首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
There is evidence that stem cells and their progeny play a role in the development of the prostate. Although stem cells are also considered to give rise to differentiated progeny in the adult prostate epithelium ex vivo, the cohort of adult prostate stem cells in vivo as well as the mechanisms by which the adult prostate epithelium is maintained and regenerated remain highly controversial. We have attempted to resolve this conundrum by performing in vivo tracing of serially replicating cells after the sequential administration of two thymidine analogues to mice. Our results show that, during normal prostate homeostasis, sequentially proliferating cells are detected at a rate that is consistent with a stochastic process. These findings indicate that in vivo, under steady-state conditions, most adult prostate epithelial cells do not represent the progeny of a small number of specialized progenitors that generate sequentially replicating transit-amplifying (TA) cells but are formed by stochastic cell division. Similarly, no rapidly cycling TA cells were detected during regeneration following one cycle of androgen-mediated involution/regeneration of the prostate epithelium. These findings greatly enhance our understanding of the mechanisms regulating prostate epithelial cell renewal and may have significant implications in defining the cell of origin of proliferative prostatic diseases.  相似文献   

3.
Adult neural stem cells: plasticity and developmental potential.   总被引:28,自引:0,他引:28  
Stem cells play an essential role during the processes of embryonic tissue formation and development and in the maintenance of tissue integrity and renewal throughout adulthood. The differentiation potential of stem cells in adult tissues has been thought to be limited to cell lineages present in the organ from which they derive, but there is evidence that somatic stem cells may display a broader differentiation repertoire. This has been documented for bone marrow stem cells (which can give rise to muscle, hepatic and brain cells) and for muscle precursors, which can turn into blood cells. The adult central nervous system (CNS) has long been considered incapable of cell renewal and structural remodeling. Recent findings indicate that, even in postnatal and adult mammals, neurogenesis does occur in different brain regions and that these regions actually contain adult stem cells. These cells can be expanded both in vivo and ex vivo by exposure to different combinations of growth factors and subsequently give rise to a differentiated progeny comprising the major cell types of the CNS. Almost paradoxically, adult neural stem cells display a multipotency much broader than expected, since they can differentiate into non-CNS mesodermal-derivatives, such as blood cells and skeletal muscle cells. We review the recent findings documenting this unforeseen plasticity and unexpected developmental potential of somatic stem cells in general and of neural stem cells in particular. To better introduce these concepts, some basic notions on the functional properties of adult neural stem cells will also be discussed, particularly focusing on the emerging role of the microenvironment in determining and maintaining their peculiar characteristics.  相似文献   

4.
OBJECTIVES: Epithelial stem cells of the eye surface, of the cornea and of the conjunctiva, have the ability to give rise to self renewal and progeny production of differentiated cells with no apparent limit. The two epithelia are separated from each other by the transition zone of the limbus. The mechanisms adopted by stem cells of the two epithelia to accomplish their different characteristics, and how their survival, replacement and unequal division that generates differentiated progeny formation are controlled, are complex and still poorly understood. They can be learned only by understanding how stem cells/progenitors are regulated by their neighbouring cells, that may themselves be differently unspecialised, forming particular microenvironments, known as 'niches'. Stem cells operate by signals and a variety of intercellular interactions and extracellular substrates with adjacent cells in the niche. Technical advances are now making it possible to identify zones in the corneal limbus and conjunctiva that can house stem cells, to isolate and expand them ex vivo and to control their behaviour creating optimal niche conditions. With improvements in biotechnology, regenerative cornea and conjunctiva transplantation using adult epithelial stem cells becomes now a reality. RESULTS AND CONCLUSIONS: Here we review our current understanding of stem cell niches and illustrate recent significant progress for identification and characterization of adult epithelial stem cells/progenitors at cellular, molecular and mechanistic levels, improvement in cell culture techniques for their selective expansion ex vivo and prospects for a variety of therapeutic applications.  相似文献   

5.
成体干细胞研究进展   总被引:2,自引:0,他引:2  
近年来由于成体干细胞研究技术的突破 ,成体干细胞的多向分化潜能日益为人们所关注。尤其“横向分化”的发现 ,不仅更新了对成体干细胞的传统认识 ,而且为其临床疾病治疗奠定了基础。介绍了成体干细胞的特点及分化潜能 ,并对其临床应用作了概括性讨论。  相似文献   

