首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To utilize fermentative bacteria for producing the alternative fuel hydrogen, we performed successive rounds of P1 transduction from the Keio Escherichia coli K-12 library to introduce multiple, stable mutations into a single bacterium to direct the metabolic flux toward hydrogen production. E. coli cells convert glucose to various organic acids (such as succinate, pyruvate, lactate, formate, and acetate) to synthesize energy and hydrogen from formate by the formate hydrogen-lyase (FHL) system that consists of hydrogenase 3 and formate dehydrogenase-H. We altered the regulation of FHL by inactivating the repressor encoded by hycA and by overexpressing the activator encoded by fhlA, removed hydrogen uptake activity by deleting hyaB (hydrogenase 1) and hybC (hydrogenase 2), redirected glucose metabolism to formate by using the fdnG, fdoG, narG, focA, focB, poxB, and aceE mutations, and inactivated the succinate and lactate synthesis pathways by deleting frdC and ldhA, respectively. The best of the metabolically engineered strains, BW25113 hyaB hybC hycA fdoG frdC ldhA aceE, increased hydrogen production 4.6-fold from glucose and increased the hydrogen yield twofold from 0.65 to 1.3 mol H2/mol glucose (maximum, 2 mol H2/mol glucose).  相似文献   

2.
Hydrogen fuel is renewable, efficient and clean, and fermentative bacteria hold great promise for its generation. Here we use the isogenic Escherichia coli K‐12 KEIO library to rapidly construct multiple, precise deletions in the E. coli genome to direct the metabolic flux towards hydrogen production. Escherichia coli has three active hydrogenases, and the genes involved in the regulation of the formate hydrogen lyase (FHL) system for synthesizing hydrogen from formate via hydrogenase 3 were also manipulated to enhance hydrogen production. Specifically, we altered regulation of FHL by controlling the regulators HycA and FhlA, removed hydrogen consumption by hydrogenases 1 and 2 via the hyaB and hybC mutations, and re‐directed formate metabolism using the fdnG, fdoG, narG, focA, fnr and focB mutations. The result was a 141‐fold increase in hydrogen production from formate to create a bacterium (BW25113 hyaB hybC hycA fdoG/pCA24N‐FhlA) that produces the largest amount of hydrogen to date and one that achieves the theoretical yield for hydrogen from formate. In addition, the hydrogen yield from glucose was increased by 50%, and there was threefold higher hydrogen production from glucose with this strain.  相似文献   

3.
In the past, it has been difficult to discriminate between hydrogen synthesis and uptake for the three active hydrogenases in Escherichia coli (hydrogenase 1, 2, and 3); however, by combining isogenic deletion mutations from the Keio collection, we were able to see the role of hydrogenase 3. In a cell that lacks hydrogen uptake via hydrogenase 1 (hyaB) and via hydrogenase 2 (hybC), inactivation of hydrogenase 3 (hycE) decreased hydrogen uptake. Similarly, inactivation of the formate hydrogen lyase complex, which produces hydrogen from formate (fhlA) in the hyaB hybC background, also decreased hydrogen uptake; hence, hydrogenase 3 has significant hydrogen uptake activity. Moreover, hydrogen uptake could be restored in the hyaB hybC hycE and hyaB hybC fhlA mutants by expressing hycE and fhlA, respectively, from a plasmid. The hydrogen uptake results were corroborated using two independent methods (both filter plate assays and a gas-chromatography-based hydrogen uptake assay). A 30-fold increase in the forward reaction, hydrogen formation by hydrogenase 3, was also detected for the strain containing active hydrogenase 3 activity but no hydrogenase 1 or 2 activity relative to the strain lacking all three hydrogenases. These results indicate clearly that hydrogenase 3 is a reversible hydrogenase.  相似文献   

4.
The formation of a complex between the specific chaperone-type protein HypC and the precursor form of the large subunit HycE in the maturation pathway of hydrogenase 3 from Escherichia coli has been studied by targeted replacement of amino acids in both proteins. HypC and its homologs contain the motif MC(L/I/V)(G/A)(L/I/V)P at the amino terminus, from which the methionine residue is post-translationally removed. The exchange of the cysteine residue led to complete loss of the ability to interact with the precursor form of HycE, but replacement of the proline residue had no effect. Site-directed replacement of the conserved cysteine residues in HycE involved in nickel binding was also performed. Exchange of Cys(241) resulted in the inability of the HycE variant to interact with HypC and to incorporate nickel. The variants of HycE in which Cys(244) and Cys(531) were replaced by alanine residues were unable to incorporate nickel, although the mutated proteins could interact with HypC. Intriguingly, the precursor of HycE in which the Cys(534) residue was exchanged could form the complex with HypC, could incorporate nickel, and was C-terminally processed, but it delivered an inactive enzyme. Our findings are in favor of a model in which binding of HypC masks Cys(241); Cys(244) and Cys(531) bind the iron and nickel moieties, respectively; and C534 closes the bridge between the two metals after C-terminal processing has taken place.  相似文献   

