C and del642G) in the PEX2 gene which encodes a 35-kDa peroxisomal membrane protein containing two membrane-spanning and a C-terminal cysteine-rich region. Some of the fibroblasts from the patient with the del642G mutation contained numerous catalase-containing particles, whereas no fibroblasts containing such particles were found in the patient with the del550C mutation. We confirmed that the del642G mutation caused a partial defect in peroxisome synthesis and import by expression of the mutated PEX2 into PEX2-defective CHO mutant cells. We propose that the two putative membrane-spanning segments in Pex2p are important domains for peroxisome assembly and import and that a defect in one of these domains severely affects PBD patients. Furthermore, a defect in the C-terminal portion of Pex2p exposed to the cytosol containing a RING finger motif caused the mild phenotype, residual enzyme activities, and mosaic detectable peroxisomes in fibroblasts from the patient.  相似文献   

14.
Taras Y. Nazarko 《Autophagy》2017,13(5):991-994
Peroxisome biogenesis disorders (PBDs) is a group of diseases caused by mutations in one of the peroxins, proteins responsible for biogenesis of the peroxisomes. In recent years, it became clear that many peroxins (e.g., PEX3 and PEX14) play additional roles in peroxisome homeostasis (such as promoting autophagic degradation of peroxisomes or pexophagy), which are often opposite to their originally established functions in peroxisome formation and maintenance. Even more interesting, the peroxins that make up the peroxisomal AAA ATPase complex (AAA-complex) in yeast (Pex1, Pex6 and Pex15) or mammals (PEX1, PEX6, PEX26) are responsible for the downregulation of pexophagy. Moreover, this might be even their primary role in human: to prevent pexophagy by removing from the peroxisomal membrane the ubiquitinated peroxisomal matrix protein import receptor, Ub-PEX5, which is also a signal for the Ub-binding pexophagy receptor, NBR1. Remarkably, the peroxisomes rescued from pexophagy by autophagic inhibitors in PEX1G843D (the most common PBD mutation) cells are able to import matrix proteins and improve their biochemical function suggesting that the AAA-complex per se is not essential for the protein import function in human. This paradigm-shifting discovery published in the current issue of Autophagy has raised hope for up to 65% of all PBD patients with various deficiencies in the AAA-complex. Recognizing PEX1, PEX6 and PEX26 as pexophagy suppressors will allow treating these patients with a new range of tools designed to target mammalian pexophagy.  相似文献   

15.
The three peroxin genes, PEX12, PEX2, and PEX10, encode peroxisomal integral membrane proteins with RING finger at the C-terminal part and are responsible for human peroxisome biogenesis disorders. Mutation analysis in PEX12 of Chinese hamster ovary cell mutants revealed a homozygous nonsense mutation at residue Trp263Ter in ZP104 cells and a pair of heterozygous nonsense mutations, Trp170Ter and Trp114Ter, in ZP109. This result and domain mapping of Pex12p showed that RING finger is essential for peroxisome-restoring activity of Pex12p but not necessary for targeting to peroxisomes. The N-terminal region of Pex12p, including amino acid residues at positions 17-76, was required for localization to peroxisomes, while the sequence 17-76 was not sufficient for peroxisomal targeting. Peroxins interacting with RING finger of Pex2p, Pex10p, and Pex12p were investigated by yeast two-hybrid as well as in vitro binding assays. The RING finger of Pex12p bound to Pex10p and the PTS1-receptor Pex5p. Pex10p also interacted with Pex2p and Pex5p in vitro. Moreover, Pex12p was co-immunoprecipitated with Pex10p from CHO-K1 cells, where Pex5p was not associated with the Pex12p-Pex10p complex. This observation suggested that Pex5p does not bind to, or only transiently interacts with, Pex10p and Pex12p when Pex10p and Pex12p are in the oligomeric complex in peroxisome membranes. Hence, the RING finger peroxins are most likely to be involved in Pex5p-mediated matrix protein import into peroxisomes.  相似文献   

16.
We searched for Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by using peroxisome targeting sequence (PTS) of Pex3p (amino acid residues 1-40)-fused enhanced green fluorescent protein (EGFP). From mutagenized wild-type CHO-K1 cells stably expressing rat Pex2p and Pex3p(1-40)-EGFP, cell colonies resistant to the 9-(1(')-pyrene)nonanol/ultraviolet treatment were examined for intracellular location of peroxisomal proteins, including EGFP chimera, catalase, and matrix proteins with PTS types 1 and 2. One clone, ZPEG309, showed a distinct phenotype: import defect of catalase, but normal transport of PTS1 and PTS2 proteins at 37 degrees C. PTS1 and PTS2 import was abrogated when ZPEG309 was cultured at 39 degrees C. Genetic defect of ZPEG309 was a nonsense point mutation in a codon for Arg50 in CHO PEX2 and a mutation resulting in a C-terminal truncation of the introduced rat Pex2p. Therefore, ZPEG309 is a novel pex2, catalase-deficient mutant with temperature-sensitive PTS1 and PTS2 import.  相似文献   

