首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of lysozyme in the picosecond timescale has been studied when it is in dry and hydrated powder form and when it is embedded in glycerol, glycerol–water, glucose and glucose–water matrices. The investigation has been undertaken through elastic neutron scattering technique on the backscattering spectrometer IN13. The dynamics of dry powder and embedded-in-glucose lysozyme can be considered purely vibrational up to 100 K, where the onset of an anharmonic contribution takes place. This contribution can be attributed to the activation of methyl group reorientations and is described with an Arrhenius trend. An additional source of anharmonic dynamics appears at higher temperatures for lysozyme in hydrated powders and embedded in glycerol, glycerol–water and glucose–water matrices. This second process, also represented with an Arrhenius trend, corresponds to the so-called protein dynamical transition. Both the temperature where such a transition takes place and the magnitude of the protein mean square displacements depend on the environment. The dynamical response of the protein to temperature is put in relationship with its thermal stability.  相似文献   

2.
Through elastic neutron scattering we measured the mean-square displacements of the hydrogen atoms of lysozyme embedded in a glucose-water glassy matrix as a function of the temperature and at various water contents. The elastic intensity of all the samples has been interpreted in terms of the double-well model in the whole temperature range. The dry sample shows an onset of anharmonicity at approximately 100 K, which can be attributed to the activation of methyl group reorientations. Such a protein intrinsic dynamics is decoupled from the external environment on the whole investigated temperature range. In the hydrated samples an additional and larger anharmonic contribution is provided by the protein dynamical transition, which appears at a higher temperature Td. As hydration increases the coupling between the protein internal dynamics and the surrounding matrix relaxations becomes more effective. The behavior of Td that, as a function of the water content, diminishes by approximately 60 K, supports the picture of the protein dynamics as driven by solvent relaxations. A possible connection between the protein dynamical response versus T and the thermal stability in glucose-water bioprotectant matrices is proposed.  相似文献   

3.
Glycerol has been shown to lower the heat denaturation temperature (T(m)) of dehydrated lysozyme while elevating the T(m) of hydrated lysozyme (. J. Pharm. Sci. 84:707-712). Here, we report an in situ elastic neutron scattering study of the effect of glycerol and hydration on the internal dynamics of lysozyme powder. Anharmonic motions associated with structural relaxation processes were not detected for dehydrated lysozyme in the temperature range of 40 to 450K. Dehydrated lysozyme was found to have the highest T(m) by. Upon the addition of glycerol or water, anharmonicity was recovered above a dynamic transition temperature (T(d)), which may contribute to the reduction of T(m) values for dehydrated lysozyme in the presence of glycerol. The greatest degree of anharmonicity, as well as the lowest T(d), was observed for lysozyme solvated with water. Hydrated lysozyme was also found to have the lowest T(m) by. In the regime above T(d), larger amounts of glycerol lead to a higher rate of change in anharmonic motions as a function of temperature, rendering the material more heat labile. Below T(d), where harmonic motions dominate, the addition of glycerol resulted in a lower amplitude of motions, correlating with a stabilizing effect of glycerol on the protein.  相似文献   

4.
The molecular understanding of protein stabilization by the disaccharide trehalose in extreme temperature or hydration conditions is still debated. In the present study, we investigated the role of trehalose on the dynamics of the protein C-phycocyanin (C-PC) by neutron scattering. To single out the motions of C-PC hydrogen (H) atoms in various trehalose/water environments, measurements were performed in deuterated trehalose and heavy water (D(2)O). We report that trehalose decreases the internal C-PC dynamics, as shown by a reduced diffusion coefficient of protein H atoms. By fitting the Elastic Incoherent Structure Factor-which gives access to the "geometry" of the internal proton motions-with the model of diffusion inside a sphere, we found that the presence of trehalose induces a significantly higher proportion of immobile C-PC hydrogens. We investigated, by elastic neutron scattering, the mean square displacements (MSDs) of deuterated trehalose/D(2)O-embedded C-PC as a function of temperature in the range of 40-318 K. Between 40 and approximately 225 K, harmonic MSDs of C-PC are slightly smaller in samples containing trehalose. Above a transition temperature of approximately 225 K, we observed anharmonic motions in all trehalose/water-coated C-PC samples. In the hydrated samples, MSDs are not significantly changed by addition of 15% trehalose but are slightly reduced by 30% trehalose. In opposition, no dynamical transition was detected in dry trehalose-embedded C-PC, whose hydrogen motions remain harmonic up to 318 K. These results suggest that a role of trehalose would be to stabilize proteins by inhibiting some fluctuations at the origin of protein unfolding and denaturation.  相似文献   

