首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Calcium and the plant cytoskeleton   总被引:2,自引:0,他引:2  
Abstract. The regulation of the plant cytoskeleton by the concentration of free ionized Ca2+ in the cytosol is discussed. The effect is illustrated by considering the role of Ca2+ in regulating cytoplasmic streaming in Physarum and characean algae, and flagellar beating in Chlamydomonas . Examples are given of cytoskeletal processes in other plant cells that may be Ca2+ -regulated, together with an appraisal of some technical difficulties that currently limit their study.  相似文献   

2.
Abstract: Prior treatment of NG108-15 cells with phosphatase inhibitors including okadaic acid and calyculin A inhibited the elevation of cytosolic Ca2+ concentration ([Ca2+]i) induced by bradykinin by ∼63%. This inhibition was dependent on the concentration of okadaic acid with an IC50 of 0.15 n M . Okadaic acid treatment only lowered the maximal response of [Ca2+]i increase and had no effect on the EC50 value for bradykinin regardless of the presence of extracellular Ca2+. Neither the capacity of 45Ca2+ accumulation within intracellular nonmitochondrial Ca2+ stores nor the magnitude of [Ca2+]i increase induced by thapsigargin was reduced by the treatment of okadaic acid. In contrast, the same phosphatase inhibitor treatment inhibited the bradykinin-evoked inositol 1,4,5-trisphosphate (IP3) generation, the Mn2+ influx, and the capacity of mitochondrial Ca2+ accumulation. Furthermore, the sensitivity of IP3 in the Ca2+ release was suppressed by okadaic acid pretreatment. Our results suggest that the reduction of bradykinin-induced [Ca2+]i rise by the promotion of protein phosphorylation was attributed to the reduced activity of phospholipase C, the decreased sensitivity to IP3, and the slowed rate of Ca2+ influx. Thus, phosphorylation plays a role in bradykinin-sensitive Ca2+ signaling cascade in NG108-15 cells.  相似文献   

3.
The occurrence of calreticulin, the main Ca2+ binding protein in the endoplasmic reticulum of eukaryotic cells, was investigated in the unicellular green alga Chlamydomonas reinhardtii Dangeard. The biochemical characterization of a diethylaminoethyl purified extract highlighted the presence, on SDS-PAGE, of a 55-kDa protein that stained blue with the Stains All dye, a diagnostic feature of acidic Ca2+ binding proteins. Immunoblot analyses revealed a strong cross-reaction of the Chlamydomonas reinhardtii protein with antibodies to plant calreticulins and the endoplasmic reticulum retention signal HDEL. Furthermore, the 55-kDa protein bound [45Ca2+] and had an acidic isoelectric point (pI = 4.9) but was neither glycosylated nor phosphorylated. N-terminal sequencing revealed strong amino acid sequence similarity to calreticulin from other sources. The presence of calreticulin in Chlamydomonas reinhardtii suggested that an endoplasmic reticulum Ca2+ buffering mechanism was present in this unicellular chlorophyte. The data suggest an early origin and high conservation of endoplasmic-reticulum-mediated Ca2+ functions in eukaryotes, whereby specific posttranslational modifications of the proteinhave been specifically acquired in different lineages of photosynthetic eukaryotes. Moreover, northern and western blot analysis experiments showed a regulation of calreticulin expression during Chlamydomonas sexual reproduction with a high abundance of calreticulin mRNA and protein in reproductive cells.  相似文献   

4.
Abstract: We examined the mechanism underlying the ATP-induced increase in the cytosolic Ca2+ concentration ([Ca]in) in acutely isolated chick ciliary ganglion neurons, using fura-2 microfluorometry. The ATP-induced increase in [Ca]in was dependent on external Ca2+, was blocked in a dose-dependent manner by reactive blue 2, and was substantially inhibited by both L- and N-type Ca2+ channel blockers. ATP was effective in increasing [Ca]in in the presence of a desensitizing concentration of nicotine (100 µ M ), and simultaneous addition of maximal doses of ATP and nicotine caused an additive increase in [Ca]in, suggesting that ATP acts on a site distinct from nicotinic acetylcholine receptors. ATP also increased the cytosolic Na+ concentration as determined by sodium-binding benzofuran isophthalate microfluorometry. These results suggest that ATP increases Na+ influx through P2 purinoceptor-associated channels resulting in membrane depolarization, which in turn increases Ca2+ influx through voltage-dependent Ca2+ channels. However, ATP still caused a small increase in [Ca]in under Na+-free conditions, and this [Ca]in increase was little affected by Ca2+ channel blockers. ATP also increased Mn2+ influx under Na+-free conditions, as indicated by quenching of fura-2 fluorescence. These results suggest that nonselective cationic channels activated by ATP are permeable not only to Ca2+ but also to Mn2+, in addition to monovalent cations.  相似文献   