17.
PEX genes encode peroxins, which are proteins required for peroxisome assembly. The PEX19 gene of the yeast Yarrowia lipolytica was isolated by functional complementation of the oleic acid-nonutilizing strain pex19-1 and encodes Pex19p, a protein of 324 amino acids (34,822 Da). Subcellular fractionation and immunofluorescence microscopy showed Pex19p to be localized primarily to peroxisomes. Pex19p is detected in cells grown in glucose-containing medium, and its levels are not increased by incubation of cells in oleic acid-containing medium, the metabolism of which requires intact peroxisomes. pex19 cells preferentially mislocalize peroxisomal matrix proteins and the peripheral intraperoxisomal membrane peroxin Pex16p to the cytosol, although small amounts of these proteins could be reproducibly localized to a subcellular fraction enriched for peroxisomes. In contrast, the peroxisomal integral membrane protein Pex2p exhibits greatly reduced levels in pex19 cells compared with its levels in wild-type cells. Importantly, pex19 cells were shown by electron microscopy to contain structures that resemble wild-type peroxisomes in regards to size, shape, number, and electron density. Subcellular fractionation and isopycnic density gradient centrifugation confirmed the presence of vesicular structures in pex19 mutant strains that were similar in density to wild-type peroxisomes and that contained profiles of peroxisomal matrix and membrane proteins that are similar to, yet distinct from, those of wild-type peroxisomes. Because peroxisomal structures form in pex19 cells, Pex19p apparently does not function as a peroxisomal membrane protein receptor in Y. lipolytica. Our results are consistent with a role for Y. lipolytica Pex19p in stabilizing the peroxisomal membrane.  相似文献   

18.
Peroxisomes are ubiquitous organelles with a single membrane that contain over 50 different enzymes that catalyse various metabolic pathways, including beta-oxidation and lipid synthesis. Peroxisome biogenesis disorders (PBDs), such as Zellweger syndrome and neonatal adrenoleukodystrophy, are fatal genetic diseases that are autosomal recessive. Among the PBDs of the 12 complementation groups (CGs), 11 associated PEX genes have been isolated. Accordingly, only the PBD pathogenic gene for CG8 (also called CG-A) remains unidentified. Here we have isolated human PEX26 encoding a type II peroxisomal membrane protein of relative molecular mass 34,000 (M(r) 34K) by using ZP167 cells, a Chinese hamster ovary (CHO) mutant cell line. Expression of PEX26 restores peroxisomal protein import in the fibroblasts of an individual with PBD of CG8. This individual possesses a homozygous, inactivating pathogenic point mutation, Arg98Trp, in Pex26. Pex6 and Pex1 of the AAA ATPase family co-immunoprecipitate with Pex26. Epitope-tagged Pex6 and Pex1 are discernible as puncta in normal CHO-K1 cells, but not in PEX26-defective cells. PEX26 expression in ZP167 cells re-establishes colocalization of Pex6 and Pex1 with Pex26, in a Pex6-dependent manner. Thus, Pex26 recruits Pex6-Pex1 complexes to peroxisomes.  相似文献   

19.
The peroxin Pex3p has been identified as an integral peroxisomal membrane protein in yeast where pex3 mutants lack peroxisomal remnant structures. Although not proven in higher organisms, a role of this gene in the early peroxisome biogenesis is suggested. We report here the cDNA cloning and the genomic structure of the mouse PEX3 gene. The 2 kb cDNA encodes a polypeptide of 372 amino acids (42 kDa). The gene spans a region of 30 kb, contains 12 exons and 11 introns and is located on band A of chromosome 10. The putative promoter region exhibits characteristic housekeeping features. PEX3 expression was identified in all tissues analyzed, with the strongest signals in liver and in testis, and could not be induced by fenofibrate. The data presented may be useful for the generation of a mouse model defective in PEX3 in order to clarify the yet unknown functional impact of disturbances in early peroxisomal membrane assembly.  相似文献   

20.
PEX genes encode proteins (peroxins) that are required for the biogenesis of peroxisomes. One of these peroxins, Pex5p, is the receptor for matrix proteins with a type 1 peroxisomal targeting signal (PTS1), which shuttles newly synthesized proteins from the cytosol into the peroxisome matrix. We observed that in various Saccharomyces cerevisiae pex mutants disturbed in the early stages of PTS1 import, the steady-state levels of Pex5p are enhanced relative to wild type controls. Furthermore, we identified ubiquitinated forms of Pex5p in deletion mutants of those PEX genes that have been implicated in recycling of Pex5p from the peroxisomal membrane into the cytosol. Pex5p ubiquitination required the presence of the ubiquitin-conjugating enzyme Ubc4p and the peroxins that are required during early stages of PTS1 protein import. Finally, we provide evidence that the proteasome is involved in the turnover of Pex5p in wild type yeast cells, a process that requires Ubc4p and occurs at the peroxisomal membrane. Our data suggest that during receptor recycling a portion of Pex5p becomes ubiquitinated and degraded by the proteasome. We propose that this process represents a conserved quality control mechanism in peroxisome biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号