6.
Cellular therapy exerts profound therapeutic potential for curing a broad spectrum of diseases. Adult stem cells reside within a specified dynamic niche in vivo, which is essential for continuous tissue homeostatic maintenance through balancing self-renewal with lineage selection. Meanwhile, adult stem cells may be multipotent or unipotent, and are present in both quiescent and actively dividing states in vivo of the mammalians, which may switch to each other state in response to biophysical cues through mitochondria-mediated mechanisms, such as alterations in mitochondrial respiration and metabolism. In general, stem cells facilitate tissue repair after tissue-specific homing through various mechanisms, including immunomodulation of local microenvironment, differentiation into functional cells, cell “empowerment” via paracrine secretion, immunoregulation, and intercellular mitochondrial transfer. Interestingly, cell-source-specific features have been reported between different tissue-derived adult stem cells with distinct functional properties due to the different microenvironments in vivo, as well as differential functional properties in different tissue-derived stem cell-derived extracellular vehicles, mitochondrial metabolism, and mitochondrial transfer capacity. Here, we summarized the current understanding on roles of mitochondrial dynamics during stem cell homeostasis and aging, and lineage-specific differentiation. Also, we proposed potential unique mitochondrial molecular signature features between different source-derived stem cells and potential associations between stem cell aging and mitochondria–endoplasmic reticulum (ER) communication, as well as potential novel strategies for anti-aging intervention and healthy aging.Subject terms: Energy metabolism, Stem-cell research  相似文献   

7.
Transparent adult zebrafish as a tool for in vivo transplantation analysis   总被引:1,自引:0,他引:1  
The zebrafish is a useful model for understanding normal and cancer stem cells, but analysis has been limited to embryogenesis due to the opacity of the adult fish. To address this, we have created a transparent adult zebrafish in which we transplanted either hematopoietic stem/progenitor cells or tumor cells. In a hematopoiesis radiation recovery assay, transplantation of GFP-labeled marrow cells allowed for striking in vivo visual assessment of engraftment from 2 hr-5 weeks posttransplant. Using FACS analysis, both transparent and wild-type fish had equal engraftment, but this could only be visualized in the transparent recipient. In a tumor engraftment model, transplantation of RAS-melanoma cells allowed for visualization of tumor engraftment, proliferation, and distant metastases in as little as 5 days, which is not seen in wild-type recipients until 3 to 4 weeks. This transparent adult zebrafish serves as the ideal combination of both sensitivity and resolution for in vivo stem cell analyses.  相似文献   

8.
Niche regulation of corneal epithelial stem cells at the limbus   总被引:19,自引:0,他引:19  
Among all adult somatic stem cells,those of the corneal epithelium are unique in their exclusive location in a definedlimbai structure termed Palisades of Vogt.As a result,surgical engraftment oflimbal epithelial stem cells with or withoutex vivo expansion has long been practiced to restore sights in patients inflicted with limbal stem cell deficiency.Neverthe-less,compared to other stem cell examples,relatively little is known about the limbal niche,which is believed to play apivotal role in regulating self-renewal and fate decision of limbal epithelial stem cells.This review summarizes relevantliterature and formulates several key questions to guide future research into better understanding of the pathogenesis oflimbal stem cell deficiency and further improvement of the tissue engineering of the corneal epithelium by focusing onthe limbal niche.  相似文献   

9.
New discoveries in stem cell biology are making the biology of solid tissues increasingly complex. Important seminal studies demonstrating the presence of damage-resistant cell populations together with new isolation and characterization techniques suggest that stem cells exist in the adult lung. More detailed in vivo molecular and cellular characterization of bronchioalveolar stem cells (BASCs), other putative lung stem and progenitor cells, and differentiated cells is needed to determine the lineage relationships in adult lung. Lung diseases such as cystic fibrosis or chronic obstructive pulmonary disease, as well as the most common form of lung cancer in the United States, all involve apparent bronchiolar and alveolar cell defects. It is likely that the delicate balance of stem, progenitor, and differentiated cell functions in the lung is critically affected in patients with these devastating diseases. Thus the discovery of BASCs and other putative lung stem cells will lay the foundation for new inroads to understanding lung biology related to lung disease.  相似文献   

10.
成体干细胞的可塑性:横向分化还是细胞融合?   总被引:1,自引:0,他引:1  
钱晖  黄淑帧 《生命科学》2005,17(1):25-29
近年来研究显示成体干细胞(adult stem cells)具有可塑性(plasticity),不仅可以生成它们所在组织的成熟细胞,而且在特定环境下能分化成其他组织类型细胞,这种跨系或跨胚层分化现象称为横向分化或转分化(transdifferentiation)。横向分化已为成体干细胞的研究和临床应用包括组织器官损伤的修复提供了新的思路和应用前景。然而,最近的一些研究进展又引出不同的解释,即成体干细胞的可塑性是由于细胞融合(cellfusion)的结果。在此,就成体干细胞的可塑性、横向分化、细胞融合等方面研究作一综述。  相似文献   