5.
The role of external Ca2+ in the homeostasis of intracellular pH (pHi) of Anabaena sp. strain PCC7120 in response to a decrease in the external pH (pHex) has been studied in cell suspensions. Increase in cytoplasmic pH after acid shock is dependent on the presence of Ca2+ in the medium. The observed Ca2+-mediated alkalization of the cytoplasm depends on the extent of the shift in external pH. Acid pH shifts resulted in an increased permeability of the cytoplasmic membrane to protons, which could be reversed by increasing the concentration of Ca2+ in the medium. Thus, the ability of Ca2+ to increase cytoplasmic pH might be correlated with an inhibition of net proton uptake by increasing concentrations of external Ca2+ under these conditions. This combined response resulted in the generation and maintenance of a larger pH gradient (ΔpH) at acid external pH values. All Ca2+ channel blockers tested, such as verapamil and LaCl3, inhibited the observed Ca2+-mediated response. On the other hand, the Ca ionophore calcimycin (compound A23187) was agonistic, and stimulated both cytoplasmic alkalization and inhibition of net proton uptake. The protonophorous uncoupler carbonylcyanide m -chlorophenyl hydrazone, inhibited this Ca2+-mediated response, whereas monensin, an inhibitor of the Na+/H+ antiporter, had no significant effect. The results of the present study suggest that an influx of Ca2+ from the extracellular space is required for the regulation of cytoplasmic pH in Anabaena sp. strain PCC7120 exposed to low external pH values.  相似文献   

6.
Passive influx of 45Ca2+ into non-growing corn root tissue ( Zea mays L.) was increased as a result of actions (cutting, rubbing, chilling, heating, acidifying) or agents (cyanide, uncouplers) known to depolarize the cell membrane, and was decreased by actions (washing) or agents (fusicoccin) known to hyperpolarize it. These responses indicate the presence of Ca2+ channels which are voltage controlled. If the injuries were extensive, however, voltage control was lost and hyperpolarization with fusicoccin was expressed by increased 45Ca2+ influx. Control could be regained by tissue washing, and millimolar levels of external Ca2+ would protect against loss of control. Influx of Ca2+ was strongly inhibited by La3+, but only weakly by verapamil. Intact roots showed greater cold shock sensitivity in maturing cells than in growing cells. We conclude that corn roots normally restrict Ca2+ influx by a mechanism linked to hyper-polarization of the plasmalemma.
Calcium ions which enter cold-shocked tissue are partially extruded during the early phase of recovery by a process stimulated by fusicoccin and subject to uncoupling.  相似文献   

7.
Abstract— Saxitoxin and tetrodotoxin at low concentrations (10−7-10−8 M) exerted similar inhibitory effects on the increase in lactate production and the redistrjbution of Na+ and K+ that normally accompany electrical stimulation of rat cerebral cortical slices. In contrast, the toxins exerted dissimilar effects on the production of lactate in response to low concentrations of Ca2+ in the medium. Inhibition by tetrodotoxin occurred at a higher concentration of Ca2+ and was significantly greater than that produced by saxitoxin at concentrations of Ca2+ below 0.75 mM. These differences were not related to differential effects on the redistribution of Na+ and K+ under such conditions. The toxins had different effects on Ca2+ influx. Tetrodotoxin, but not saxitoxin, inhibited the influx of Ca2+ in the absence of electrical stimulation. The influx of Ca2+ increased when electrical pulses were applied and tetrodotoxin inhibited this increase, whereas saxitoxin potentiated influx of Ca2+ during stimulation. Our results suggest that metabolic responses to conditions that increase excitability are not governed solely by changes in the distribution of Na+ and K+. The differential effects of the toxins on Ca2+ fluxes suggest that one site of Ca2+ entry during electrical stimulation may be functionally independent of Na+ entry.  相似文献   