5.
The styAB genes from Pseudomonas putida CA-3, which encode styrene monooxygenase, were subjected to three rounds of in vitro evolution using error-prone polymerase chain reaction with a view to improving the rate of styrene oxide and indene oxide formation. Improvements in styrene monooxygenase activity were monitored using an indole to indigo conversion assay. Each round of random mutagenesis generated variants improved in indigo formation with third round variants improved nine- to 12-fold over the wild type enzyme. Each round of in vitro evolution resulted in two to three amino acid substitutions in styrene monooxygenase. While the majority of mutations occurred in styA (oxygenase), mutations were also observed in styB (reductase). A mutation resulting in the substitution of valine with isoleucine at amino acid residue 303 occurred near the styrene and flavin adenine dinucleotide binding site of styrene monooxygenase. One mutation caused a shift in the reading frame in styA and resulted in a StyA variant that is 19 amino acids longer than the wild-type protein. Whole cells expressing the best styrene monooxygenase variants (round 3) exhibited eight- and 12-fold improvements in styrene and indene oxidation rates compared to the wild-type enzyme. In all cases, a single enantiomer, (S)-styrene oxide, was formed from styrene while (1S,2R)-indene oxide was the predominant enantiomer (e.e. 97%) formed from indene. The average yield of styrene oxide and indene oxide from their respective alkene substrates was 65% and 90%, respectively.  相似文献   

6.
The maturation of [NiFe]-hydrogenases is a catalysed process in which the activities of at least seven proteins are involved. The last step consists of the endoproteolytic cleavage of the precursor of the large subunit after the [NiFe]-metal centre has been assembled. The amino acid sequence requirements for the endopeptidase HycI involved in the C-terminal processing of HycE, the large subunit of the hydrogenase 3 from Escherichia coli, were investigated. Mutational alteration of the amino acid residues neighbouring the cleavage site showed that proteolysis still occurred when chemically similar amino acids were exchanged. Processing was blocked, however, in a variant in which the methionine at the C-terminal side was replaced by a glutamate residue. Truncation of the precursor from the C-terminal end rendered variants amenable to maturation even when two-thirds of the extension were removed but abolished proteolysis upon further deletion of a cluster of six basic amino acids. A construct in which the C-terminal extension from the large subunit of the hydrogenase 2 was fused to the mature part of the large subunit of hydrogenase 3 was neither processed by HycI nor by HybD, the endopeptidase specific for the large subunit of hydrogenase 2. The maturation endopeptidase, therefore, exhibits a relaxed sequence constraint in recognition of its cleavage site and does not require the entire C-terminal extension. The results point to an interaction of the C-terminus with some domain of the large subunit, rendering a conformation amenable to recognition by the endopeptidase.  相似文献   

7.
Tetrahydrobiopterin is an essential cofactor for aromatic amino acid hydroxylases, ether lipid oxidase and nitric oxide synthases. Its biosynthesis in mammals is regulated by the activity of the homodecameric enzyme GCH (GTP cyclohydrolase I; EC 3.5.4.16). In previous work, catalytically inactive human GCH splice variants differing from the wild-type enzyme within the last 20 C-terminal amino acids were identified. In the present study, we searched for a possible role of these splice variants. Gel filtration profiles of purified recombinant proteins showed that variant GCHs form high-molecular-mass oligomers similar to the wild-type enzyme. Co-expression of splice variants together with wild-type GCH in mammalian cells revealed that GCH levels were reduced in the presence of splice variants. Commensurate with these findings, the GCH activity obtained for wild-type enzyme was reduced 2.5-fold through co-expression with GCH splice variants. Western blots of native gels suggest that splice variants form decamers despite C-terminal truncation. Therefore one possible explanation for the effect of GCH splice variants could be that inactive variants are incorporated into GCH heterodecamers, decreasing the enzyme stability and activity.  相似文献   

