首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three c-type cytochromes were purified from the filamentous sulfur-oxidizing bacterium, Beggiatoa alba strain B18LD, by ammonium sulfate fractionation, flat bed isoelectric focusing and gel filtration. Two of the cytochromes; flavocytochrome c-554 and cytochrome c, were similar to cytochromes found in anoxygenic photosynthetic bacteria. Flavocytochrome c-554 had an apparent molecular weight of 21,000, an isoelectric focusing point at pH 4.4, contained FMN as the flavin component and had absorption maxima at 410, 450 and 470 nm in the oxidized form and at 417, 523 and 554 nm in the dithionite-reduced from. Cytochrome c was also an acidic protein with a pI of 4.8 and an apparent molecular weight of 18,000. The absorption spectra maxima were at 400, 490 and 635 nm in the oxidized form, at 424 and 550 nm in the dithione-reduced form and at 415 and 555 nm in the dithionite-reduced plus CO form. The third cytochrome characterized, cytochrome c-553 had an apparent molecular weight of 13,000, an isoelectric point at pH 4.4 and showed absorption maxima at 411 nm in the oxidized form and at 418, 523 and 553 nm in the dithionite-reduced form. Cytochrome c-553 was also isolated as a complex with a non-heme protein with a molecular weight of 16,000. The non-heme protein altered the absorption spectra and isoelectric point of cytochrome c-553.Abbreviations IEF isoelectric focusing - M r molecular weight - pI isoelectric point  相似文献   

2.
Three c-type cytochromes isolated from Nitrobacter agilis were purified to apparent homogeneity: cytochrome c-553, cytochrome c-550 and cytochrome c-549, 554. Their amino acid composition and other properties were studied. Cytochrome c-553 was isolated as a partially reduced form and could not be oxidized by ferricyanide. The completely reduced form of the cytochrome had absorption maxima at 419, 524 and 553 nm. It had a molecular weight of 25 000 and dissociated into two polypeptides of equal size of 11 500 during SDS gel electrophoresis. The isoelectric point of cytochrome c-553 was pH 6.8. The ferricytochrome c-550 exhibited an absorption peak at 410 nm and the ferrocytochrome c showed peaks at 416, 521 and 550 nm. The molecular weight of the cytochrome estimated by gel filtration and by SDS gel electrophoresis was 12 500. It had an Em(7) value of 0.27 V and isoelectric point pH 8.51. The N-terminal sequence of cytochrome c-550 showed a clear homology with the corresponding portions of the sequences of other c-type cytochromes. Cytochrome c-549, 554 possessed atypical absorption spectra with absorption peaks at 402 nm as oxidized form and at 419, 523, 549 and 554 nm when reduced with Na2S2O4. Its molecular weight estimated by gel filtration and SDS polyacrylamide gel electrophoresis was 90 000 and 46 000, respectively. The cytochrome had an isoelectric point of pH 5.6. Cytochrome c-549, 554 was highly autoxidizable.  相似文献   

3.
Characteristics and occurrence of cytochrome c-552 from an aerobic photosynthetic bacterium, Roseobacter denitrificans, were described.Relative molecular mass of the cytrochrome was 13.5 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 15,000 by gel filtration. This cytochrome was a acidic protein having a pI of 5.6 and Em was +215 mV at pH 7.0. Absorption peaks were at 278, 408 and 524 nm in the oxidized form and 416, 523 and 552 nm in the reduced form.Amino acid composition and N-terminal amino acid sequence of cytochrome c-552 determined for 24 residues had low similarities to those of cytochrome c-551 of this bacterium, which is homologous to cytochrome c 2, although the physico-chemical properties of these two cytochromes were similar to each other.Cytochrome c-552 was maximally synthesized in the light under aerobic conditions but not in the dark. The synthesis also occurred in the presence of alternative acceptors such as trimethylamine N-oxide (TMAO) and nitrate under anaerobic conditions. Our results suggest that cytochrome c-552 is involved in TMAO respiration and denitrification in R. denitrificans, although the effect of light remains to be solved.Abbreviations Em Midpoint redox potential - PAGE Polyacrylamide ge electrophoresis - SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis - TMAO Trimethylamine N-oxide  相似文献   