8.
When 1 m M spermidine or spermine was included in an absorption solution which contained 20 m M Na+ and 1 m M Rb+, Na+ influx into excised maize roots ( Zea mays L. cv. Golden Cross Bantam) was reduced. Rb+ influx was reduced in the presence of spermidine and uneffected in the presence of spermine when compared with control solutions. When 1 m M Ca2+ replaced the polyamines, Na+ influx was strongly reduced and Rb+ influx was promoted. Rb+ influx from 1 m M Rb+ solutions which did not contain Na+ was also promoted by 1 m M Ca2+, but was inhibited by 1 m M spermidine. This Ca2+ promotion of Rb+ influx could be reversed by 10 times greater concentration of spermidine in the absorption solution. H+ efflux from excised roots was inhibited by spermidine when compared with Ca2+ or control solutions, however, the plasma membrane ATPase was not inhibited by spermidine. It is concluded that external Ca2+ plays two separate roles in membrane function, only one of which can be substituted for by polyamines. The first role, maintenance of membrane integrity, can be substituted for by spermidine or spermine. The second function, maintenance of the Rb+ transport mechanism, is Ca2+ specific and cannot be substituted for by spermidine or spermine. The results of this study are discussed in terms of electrostatic interactions between the plasma membrane and the Ca2+ or polyamines.  相似文献   

9.
Abstract: Rapid Ca2+ signals evoked by K+ depolarization of rat cerebral cortical synaptosomes were measured by dual-channel Ca2+ spectrofluorometry coupled to a stopped-flow device. Kinetic analysis of the signal rise phase at various extracellular Ca2+ concentrations revealed that the responsible voltage-dependent Ca2+ channels, previously identified as P-type Ca2+ channels, inactivate owing to the rise in intracellular Ca2+ levels. At millimolar extracellular Ca2+ concentrations the channels were inactivated very rapidly and the rate was dependent on the high influx rate of Ca2+, thus limiting the Ca2+ signal amplitudes to 500–600 n M. A slower, probably voltage-dependent regulation appears to be effective at lower Ca2+ influx rates, leading to submaximal Ca2+ signal amplitudes. The functional feedback regulation of calcium channels via a sensor for intracellular Ca2+ levels appears to be responsible for the different inhibition characteristics of Cd2+ versus ω-agatoxin IVa.  相似文献   

10.
Abstract: The regulatory role of A2A adenosine receptors in P2 purinoceptor-mediated calcium signaling was investigated in rat pheochromocytoma (PC12) cells. When PC12 cells were treated with 2- p -(2-carboxyethyl)-phenethylamino-5'- N -ethylcarboxamidoadenosine (CGS-21680), a specific agonist of the A2A adenosine receptor, the extracellular ATP-evoked rise in cytosolic free Ca2+ concentration ([Ca2+]i) was inhibited by 20%. Both intracellular calcium release and inositol 1,4,5-trisphosphate production evoked by ATP were not affected by CGS-21680 treatment. However, ATP-evoked Ca2+ influx was inhibited following CGS-21680 stimulation. The CGS-21680-mediated inhibition occurred independently of nifedipine-induced inhibition of the [Ca2+]i rise. The CGS-21680-induced inhibition was completely blocked by reactive blue 2. The CGS-21680 effect was mimicked by forskolin and dibutyryl-cyclic AMP and blocked by Rp -adenosine 3',5'-cyclic monophosphothioate, a protein kinase A inhibitor, or by staurosporine, a general kinase inhibitor. The data suggest that in PC12 cells activation of A2A adenosine receptors leads to inhibition of P2 purinoceptor-mediated Ca2+ influx through ATP-gated cation channels and involves protein kinase A.  相似文献   