8.
嗜热酯酶APE1547催化活性的定向进化研究   总被引:1,自引:0,他引:1  
对来源于嗜热古菌Aeropyrum pernix的酯酶(APE1547)催化活性进行定向进化研究。利用APE1547特殊的稳定性,建立了准确的高通量高温酯酶筛选方法。对第一代随机突变库筛选获得了催化活性较野生型提高1.5倍的突变体M010,序列分析表明其氨基酸突变为R526S。从第二代突变库中筛选出的总活力提高5.8倍突变体M020,突变位点为R526S/E88G/A200T/I519L,其比活力与M010一致,但表达量比野生型提高约4倍。对M020酶学性质表征发现,其最适pH为8.5,比野生型向碱性偏移0.5;活性中心残基酸性基团的解离常数(pK1)由野生型的7.0提高至7.5。晶体结构分析表明,突变位点R526距离活性中心较近,将其突变为Ser降低了活性中心的极性,抑制了催化残基His的解离,使酸性基团的解离常数升高。  相似文献   

9.
10.
Hydrogenase of Thiobacillus ferrooxidans ATCC 19859 was purified from cells grown lithoautotrophically with 80% hydrogen, 8.6% carbon dioxide, and 11.4% air. Hydrogenase was located in the 140,000 ×g supernatant in cell-free extracts. The enzyme was purified 7.3-fold after chromatography on Procion Red and Q-Sepharose with a yield of 19%, resulting in an 85% pure preparation with a specific activity of 6.0 U (mg protein)–1. With native PAGE, a mol. mass of 100 and 200 kDa was determined. With SDS-PAGE, two subunits of 64 (HoxG) and of 34 kDa (HoxK) were observed. Hydrogenase reacted with methylene blue and other artificial electron acceptors, but not with NAD. The optimum of enzyme activity was at pH 9 and at 49° C. Hydrogenase contained 0.72 mol nickel and 6.02 mol iron per mol enzyme. The relationship of the T. ferrooxidans hydrogenase to other proteins was examined. A 9.5-kb EcoRI fragment of T. ferrooxidans ATCC 19859 hybridized with a 2.2-kb XhoI fragment from Alcaligenes eutrophus encoding the membrane-bound hydrogenase. Antibodies against this enzyme did not react with the T. ferrooxidans hydrogenase in Western blot analysis. The N-terminal amino acid sequence (40 amino acids) of HoxK was 46% identical to that of the hydrogen sensor HupU of Bradyrhizobium japonicum and 39% identical to that of the HupS subunit of the Desulfovibrio baculatus hydrogenase. The N-terminal sequence of 20 amino acids of HoxG of T. ferrooxidans was 83.3% identical to that of the 60-kDa subunit. HupL, of the hydrogenase of Anabaena sp. Sequences of ten internal peptides of HoxG were 50–100% identical to the respective sequences of HupL of the Anabaena sp. hydrogenase. Received: 17 November 1995 / Accepted: 2 February 1996  相似文献   

11.
A bacterial arylmalonate decarboxylase (AMDase) catalyzes asymmetric decarboxylation of unnatural arylmalonates to produce optically pure (R)-arylcarboxylates without the addition of cofactors. Previously, we designed an AMDase variant G74C/C188S that displays totally inverted enantioselectivity. However, the variant showed a 20,000-fold reduction in activity compared with the wild-type AMDase. Further studies have demonstrated that iterative saturation mutagenesis targeting the active site residues in a hydrophobic pocket of G74C/C188S leads to considerable improvement in activity where all positive variants harbor only hydrophobic substitutions. In this study, simultaneous saturation mutagenesis with a restricted set of amino acids at each position was applied to further heighten the activity of the (S)-selective AMDase variant toward α-methyl-α-phenylmalonate. The best variant (V43I/G74C/A125P/V156L/M159L/C188G) showed 9,500-fold greater catalytic efficiency kcat/Km than that of G74C/C188S. Notably, a high level of decarboxylation of α-(4-isobutylphenyl)-α-methylmalonate by the sextuple variant produced optically pure (S)-ibuprofen, an analgesic compound which showed 2.5-fold greater activity than the (R)-selective wild-type AMDase.  相似文献   