5.
Quasielastic neutron and light-scattering techniques along with molecular dynamics simulations were employed to study the influence of hydration on the internal dynamics of lysozyme. We identified three major relaxation processes that contribute to the observed dynamics in the picosecond to nanosecond time range: 1), fluctuations of methyl groups; 2), fast picosecond relaxation; and 3), a slow relaxation process. A low-temperature onset of anharmonicity at T approximately 100 K is ascribed to methyl-group dynamics that is not sensitive to hydration level. The increase of hydration level seems to first increase the fast relaxation process and then activate the slow relaxation process at h approximately 0.2. The quasielastic scattering intensity associated with the slow process increases sharply with an increase of hydration to above h approximately 0.2. Activation of the slow process is responsible for the dynamical transition at T approximately 200 K. The dependence of the slow process on hydration correlates with the hydration dependence of the enzymatic activity of lysozyme, whereas the dependence of the fast process seems to correlate with the hydration dependence of hydrogen exchange of lysozyme.  相似文献   

6.
A standard analysis of the scattered neutron incoherent elastic intensity measured with very good energy resolution yields elastic scans, i.e., mean-square displacements of atomic motions (in a pico to nanosecond time scale) in a sample as a function of temperature. This provides a quick way for characterizing the dynamical behavior of biological macromolecules, such behavior being correlated with biological function and activity. Elastic scans of proteins exhibit a dynamical transition at approximately 200 K, marking a cross-over in molecular fluctuations between harmonic and nonharmonic dynamical regimes. This paper presents an approach allowing analysis of the elastic scan in terms of force constants and related parameters, such as the free energy barrier DeltaG at the transition. We find that the increased protein flexibility beyond the dynamical transition is associated with DeltaG approximately equals RT and effective force constants of the order of 0.1-3 N/m. The analysis provides a set of parameters for characterizing molecular resilience and exploring relations among dynamics, function, and activity in proteins.  相似文献   

7.
Experimental and computer simulation studies have revealed the presence of a glass-like transition in the internal dynamics of hydrated proteins at approximately 200 K involving an increase of the amplitude of anharmonic dynamics. This increase in flexibility has been correlated with the onset of protein activity. Here, we determine the driving force behind the protein transition by performing molecular dynamics simulations of myoglobin surrounded by a shell of water. A dual heat bath method is used with which, in any given simulation, the protein and solvent are held at different temperatures, and sets of simulations are performed varying the temperature of the components. The results show that the protein transition is driven by a dynamical transition in the hydration water that induces increased fluctuations primarily in side chains in the external regions of the protein. The water transition involves activation of translational diffusion and occurs even in simulations where the protein atoms are held fixed.  相似文献   

8.
In this work we study the effect of hydration on the dynamics of a protein in confined geometry, i.e. encapsulated in a porous silica matrix. Using elastic neutron scattering we investigate the temperature dependence of the mean square displacements of non-exchangeable hydrogen atoms of sol-gel encapsulated met-myoglobin. The study is extended to samples at 0.2, 0.3 and 0.5 g water/g protein fractions and comparison is made with met-myoglobin powders at the same average hydration and with a dry powder sample. Elastic data are analysed using a model of dynamical heterogeneity to take into account deviations of elastic intensity from gaussian behaviour in a large momentum transfer range and reveal a specific, model independent, effect of sol-gel confinement on protein dynamics, consisting mainly in a reduction of large-scale motions that are activated at temperatures larger than approximately 230 K. Surprisingly, the effect of confinement depends markedly on hydration and has a maximum at about 35% water/protein fraction corresponding to full first shell hydration. The presence of hydration-dependent MSD also in encapsulated met-Mb strongly supports the idea that the effect of sol-gel confinement on protein dynamics involves a modification of the structural/dynamical properties of the co-encapsulated solvent more than direct protein-matrix interactions.  相似文献   