11.
Abstract: Stimulation of cultured cerebellar granule cells with N -methyl- d -aspartate (NMDA) or kainic acid (KA) leads to activation of activator protein-1 (AP-1) DNA-binding activity, which can be monitored by an increase in 12- O -tetradecanoylphorbol 13-acetate (TPA)-responsive element (TRE)-binding activity, in concert with c- fos induction. For this increase in TRE-binding activity, Ca2+ influx across the plasma membrane is essential. Treatment of cells with an intracellular Ca2+ chelator, BAPTA-AM, abolished this increase. Close correspondence between the dose-response curves of 45Ca2+ uptake and TRE-binding activity by NMDA or KA suggested that Ca2+ influx not only triggered sequential activation of Ca2+-signaling processes leading to the increase in TRE-binding activity, but also controlled its increased level. Stimulation of non-NMDA receptors by KA mainly caused Ca2+ influx through voltage-gated Ca2+ channels, whereas stimulation of NMDA receptors caused Ca2+ influx through NMDA-gated ion channels. The protein kinase C (PKC) inhibitors staurosporine and calphostin C inhibited the increase in TRE-binding activity caused by NMDA and KA at the same concentration at which they inhibited that caused by TPA. Furthermore, down-regulation of PKC inhibited the increase in TRE-binding activity by NMDA and KA. Thus, a common pathway that includes PKC could, at least in part, be involved in the Ca2+-signaling pathways for the increase in TRE-binding activity coupled with the activation of NMDA- and non-NMDA receptors.  相似文献   

12.
Abstract: Nerve growth factor (NGF) and dibutyryl cyclic AMP (dbcAMP) have synergistic effects on the neurite outgrowth of rat pheochromocytoma PC12 cells. The sites of interaction between NGF and dbcAMP have been studied extensively; however, the role of Ca2+ in differentiation induced by the two agents remains unclear. To understand whether intracellular Ca2+ is involved in the differentiation induced by the two agents, PC12 cells were treated with NGF, dbcAMP, or NGF plus dbcAMP for 2 days, and then effects on neurite outgrowth, ATP-induced Ca2+ influx, and Ca2+ mobilization from intracellular Ca2+ pools were examined. NGF or dbcAMP alone enhanced neurite outgrowth and Ca2+ accumulation by nonmitochondrial Ca2+ pools or the thapsigargin (TG)-sensitive Ca2+ pool. The dbcAMP acted synergistically with NGF to increase neurite outgrowth and to enlarge the TG-sensitive Ca2+ pool. The synergistic effect occurred within the first hour of treatment with dbcAMP plus NGF. On the other hand, dbcAMP abolished NGF's ability to enhance ATP-induced influx of extracellular Ca2+. Therefore, NGF and dbcAMP induced different effects on Ca2+ signaling pathways through two different but interacting pathways. In PC12 cells pretreated with TG to deplete the TG-sensitive Ca2+ pool, the dbcAMP- or dbcAMP plus NGF-mediated neurite outgrowth was significantly inhibited, whereas NGF-mediated neurite outgrowth was not affected by TG pretreatment. Our results suggest that the intracellular nonmitochondrial Ca2+ pools were changed in the differentiation process and were necessary for the synergistic effect of NGF and dbcAMP.  相似文献   

13.
We recently reported the first molecular genetic evidence that Dictyostelium Ca2+ responses to chemoattractants include a contribution from the endoplasmic reticulum (ER) – responses are enhanced in mutants lacking calreticulin or calnexin, two major Ca2+-binding proteins in the ER, even though the influx of Ca2+ into the mutants is reduced. Compared with wild-type cells, the ER in the mutants contributes at least 30–70 nM additional Ca2+ to the responses. Here we report that this additional ER contribution to the cytosolic Ca2+ signal depends upon extracellular Ca2+– it does not occur in the absence of extracellular Ca2+, increases to a maximum as the extracellular Ca2+ levels rise to 10 μM and then remains constant at extracellular Ca2+ concentrations up to at least 250 μM. These results suggest that Ca2+ influx causes the intracellular release, in the simplest scenario by a mechanism involving Ca2+-induced Ca2+ release from the ER. By way of contrast, we show that Ca2+ responses to mechanical stimulation are reduced, but still occur in the absence of extracellular Ca2+. Unlike the responses to chemoattractants, mechanoresponses thus include contributions from the ER that are independent of extracellular Ca2+.  相似文献   