12.
13.
-Amino-acid amidases, which catalyze the stereospecific hydrolysis of -amino-acid amide to yield -amino acid and ammonia, have attracted increasing attention as catalysts for stereospecific production of -amino acids. We screened for the enzyme variants with improved thermostability generated by a directed evolution method with the goal of the application of evolved enzyme to the production of -amino acids. Random mutagenesis by error-prone PCR and a filter-based screening was repeated twice, and as a result the most thermostable mutant BFB40 was obtained. Gene analysis of the BFB40 mutant indicated that the mutant enzyme had K278 M and E303 V mutations. To compare the enzyme characteristics with the wild-type enzyme, the mutant enzyme, BFB40, was purified from the Escherichia coli (E. coli) transformant. Both the thermostability and apparent optimum temperature of the BFB40 were shifted upward by 5 °C compared with those of the wild-type enzyme. The apparent Km value for -phenylalaninamide of BFB40 enzyme was almost the same with that of the wild-type enzyme, whereas Vmax value was enhanced about three-fold. Almost complete hydrolysis of -phenylalaninamide was achieved in 2 h from 1.0 M of racemic phenylalaninamide–HCl using the cells of E. coli transformant expressing BFB40 enzyme, the conversion of which was 1.7-fold higher than the case using cells expressing wild-type enzyme after the same reaction time.  相似文献   

14.
To engineer dehairing alkaline protease (DHAP) variants to improve cold activity and increase thermostability so these variants are suitable for the leather processing industry. Based on previous studies with bacterial alkaline proteases, double-site mutations (W106K/V149I and W106K/M124L) were introduced into the DHAP from Bacillus pumilus. Compared with the wild-type DHAP hydrolytic activity, the double-site variant W106K/V149I showed an increase in specific hydrolytic activity at 15 °C by 2.3-fold toward casein in terms of hydrolytic rate and 2.7-fold toward the synthetic peptide AAPF-pN by means of kcat/Km value. The thermostability of the variant (W106K/V149I) was improved with the half-life at 60 and 70 °C increased by 2.7- and 5.0-fold, respectively, when compared with the thermostability of the wild-type DHAP. Conclusively, an increase in the cold activity and thermostability of a bacterial alkaline protease was achieved by protein engineering.  相似文献   

15.
Replacing the chymotrypsin inhibitory loop of soybean Bowman-Birk inhibitor (sBBI) with a VEGF binding peptide (BBI-AV) significantly reduces the overall purification yield when BBI-AV is produced as a fusion protein in a Bacillus subtilis expression system. The low purification yield is primarily due to a higher fraction of molecules with incorrect disulfide bond configurations after production and also after disulfide bond shuffling induced by 2-mercaptoethanol. To improve production yields, site-saturation libraries were generated at 39 out of the 66 amino acid residues of BBI-AV. Initial screens were designed to select for variants with higher trypsin inhibitory activities than the parent after treatment with a reducing agent. Secondary screens were developed to select for variants with the highest purification yields, and to also eliminate any false positives. From the screens, it was found that positively charged substitutions in the exposed hydrophobic patch region (sites 27, 29, 40, 50 & 52) are especially productive. In fact, one substitution, F50R, improves the purification yield to nearly the same level as wild-type sBBI. Productive amino acid substitutions were combined to select for the variant with the best overall yield after purification. Several variants were obtained with higher purification yields than even sBBI. The octuple variants, A13I-S25R-M27A-L29P-S31A-A40H-F50K-V52T and A13I-S25K-M27A-L29R-S31E-A40K-F50Q-V52Q, are particularly productive having greater than a five fold increase in final purification yield over the parent.  相似文献   

16.
Many missense variants identified in BRCA1 and BRCA2, two genes responsible for the majority of hereditary breast and ovarian cancer, are of unclear clinical significance. Characterizing the significance of such variants is important for medical management of patients in whom they are identified. The aim of this study was to characterize eight of the most common reported missense mutations in BRCA1 and BRCA2 occurring in patients tested for hereditary risk of breast and ovarian cancers. The prevalence of each variant in a control population, co-segregation of the variant with cancer within families, location of the variant within the gene, the nature of the amino acid substitution and conservation of the wild-type amino acid among species were considered. In a control population, the BRCA1 variants M1652I, R1347G, and S1512I, were each observed at a frequency of 4.08%, 2.04%, and 2.04%, respectively, and the BRCA2 variants A2951T, V2728I, and D1420Y, were seen at 1.02%, 0.68%, and 0.34%, respectively. Although the BRCA2 variants T598A and R2034C were not seen in this group of controls, other clinical and published observations indicate that these variants are not deleterious. Based on epidemiological and biological criteria, we therefore conclude that the BRCA1 missense mutations R1347G, S1512I and M1652I, and the BRCA2 missense mutations T598A, D1420Y, R2034C, V2728I, and A2951T, are not deleterious mutations.  相似文献   