4.
Two soluble c-type cytochromes (c-553 and c-555) and the nonheme iron-containing protein rubredoxin of the non-thiosulfate-utilizing green sulfur bacterium Pelodictyon luteolum were highly purified by ion exchange column chromatography, gel filtration and ammonium sulfate fractionation. Both cytochrome are small and basic hemoproteins, while rubredoxin is an acidic small nonheme iron protein. Cytochrome c-553 has a molecular weight of 13,000 determined by Sephacryl S-200 chromatography and of 10,700 by electrophoresis on SDS acrylamide gel, an isoelectric point at pH 10.2, a redox-potential of +220 mV. It shows maxima at 413 nm in the oxidized form, and the characteristic three maxima in the reduced state (-band at 553 nm, -band at 523 nm, -band at 417 nm). The best purity index (A 280/A 417) obtained was 0.18. Cytochrome c-555 (best purity index obtained: A 280/A 418=0.17) has an isoelectric point at pH 10.5, a molecular weight of 9,500 (by electrophoresis on SDS acrylamide gel) and a redox-potential of +160mV. The reduced form of this cytochrome shows the typical bands of c-type cytochromes at 555 (551) nm (-band), 523 nm (-band) and 418 nm (-band), while the oxidized form has the -band at 413 nm.Rubredoxin (best purity index obtained: A 280/A 490=3.5) is an acidic small protein. Its molecular weight estimated by gel filtration and SDS acrylamide gel electrophoresis is 27,000 and 6,300 respectively. The monomer of this protein contains one iron atom per molecule. Rubredoxin has an isoelectric point at pH 2.8 and shows maxima at 570 nm, 490 nm and 370 nm in the oxidized form.During anaerobic sulfide oxidation of a growing culture of Pelodictyon luteolum elemental sulfur is the first main product, which appears in the medium. Elemental sulfur is further oxidized to sulfate, after the available sulfide is completely consumed by the cells.Non-common abbreviations C Chlorobium - P Pelodictyon - SDS sodium dodecylsulfate - HIPIP high-potential-iron-sulfur-protein Offprint requests to: U. Fischer  相似文献   

5.
A membrane-anchored cytochrome c-550, which is highly expressed in obligately alkaliphilic Bacillus clarkii K24-1U, was purified and characterized. The protein contained a conspicuous sequence of Gly22-Asn34, in comparison with the other Bacillus small cytochromes c. Analytical data indicated that the original and lipase-treated intermediate forms of cytochrome c-550 bind to fatty acids of C15, C16 and C17 chain lengths and C15 chain length, respectively, and it was considered that these fatty acids are bound to glycerol–Cys18. Since there was a possibility that the presence of a diacylglycerol anchor contributed to the formation of dimeric states of this protein (20 and 17 kDa in SDS-PAGE), a C18M (Cys18 → Met)-cytochrome c-550 was constructed. The molecular mass of the C18M-cytochrome c-550 was determined as 15 and 10 kDa in SDS-PAGE and 23 kDa in blue native PAGE. The C18M-cytochrome c-550 bound with or without Triton X-100 formed a tetramer as the original cytochrome c-550 bound with Triton X-100, as determined by gel filtration. The midpoint redox potential of cytochrome c-550 as determined by redox titration was +83 mV, while that determined by cyclic voltammetric measurement was +7 mV. The above results indicate that cytochrome c-550 is a novel cytochrome c.  相似文献   

6.
Cytochromes b, c, d, and o were identified by spectroscopic analysis of respiratory membrane fragments from Vitreoscilla sp., strain C1. Carbon monoxide difference spectra of the reduced membranes had absorption maxima at 416, 534, and 571 nm (ascribed to cytochrome o) and 632 nm (cytochrome d). Derivative spectra of the pyridine hemochromogen spectra of the membranes identified the presence of b- and c-type cytochromes in Vitreoscilla. The cyanide binding curve of the membranes was biphasic with dissociation constants of 2.14 mM and 10.7 mM which were assigned to cytochrome o and cytochrome d, respectively. Membranes bound carbon monoxide with dissociation constant 3.9 M, which was assigned to cytochrome o. Cytochrome c 556 and a NADH-p-iodonitrotetrazolium violet reductase component were partially purified from Vitreoscilla membranes.Abbreviations INT p-iodonitrotetrazolium violet - RMF respiratory membrane fragments - K d dissociation constant - CHAPS 3-[(3-cholamido propyl) dimethylammonio]-1-propanesulfonate - DOC sodium deoxycholate - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