14.
Abstract: The action of arachidonic acid and other fatty acids on membrane potential in PC 12 and bovine chromaffin cells was investigated using a membrane potential-sensitive fluorescent dye. Arachidonic acid (1–40 μ M ) provoked dose-dependent membrane hyperpolarization, thereby reducing hyperpolarization induced by the K+-selective ionophore valinomycin. Other cis-unsaturated fatty acids, but not lipoxygenase products or the saturated fatty acid palmitic acid, also affected membrane potential. Tetraethylammonium blocked the arachidonic acid-induced hyperpolarization. These data suggest that cis-unsaturated fatty acids alter membrane potential in PC 12 and bovine chromaffin cells by modulating K+ conductances. Valinomycin-generated hyperpolarization had no effect on agonist-induced Ca2+ influx into bovine chromaffin cells, whereas preincubation with arachidonic acid and other cis-unsaturated fatty acids blocked Ca2+ influx and secretion. We propose a model where internally generated fatty acids act as a feed-back to desensitize the stimulated cell via inhibition of receptor-dependent Ca2+ influx and induction of membrane hyperpolarization.  相似文献   

15.
Increases in cytosolic free Ca2+ ([Ca2+]cyt) are common to many stress-activated signalling pathways, including the response to saline environments. We have investigated the nature of NaCl-induced [Ca2+]cyt signals in whole Arabidopsis thaliana seedlings using aequorin. We found that NaCl-induced increases in [Ca2+]cyt are heterogeneous and mainly restricted to the root. Both the concentration of NaCl and the composition of the solution bathing the root have profound effects on the magnitude and dynamics of NaCl-induced increases in [Ca2+]cyt. Alteration of external K+ concentration caused changes in the temporal and spatial pattern of [Ca2+]cyt increase, providing evidence for Na+-induced Ca2+ influx across the plasma membrane. The effects of various pharmacological agents on NaCl-induced increases in [Ca2+]cyt indicate that NaCl may induce influx of Ca2+ through both plasma membrane and intracellular Ca2+-permeable channels. Analysis of spatiotemporal [Ca2+]cyt dynamics using photon-counting imaging revealed additional levels of complexity in the [Ca2+]cyt signal that may reflect the oscillatory nature of NaCl-induced changes in single cells.  相似文献   

16.
Abstract: The role of the A2A adenosine receptor in regulating voltage-sensitive calcium channels (VSCCs) was investigated in PC12 cells. Ca2+ influx induced by membrane depolarization with 70 m M K+ could be inhibited with CGS21680, an A2A receptor-specific agonist. Both L- and N-type VSCCs were inhibited by CGS21680 treatment. Effects of adenosine receptor agonists and antagonists indicate that the typical A2A receptor mediates inhibition of VSCCs. Cholera toxin (CTX) treatment for 24 h completely eliminated the CGS21680 potency. Similar inhibitory effects on VSCCs were obtained by membrane-permeable activators of protein kinase A (PKA). These effects were blocked by Rp -adenosine-3',5'-cyclic monophosphothioate, a PKA inhibitor. The data suggest that activation of the A2A receptor leads to inhibition of VSCCs via a CTX-sensitive G protein and PKA. ATP pretreatment caused a reduction in subsequent rise in cytosolic free Ca2+ concentration induced by 70 m M K+, presumably by inactivation of VSCCs. Simultaneous treatment with ATP and CGS21680 produced significantly greater inhibition of VSCCs than treatment with CGS21680 or ATP alone. Furthermore, the CGS21680-induced inhibition of VSCCs was not affected by the presence of reactive blue 2. CGS21680 still significantly inhibited ATP-evoked Ca2+ influx without VSCC activity after cobalt or 70 m M K+ pretreatment. These data suggest that the A2A receptor-sensitive VSCCs differ from those activated by ATP treatment. Although A2A receptors induce inhibition of VSCCs as well as ATP-induced Ca2+ influx, the two inhibitory effects are clearly distinct from each other.  相似文献   