9.
The temperature dependence of the internal dynamics of an isolated protein, bovine pancreatic trypsin inhibitor, is examined using normal mode analysis and molecular dynamics (MD) simulation. It is found that the protein exhibits marked anharmonic dynamics at temperatures of approximately 100-120 K, as evidenced by departure of the MD-derived average mean square displacement from that of the harmonic model. This activation of anharmonic dynamics is at lower temperatures than previously detected in proteins and is found in the absence of solvent molecules. The simulation data are also used to investigate neutron scattering properties. The effects are determined of instrumental energy resolution and of approximations commonly used to extract mean square displacement data from elastic scattering experiments. Both the presence of a distribution of mean square displacements in the protein and the use of the Gaussian approximation to the dynamic structure factor lead to quantified underestimation of the mean square displacement obtained.  相似文献   

10.
We use elastic neutron scattering to demonstrate that a sharp increase in the mean-squared atomic displacements, commonly observed in hydrated proteins above 200 K and often referred to as the dynamical transition, is present in the hydrated state of both native and denatured lysozyme. A direct comparison of the native and denatured protein thus confirms that the presence of the transition in the mean-squared atomic displacements is not specific to biologically functional molecules.  相似文献   

11.
Molecular dynamics simulations are performed of bovine pancreatic trypsin inhibitor in a cryosolution over a range of temperatures from 80 to 300 K and the origins identified of elastic dynamic neutron scattering from the solution. The elastic scattering and mean-square displacement calculated from the molecular dynamics trajectories are in reasonable agreement with experiments on a larger protein in the same solvent. The solvent and protein contributions to the scattering from the simulation model are determined. At lower temperatures (< approximately 200 K) or on shorter timescales ( approximately 10 ps) the scattering contributions are proportional to the isotopic nuclear scattering cross-sections of each component. However, for T > 200 K marked deviations from these cross-sections are seen due to differences in the dynamics of the components of the solution. Rapid activation of solvent diffusion leads to the variation with temperature of the total elastic intensity being determined largely by that of the solvent. At higher temperatures (>240 K) and longer times ( approximately 100 ps) the protein makes the only significant contribution to the scattering, the solvent scattering having moved out of the accessible time-space window. Decomposition of the protein mean-square displacement shows that the observed dynamical transition in the solution at 200-220 K involves activation of both internal motions and external whole-molecule rotational and translational diffusion. The proportion that the external dynamics contributes to the protein mean-square displacement increases to approximately 30 and 60% at 300 K on the 10- and 100-ps timescales, respectively.  相似文献   

12.
In order to examine the properties specific to the folded protein, the effect of the conformational states on protein dynamical transition was studied by incoherent elastic neutron scattering for both wild type and a deletion mutant of staphylococcal nuclease. The deletion mutant of SNase which lacks C-terminal 13 residues takes a compact denatured structure, and can be regarded as a model of intrinsic unstructured protein. Incoherent elastic neutron scattering experiments were carried out at various temperature between 10 K and 300 K on IN10 and IN13 installed at ILL. Temperature dependence of mean-square displacements was obtained by the q-dependence of elastic scattering intensity. The measurements were performed on dried and hydrated powder samples. No significant differences were observed between wild type and the mutant for the hydrated samples, while significant differences were observed for the dried samples. A dynamical transition at ∼ 140 K observed for both dried and hydrated samples. The slopes of the temperature dependence of MSD before transition and after transition are different between wild type and the mutant, indicating the folding induces hardening. The hydration water activates a further transition at ∼ 240 K. The behavior of the temperature dependence of MSD is indistinguishable for wild type and the mutant, indicating that hydration water dynamics dominate the dynamical properties.  相似文献   