11.
Gene delivery to adult neural stem cells   总被引:15,自引:0,他引:15  
Neural stem cells may present an ideal route for gene therapy as well as offer new possibilities for the replacement of neurons lost to injury or disease. However, it has proved difficult to express ectopic genes in stem cells. We report methods to introduce genes into adult neural stem cells using viral and nonviral vectors in vitro and in vivo. Adenoviral and VSV-G-pseudotyped retroviral vectors are more efficient than plasmid transfection or VSV-G lentiviral transduction in vitro. We further show that adult neural stem cells can be directed to a neuronal fate by ectopic expression of neurogenin 2 in vitro. Plasmids can be delivered in vivo when complexed with linear polyethyleneimine, and gene expression can be targeted specifically to neural stem or progenitor cells by the use of specific promoters. These techniques may be utilized both to study the function of various genes in the differentiation of neural stem cells to specific cell fates and, ultimately, for gene therapy or to generate specific differentiated progeny for cell transplantation.  相似文献   

12.
Stem cell biology has the potential to yield new therapies, new insights into disease, and a clearer understanding of tissue formation and maintenance. However, much of what we know about many stem cells is based upon experiments performed in culture. Stem cells sometimes exhibit critical differences in their properties or regulation between the culture and in vivo environments. Though cell lines with stem cell properties can be derived from the long-term culture of diverse tissues, it is not clear whether cells with similar properties exist in vivo. If the goal is to use differentiated cells for therapy or drug screening, it may not matter whether these stem cells exist in vivo. However, to understand tissue development/maintenance or the role of stem cells in disease, it is important to characterize progenitor function in vivo to evaluate physiological significance.  相似文献   

13.
Fetal stem cells from extra-embryonic tissues: do not discard   总被引:1,自引:0,他引:1  
Stem cells hold promise to treat diseases currently unapproachable, including Parkinson's disease, liver disease and diabetes. Seminal research has demonstrated the ability of embryonic and adult stem cells to differentiate into clinically useful cell types in vitro and in vivo. More recently, the potential of fetal stem cells derived from extra-embryonic tissues has been investigated. Fetal stem cells are particularly appealing for clinical applications. The cells are readily isolated from tissues normally discarded at birth, avoiding ethical concerns that plague the isolation embryonic stem cells. Extra-embryonic tissues are large, potentially increasing the number of stem cells that can be extracted. Lastly, the generation and sequestration of cells that form extra-embryonic tissues occurs early in development and may endow resident stem cell populations with enhanced potency. In this review we summarize recent work examining the plasticity and clinical potential of fetal stem cells isolated from extra-embryonic tissues.  相似文献   

14.
成体干细胞多能性研究进展   总被引:9,自引:0,他引:9  
黄海霞  汤雪明 《生命科学》2002,14(3):129-134
成体干细胞是存在于机体组织的一类原始状态细胞,它们能够进行自我复制和特异分化,用于维持新陈代谢和创伤修复,年珲来越来越多的实验表明成体干细胞多向分化潜能,一种组织的干细胞可以分化成其他组织类型的细胞。作者介绍了国际上对成体干细胞概念的新看法,讨论了成体干细胞多能性的调控机理及与之相关的研究方法,还简要概括了成体干细胞在理论和临床应用上的重要意义。  相似文献   

15.
Human embryonic stem cells possess the unique ability to differentiate into any adult cell type. Recent advances in the understanding of stem cell biology make new applications possible for stem cell based technology. Of note, it is now possible to reprogram terminally differentiated human somatic cells into pluripotent cells that are functionally equivalent to embryonic stem cells. These induced pluripotent cells may become the substrate for future disease models and cell-based therapies. In addition, novel techniques for genetic manipulation have increased the ease with which genes can be modified into stem cells. In this review, we describe these novel technologies as well as developments in the understanding of basic biology of stem cell pluripotency and differentiation.  相似文献   