17.
We show here that, within 1–2 min of application, systemin triggers a transient increase of cytoplasmic free calcium concentration ([Ca2+]c) in cells from Lycopersicon esculentum mesophyll. The systemin-induced Ca2+ increase was slightly but not significantly reduced by L-type Ca2+ channel blockers (nifedipine, verapamil and diltiazem) and the Ca2+ chelator [ethylene glycol tetraacetic acid (EGTA)], whereas inorganic Ca2+ channel blockers (LaCl3, CdCl2 and GdCl3) and compounds affecting the release of intracellular Ca2+ from the vacuole (ruthenium red, LiCl, neomycin) strongly reduced the systemin-induced [Ca2+]c increase. By contrast, no inhibitory effect was seen with the potassium and chloride channel blockers tested. Unlike systemin, other inducers of proteinase inhibitor (PI) and of wound-induced protein synthesis, such as jasmonic acid (JA) and bestatin, did not trigger an increase of cytoplasmic Ca2+. The systemin-induced elevation of cytoplasmic Ca2+ which might be an early step in the systemin signalling pathway, appears to involve an influx of extracellular Ca2+ simultaneously through several types of Ca2+ permeable channels, and a release of Ca2+ from intracellular stores sensitive to blockers of inositol 1,4,5-triphosphate (IP3)- and cyclic adenasine 5'-diphosphoribose (cADPR)-mediated Ca2+ release.  相似文献   

18.
Abstract: In the present communication we report that Ca2+-dependent acetylcholine release from K+-depolarized Torpedo electric organ synaptosomes is inhibited by morphine, and that this effect is blocked by the opiate antagonist naloxone. This finding suggests that the purely cholinergic Torpedo electric organ neurons contain pre-synaptic opiate receptors whose activation inhibits acetylcholine release. The mechanisms underlying this opiate inhibition were investigated by comparing the effects of morphine on acetylcholine release induced by K+ depolarization and by the Ca2+ ionophore A23187 and by examining the effect of morphine on 45Ca2+ influx into Torpedo nerve terminals. These experiments revealed that morphine inhibits 45Ca2+ influx into K+-depolarized Torpedo synaptosomes and that this effect is blocked by naloxone. The effects of morphine on K+ depolarization-mediated 45Ca2+ influx and on acetylcholine release have similar dose dependencies (half-maximal inhibition at 0.5–1 μ M ), suggesting that opiate inhibition of release is due to blockage of the presynaptic voltage-dependent Ca2+ channel. This conclusion is supported by the finding that morphine does not inhibit acetylcholine release when the Ca2+ channel is bypassed by introducing Ca2+ into the Torpedo nerve terminals via the Ca2+ ionophore.  相似文献   

19.
Abstract: Forskolin has been used to stimulate adenylyl cyclase. However, we found that forskolin inhibited voltage-sensitive Ca2+ channels (VSCCs) in a cyclic AMP (cAMP)-independent manner in PC12 cells. Ca2+ influx induced by membrane depolarization with 70 m M K+ was inhibited when cells were preincubated with 10 µ M forskolin. Almost maximum inhibitory effect on Ca2+ influx without any significant increase in cellular cAMP level was observed in PC12 cells exposed to forskolin for 1 min. In addition, the forskolin effect on Ca2+ influx was not affected by the presence of 2',5'-dideoxyadenosine, an inhibitor of adenylyl cyclase that reduces dramatically forskolin-induced cAMP production. 1,9-Dideoxyforskolin, an inactive analogue of forskolin, also inhibited ∼80% of Ca2+ influx induced by 70 m M K+ without any increase in cAMP. The data suggest that forskolin and its analogue inhibit VSCCs in PC12 cells and that the inhibition is independent of cAMP generation.  相似文献   

20.
Abstract: Lysophosphatidic acid (LPA) is a lipid biomediator enriched in the brain. A novel LPA-induced response in rat hippocampal neurons is described herein, namely, a rapid and sustained elevation in the concentration of free intracellular calcium ([Ca2+]i). This increase is specific, in that the related lipids phosphatidic acid and lysophosphatidylcholine did not induce an alteration in [Ca2+]i. Moreover, consistent with a receptor-mediated process, there was no further increase in [Ca2+]i after a second addition of LPA. The LPA-induced increase in [Ca2+]i required extracellular calcium. However, studies with Cd2+, Ni2+, and nifedipine and nystatin-perforated patch clamp analyses did not indicate involvement of voltage-gated calcium channels in the LPA-induced response. In contrast, glutamate appears to have a significant role in the LPA-induced increase in [Ca2+]i, because this increase was inhibited by NMDA receptor antagonists and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptor antagonists. Thus, LPA treatment may result in an increased extracellular glutamate concentration that could stimulate AMPA/kainate receptors and thereby alleviate the Mg2+ block of the NMDA receptors and lead to glutamate stimulation of an influx of calcium via NMDA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号