13.
We used MD simulations to investigate the dependence of the dynamics of a soluble protein, RNase A, on temperature and solvent environment. Consistent with neutron scattering data, the simulations predict that the protein undergoes a dynamical transition in both glycerol and aqueous solutions that is absent in the dry protein. The temperature of the transition is higher, while the rate of increase with temperature of the amplitudes of motion on the 100 ps timescale is lower, in glycerol versus water. Analysis of the dynamics of hydrogen bonds revealed that the protein dynamical transition is connected to the relaxation of the protein-solvent hydrogen bond network, which, in turn, is associated with solvent translational diffusion. Thus, it appears that the role of solvent dynamics in affecting the protein dynamical transition is qualitatively similar in water and glycerol.  相似文献   

14.
Through elastic neutron scattering measurements, we investigated the thermal fluctuations of DNA enclosed by glycerol–water glassy matrices, at different levels of hydration, over the wide temperature range from 20 to 300 K. For all the samples, the extracted hydrogen mean square displacements (MSD) show a purely vibrational harmonic trend at very low temperatures, and a first onset of anharmonic dynamics above ∼100 K. Such onset is consistent with the activation of DNA methyl group rotational motions. Then, at a certain temperature T d, the MSD show a second onset of anharmonicity, which corresponds to the DNA dynamical transition. The T d values vary as a function of the hydration degree of the environment. The crucial role of the solvent mobility to activate the DNA thermal fluctuations is proposed, together with a preferential hydration effect of the DNA phosphate groups. Finally, a comparison between the average mobility of homologous samples of DNA and the lysozyme protein is considered. Advanced neutron scattering and complementary techniques to study biological systems. Contributions from the meetings, “Neutrons in Biology”, STFC Rutherford Appleton Laboratory, Didcot, UK, 11–13 July and “Proteins At Work 2007”, Perugia, Italy, 28–30 May 2007.  相似文献   

15.
A neutron-scattering investigation of the internal picosecond dynamics of lysozyme solvated in glycerol as a function of temperature in the range 200–410 K has been undertaken. The inelastic contribution to the measured intensity is characterized by the presence of a bump generally known as “boson peak”, clearly distinguishable at low temperature. When the temperature is increased the quasielastic component of the spectrum becomes more and more intrusive and progressively overwhelms the vibrational bump. This happens especially for T > 345 K when the protein goes through an unfolding process, which leads to the complete denaturation. The quasielastic term is the superposition of two components whose intensities and linewidths have been studied as a function of temperature. The slower component describes motions with characteristic times of ~4 ps corresponding to reorientations of polypeptide side chains. Both the intensity and linewidth of this kind of relaxations show two distinct regimes with a crossover in the temperature range where the melting process occurs, thus suggesting the presence of a dynamical transition correlated to the protein unfolding. Conversely the faster component might be ascribed to the local dynamics of hydrogen atoms caged by the nearest neighbors with characteristic time of ~0.3 ps.  相似文献   

16.
Hen egg-white lysozyme, lyophilized from aqueous solutions of different pH (from pH 2.5 to 10.0) and then dissolved in water and in anhydrous glycerol, has been studied by high-sensitivity differential scanning microcalorimetry over the temperature range from 10 to 150 degrees C. All lysozyme samples exhibit a cooperative conformational transition in both solvents occurring between 10 and 100 degrees C. The transition temperatures in glycerol are similar to those in water at the corresponding pHs. The transition enthalpies in glycerol are substantially lower than in water but follow similar pH dependences. The transition heat capacity increment in glycerol does not depend on the pH and is 1.25+/-0.31 kJ mol(-1) K(-1), which is less than one fifth of that in water (6. 72+/-0.23 kJ mol(-1) K(-1)). The thermal transition in glycerol is reversible and equilibrium, as demonstrated for the pH 8.0 sample, and follows the classical two-state mechanism. In contrast to lysozyme in water, the protein dissolved in glycerol undergoes an additional, irreversible cooperative transition with a marginal endothermic heat effect at temperatures of 120-130 degrees C. The transition temperature of this second transition increases with the heating rate which is characteristic of kinetically controlled processes. Thermodynamic analysis of the calorimetric data reveals that the stability of the folded conformation of lysozyme in glycerol is similar to that in water at 20-80 degrees C but exceeds it at lower and higher temperatures. It is hypothesized that the thermal unfolding in glycerol follows the scheme: N ifho-MG-->U, where N is a native-like conformation, ho-MG is a highly ordered molten globule state, and U is the unfolded state of the protein.  相似文献   