7.
Cytochrome a 1 c 1 was highly purified from Nitrobacter agilis. The cytochrome contained heme a and heme c of equimolar amount, and its reduced form showed absorption peaks at 587, 550, 521, 434 and 416 nm. Molecular weight per heme a of the cytochrome was estimated to be approx. 100,000–130,000 from the amino acid composition. A similar value was obtained by determining the protein content per heme a. The cytochrome molecule was composed of three subunits with molecular weights of 55,000, 29,000 and 19,000, respectively. The 29 kd subunit had heme c.Hemes a and c of cytochrome a 1 c 1 were reduced on addition of nitrite, and the reduced cytochrome was hardly autoxidizable. Exogenously added horse heart cytochrome c was reduced by nitrite in the presence of cytochrome a 1 c 1; K m values of cytochrome a 1 c 1 for nitrite and N. agilis cytochrome c were 0.5 mM and and 6 M, respectively. V max was 1.7 mol ferricytochrome c reduced/min·mol of cytochrome a 1 c 1 The pH optimum of the reaction was about 8. The nitrite-cytochrome c reduction catalyzed by cytochrome a 1 c 1 was 61% and 88% inhibited by 44M azide and cyanide, respectively. In the presence of 4.4 mM nitrate, the reaction was 89% inhibited. The nitrite-cytochrome c reduction catalysed by cytochrome a 1 c 1 was 2.5-fold stimulated by 4.5 mM manganous chloride. An activating factor which was present in the crude enzyme preparation stimulated the reaction by 2.8-fold, and presence of both the factor and manganous ion activated the reaction by 7-fold.Cytochrome a 1 c 1 showed also cytochrome c-nitrate reductase activity. The pH optimum of the reaction was about 6. The nitrate reductase activity was also stimulated by manganous ions and the activating factor.  相似文献   

8.
Two soluble cytochromes of the C-type, cytochrome c-551 andcytochrome c-550, were purified from the bacteriochlorophyll-containingcells of a facultative methylotroph, Protaminobacter ruber StrainNR-1, by ion-exchange chromatography and gel-filtration. Cytochrome c-551 had absorption maxima at 551, 522 and 416 nmin the reduced form, and at 525, 410 and 273 nm in the oxidizedform. This cytochrome was a slightly basic protein with an isoelectricpoint of 8.4. It had a mid-point redox potential of 272 mV atpH 7.0. The molecular weight of this protein was 13,500 and13,700 by sodium dodecylsulfate polyacrylamide gel electrophoresis(SDS-PAGE) and gel-filtration, respectively. Cytochrome c-550 had absorption maxima at 550, 522 and 415 nmin the reduced form, and at 527, 409 and 278 nm in the oxidizedform. This cytochrome was acidic, having an isoelectric pointof 4.3. It had a mid-point redox potential of 227 mV at pH 7.0.Its molecular weight was 19,500 and 22,000 by SDS-PAGE and gel-filtration,respectively. (Received August 4, 1984; Accepted October 22, 1984)  相似文献   

9.
A cytochrome aa 3-type oxidase was isolated with and without a c-type cytochrome (cytochrome c-557) from Methylococcus capsulatus Bath by ion-exchange and hydrophobic chromatography in the presence of Triton X-100. Although cytochrome c-557 was not a constitutive component of the terminal oxidase, the cytochrome c ascorbate-TMPD oxidase activity of the enzyme decreased dramatically when the ratio of cytochrome c-557 to heme a dropped below 1:3. On denaturing gels, the purified enzyme dissociated into three subunits with molecular weights of 46,000, 28,000 and 20,000. The enzyme contains two heme groups (a and a 3), absorption maximum at 422 nm in the resting state, at 445 and 601 nm in the dithionite reduced form and at 434 and 598 nm in the dithionite reduced plus CO form. Denaturing gels of the cytochrome aa 3-cytochrome c-557 complex showed the polypeptides associated with cytochrome aa 3 plus a heme c-staining subunit with a molecular weight of 37,000. The complex contains approximately two heme a, one heme c, absorption maximum at 420 nm in the resting state and at 421, 445, 522, 557 and 601 nm in the dithionite reduced form. The specific activity of the purified enzyme was 130 mol O2/min · mol heme a compared to 753 mol O2/min · mol heme a when isolated with cytochrome c-557.Abbreviations MMO methan monooxygenase - sMMO soluble methane monooxygenase - pMMO particulate methane monooxygenase - TMPD N,N,N,N-tetramethyl-p-phenylenediamine dihydrochloride - Na2EDTA disodium ethylenediamine-tetraacetic acid  相似文献   