17.
亚心型四爿藻在CCCP作用下的光生物产氢的代谢途径   总被引:1,自引:0,他引:1  
以添加CCCP(羰基氰化物间氯苯腙,Carbonyl cyanide m-chlorophenylhydrazone)的海洋绿藻亚心型四爿藻光生物制氢为研究体系,使用作用于光合系统不同位点的抑制剂研究该藻产氢过程不同时段的代谢途径。结果表明:四爿藻光生物产氢前期电子主要来自PS Ⅱ光解水以及胞内分解代谢,电子经由光合电子传递链传递至氢酶产生氢气;而后期释放的氢气则是通过不依赖光合电子传递链的发酵途径产生。产氢过程厌氧发酵代谢途径主要产物是乙酸、乙醇,其中乙醇代谢途径和氢酶竞争NAD(P)H,不利于氢气的积累。  相似文献   

18.
The role of site 342 of endoglucanase II from Trichoderma reesei in catalytic efficiency and pH optima was investigated by site saturation mutagenesis. The mutations identified in this study can be divided into three separate classes according to their amino acid features. When Asn342 was substituted by hydrophobic and non-polar amino acids, most variants exhibited an up-shift in pH optimum and their catalytic efficiency was similar to that of the wild-type at their optimal pH. N342R variant had a pH optimum at 6.2. N342K variant did not give an up-shift in pH optimum, although K and R are both amino acids carrying positive charges. Molecular modelling indicated that residue 342 was located at the C-terminus of one of the α-helices near two catalytic residues. Hydrophobic side chains and more H-bonds would make the helix more rigid, which might affect the stability and activity of the enzyme at higher pH.  相似文献   

19.
Glycerol as a by-product of biodiesel production is an attractive precursor for producing d-glyceric acid. Here, we demonstrate the successful production of d-glyceric acid based on glycerol via glyceraldehyde in a two-step enzyme reaction with the FAD-dependent alditol oxidase from Streptomyces coelicolor A3(2). The hydrogen peroxide generated in the reaction can be used in detergent, food, and paper industry. In order to apply the alditol oxidase in industry, the enzyme was subjected to protein engineering. Different strategies were used to enhance the substrate specificity towards glycerol. Initial attempts based on rational protein design in the active site region were found unsuccessful to increase activity. However, through directed evolution, an alditol oxidase double mutant (V125M/A244T) with 1.5-fold improved activity for glycerol was found by screening 8,000 clones. Further improvement of activity was achieved by combinatorial experiments, which led to a quadruple mutant (V125M/A244T/V133M/G399R) with 2.4-fold higher specific activity towards glycerol compared to the wild-type enzyme. Through studying the effects of mutations created, we were able to understand the importance of certain amino acids in the structure of alditol oxidase, not only for conferring enzymatic structural stability but also with respect to their influence on oxidative activity.  相似文献   

20.
Zhu W  Lin A  Banerjee R 《Biochemistry》2008,47(23):6226-6232
Human cystathionine-gamma-lyase (CGL) is a pyridoxal-5'-phosphate (PLP)-dependent enzyme, which functions in the transsulfuration pathway that converts homocysteine to cysteine. In addition, CGL is one of two major enzymes that can catalyze the formation of hydrogen sulfide, an important gaseous signaling molecule. Recently, several mutations in CGL have been described in patients with cystathioninuria, a rare but poorly understood genetic disease. Moreover, a common single nucleotide polymorphism in CGL, c.1364G>T that converts serine at position 403 to isoleucine, has been linked to elevated plasma homocysteine levels. In this study, we have characterized the pathogenic T67I and Q240E missense mutations and the polymorphic variants at amino acid residues 403 using kinetic and spectrophotometric methods. We report that the polymorphism does not influence the cofactor content of the enzyme or its steady-state kinetic properties. In contrast, the T67I mutant exhibits a 3.5-fold decrease in V max compared to that of wild-type CGL, while the Q240E mutant exhibits a 70-fold decrease in V max. The K Ms for cystathionine for both pathogenic mutants are comparable to that of wild type CGL. The PLP content of the T67I and Q240E mutants were about 4-fold and 80-fold lower than that of wild-type enzyme, respectively. Preincubation of the T67I mutant with PLP restored activity to wild-type levels while the same treatment resulted in only partial restoration of activity of the Q240E mutant. These results reveal that both mutations weaken the affinity for PLP and suggest that cystathionuric patients with these mutations should be responsive to pyridoxine therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号