17.
Embedding biostructures in saccharide glasses protects them against extreme dehydration and/or exposure to very high temperature. Among the saccharides, trehalose appears to be the most effective bioprotectant. In this paper we report on the low-frequency dynamics of carbon monoxy myoglobin in an extremely dry trehalose glass measured by neutron spectroscopy. Under these conditions, the mean square displacements and the density of state function are those of a harmonic solid, up to room temperature, in contrast to D2O-hydrated myoglobin, in which a dynamical transition to a nonharmonic regime has been observed at approximately 180 K (Doster et al., 1989. Nature. 337:754-756). The protective effect of trehalose is correlated, therefore, with a trapping of the protein in a harmonic potential, even at relatively high temperature.  相似文献   

18.
A major result of incoherent elastic neutron-scattering experiments on protein powders is the strong dependence of the intramolecular dynamics on the sample environment. We performed a series of incoherent elastic neutron-scattering experiments on lyophilized human butyrylcholinesterase (HuBChE) powders under different conditions (solvent composition and hydration degree) in the temperature range from 20 to 285 K to elucidate the effect of the environment on the enzyme atomic mean-square displacements. Comparing D(2)O- with H(2)O-hydrated samples, we were able to investigate protein as well as hydration water molecular dynamics. HuBChE lyophilized from three distinct buffers showed completely different atomic mean-square displacements at temperatures above approximately 200 K: a salt-free sample and a sample containing Tris-HCl showed identical small-amplitude motions. A third sample, containing sodium phosphate, displayed highly reduced mean-square displacements at ambient temperature with respect to the other two samples. Below 200 K, all samples displayed similar mean-square displacements. We draw the conclusion that the reduction of intramolecular protein mean-square displacements on an Angstrom-nanosecond scale by the solvent depends not only on the presence of salt ions but also on their type.  相似文献   

19.
F-actin, a helical polymer formed by polymerization of the monomers (G-actin), plays crucial roles in various aspects of cell motility. Flexibility of F-actin has been suggested to be important for such a variety of functions. Understanding the flexibility of F-actin requires characterization of a hierarchy of dynamical properties, from internal dynamics of the actin monomers through domain motions within the monomers and relative motions between the monomers within F-actin to large-scale motions of F-actin as a whole. As a first step toward this ultimate purpose, we carried out elastic incoherent neutron scattering experiments on powders of F-actin and G-actin hydrated with D2O and characterized the internal dynamics of F-actin and G-actin. Well established techniques and analysis enabled the extraction of mean-square displacements and their temperature dependence in F-actin and in G-actin. An effective force constant analysis with a model consisting of three energy states showed that two dynamical transitions occur at ∼150 K and ∼245 K, the former of which corresponds to the onset of anharmonic motions and the latter of which couples with the transition of hydration water. It is shown that behavior of the mean-square displacements is different between G-actin and F-actin, such that G-actin is “softer” than F-actin. The differences in the internal dynamics are detected for the first time between the different structural states (the monomeric state and the polymerized state). The different behavior observed is ascribed to the differences in dynamical heterogeneity between F-actin and G-actin. Based on structural data, the assignment of the differences observed in the two samples to dynamics of specific loop regions involved in the polymerization of G-actin into F-actin is proposed.  相似文献   

20.
It is widely recognized that representing a protein as a single static conformation is inadequate to describe the dynamics essential to the performance of its biological function. We contrast the amino acid displacements below and above the protein dynamical transition temperature, TD∼215K, of hen egg white lysozyme using X-ray crystallography ensembles that are analyzed by molecular dynamics simulations as a function of temperature. We show that measuring structural variations across an ensemble of X-ray derived models captures the activation of conformational states that are of functional importance just above TD, and they remain virtually identical to structural motions measured at 300K. Our results highlight the ability to observe functional structural variations across an ensemble of X-ray crystallographic data, and that residue fluctuations measured in MD simulations at room temperature are in quantitative agreement with the experimental observable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号