16.
17.
Nowadays, it is clear that adult stem cells, also called as tissue stem cells, play a central role to repair and maintain the tissue in which they reside by their self-renewal ability and capacity of differentiating into distinct and specialized cells. As stem cells age, their renewal ability declines and their capacity to maintain organ homeostasis and regeneration is impaired. From a molecular perspective, these changes in stem cells properties can be due to several types of cell intrinsic injury and DNA aberrant alteration (i.e epigenomic profile) as well as changes in the tissue microenviroment, both into the niche and by systemic circulating factors. Strikingly, it has been suggested that aging-induced deterioration of stem cell functions may play a key role in the pathophysiology of the various aging-associated disorders. Therefore, understanding how resident stem cell age and affects near and distant tissues is fundamental. Here, we examine the current knowledge about aging mechanisms in several kinds of adult stem cells under physiological and pathological conditions and the principal aging-related changes in number, function and phenotype that determine the loss of tissue renewal properties. Furthermore, we examine the possible cell rejuvenation strategies. Stem cell rejuvenation may reverse the aging phenotype and the discovery of effective methods for inducing and differentiating pluripotent stem cells for cell replacement therapies could open up new possibilities for treating age-related diseases.  相似文献   

18.
In recent years, stem cells have been heralded as potential therapeutic agents to address a large number of degenerative diseases. Yet, in order to rationally utilize these cells as effective therapeutic agents, and/or improve treatment of stem-cell-associated malignancies such as leukemias and carcinomas, a better understanding of the basic biological properties of stem cells needs to be acquired. A major limitation in the study of stem cells lies in the difficulty of accessing and studying these cells in vivo. This barrier is further compounded by the limitations of in vitro culture systems, which are unable to emulate the microenvironments in which stem cells reside and which are known to provide critical regulatory signals for their proliferation and differentiation. Given the complexity of vertebrate embryonic and adult stem cell populations and their relative inaccessibility to in vivo molecular analyses, the study of stem cells should benefit from analyzing their counterparts in simpler model organisms. In the past, the use of Drosophila or C. elegans has provided invaluable contributions to our understanding of genes and pathways involved in a variety of human diseases. However, stem cells in these organisms are mostly restricted to the gonads, and more importantly neither Drosophila, nor C. elegans are capable of regenerating body parts lost to injury. Therefore, a simple animal with experimentally accessible stem cells playing a role in tissue maintenance and/or regeneration should be very useful in identifying and functionally testing the mechanisms regulating stem cell activities. The planarian Schmidtea mediterranea is poised to fill this experimental gap. S. mediterranea displays robust regenerative properties driven by a stem cell population capable of producing the approximately 40 different cell types found in this organism, including the germ cells. Given that all known metazoans depend on stem cells for their survival, it is extremely likely that the molecular events regulating stem cell biology would have been conserved throughout evolution, and that the knowledge derived from studying planarian stem cells could be vertically integrated to the study of vertebrate stem cells. Current efforts, therefore, are aimed at further characterizing the population of planarian stem cells in order to define its suitability as a model system in which to mechanistically dissect the basic biological attributes of metazoans stem cells.  相似文献   

19.
The discovery of neural stem cells (NSC) which ensure continuous neurogenesis in the adult mammalian brain, has led to a conceptual revolution in basic neuroscience and to high hopes for clinical nervous tissue repair. However, several research issues remain to address before neural stem cells can be harnessed for regenerative therapies. The presence of NSC in a nervous structure is demonstrated in vitro by primary culture of dissociated adult nervous tissue in the presence of the specific mitogens EGF and bFGF. This leads to spherical masses of proliferating cells endowed with capacities for self-renewal and, after growth factor removal, differentiation into the three characteristic cell types of nervous tissue (neurons, astrocytes, oligodendrocytes). In vivo, neurogenesis per se, i.e. production of new neurons, occurs only in a small subset of NSC-endowed structures. The production of oligodendrocytes, i.e. myelinating glial cells, is similarly restricted. Such in vivo restrictions were formally demonstrated to arise from the tissular microenvironnement, which led to the emerging concept of "neurogenic niche". In this context, major challenges now consist in identifying the nature of tissue-specific extracellular signals that determine lineage commitment of NSC progeny, understanding why NSCs display weak in vivo reactivity to lesions compared to other stem cell types in adults, and identifying the factors behind the very high resistance to tumorigenesis displayed by NSCs. Altogether, the current data offer hope for the future use of adult NSCs in regenerative therapies, provided that tissue-specific signals are identified in view of counteracting the intrinsic repression of new cell genesis and/or stimulating endogenous NSC recruitment to lesion sites.  相似文献   

20.
The identification of multipotential mesenchymal stem cells (MSCs) derived from adult human tissues, including bone marrow stroma and a number of connective tissues, has provided exciting prospects for cell-based tissue engineering and regeneration. This review focuses on the biology of MSCs, including their differentiation potentials in vitro and in vivo, and the application of MSCs in tissue engineering. Our current understanding of MSCs lags behind that of other stem cell types, such as hematopoietic stem cells. Future research should aim to define the cellular and molecular fingerprints of MSCs and elucidate their endogenous role(s) in normal and abnormal tissue functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号