10.
Nitrobacter agilis cytochrome c-550 was purified to an electrophoreticallyhomogeneous state, and some of its properties were determined.The cytochrome showed an absorption peak at 410 nm in the oxidizedform, and peaks at 416, 521 and 550 nm in the reduced form.Its isoelectric point was 8.1 at 5?C. Analysis of the aminoacid composition showed that the cytochrome molecule was composedof 108 amino acid residues, 16 of which were lysine residues. The cytochrome reacted rapidly with N. agilis cytochrome c oxidaseand yeast cytochrome c peroxidase and more slowly with Pseudomonasaeruginosa nitrite reductase and bovine cytochrome c oxidase.The reactivities with these redox enzymes suggested that thecytochrome might be an evolutionary stage between bacterialand eukaryotic cytochromes c. The primary structure of the cytochrome from the N-terminusto the 85th residue was determined. The N-terminal sequencewas homologous to the corresponding portion of the primary structureof horse cytochrome c. 1 Present adress: Department of Chemistry, Faculty of Science,Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo,152, Japan. (Received December 3, 1981; Accepted January 28, 1982)  相似文献   

11.
A flavoenzyme which showed NADPH-cytochrome c reductase (NADPH-cytochrome c oxidoreductase EC 1.6.2.4) and transhydrogenase (NADPH-NAD+ oxidoreductase, EC 1.6.1.1) activities was purified to an electrophoretically homogeneous state from Nitrobacter winogradskyi. The reductase was a flavoprotein which contained one FAD per molecule but no FMN. The oxidized form of the enzyme showed absorption maxima at 272, 375 and 459 nm with a shoulder at 490 nm, its molecular weight was estimated to be 36,000 by SDS polyacrylamide gel electrophoresis, and the enzyme seemed to exist as a dimer in aqueous solution. The enzyme catalyzed reduction of cytochrome c, DCIP and benzylviologen by NADPH, oxidation of NADPH with menadione and duroquinone, and showed transhydrogenase activity. NADH was less effective than NADPH as the electron donor in the reactions catalyzed by the enzyme. The NADPH-reduction catalyzed by the enzyme of N. winogradskyi cytochrome c-550 and horse cytochrome c was stimulated by spinach ferredoxin. The enzyme reduced NADP+ with reduced spinach ferredoxin and benzylviologen radical.Abbreviations DCIP dichlorophenolindophenol - Tris trishydroxy-methylaminomethane - Mops 3-(N-morpholino) propanesulfonic acid - SDS sodium dodecylsufate  相似文献   

12.
Cytochrome bc 1 complexes have been isolated from wild type Rhodopseudomonas viridis and Rhodospirillum rubrum and purified by affinity chromatography on cytochrome c-Sepharose 4B. Both complexes are largely free of bacteriochlorophyll and carotenoids and contain cytochromes b and c 1 in a 2:1 molar ratio. For the Rps. viridis complex, evidence has been obtained for two spectrally distinct b-cytochromes. The R. rubrum complex contains a Rieske iron-sulfur protein (present in approximately 1:1 molar ratio to cytochrome c 1) and catalyzes an antimycin A- and myxothiazol-sensitive electron transfer from duroquinol to equine cytochrome c or R. rubrum cytochrome c 2. Although an attempt to prepare a cytochrome bc 1 complex from the gliding green bacterium Chloroflexus aurantiacus was not successful, membranes isolated from phototrophically grown Cfl. aurantiacus were shown to contain a Rieske iron-sulfur protein and protoheme (the prosthetic group of b-type cytochromes).Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

13.
A soluble cytochrome, cytochrome c-551 was purified from an aerobic photosynthetic bacterium Erythrobacter species strain OCh 114 (ATCC No. 33942) by ammonium sulfate fractionation, ion-exchange chromatography and gel-filtration. The cytochrome had absorption maxima at 277, 410, and 524–525 nm in the oxidized form, and at 415, 522, and 550.5 nm in the reduced form. At 77 K, the -band of the absorption spectrum of the reduced form split in two at 547 and 549 nm. The millimolar absorption coefficient at 550.5 nm was 26.8 mM-1 cm-1 in the reduced form. This cytochrome was an acidic protein with an isoelectric point of 4.9. Its molecular weight was determined to be 15,000 by gel-filtration on Sephadex G-100 and 14,500 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The midpoint potential of this cytochrome was +250 mV at pH 7.0. This cytochrome did not bind CO.  相似文献   

14.
The effects of transfer from low to high ligh intensity on membrane bound electrontransport reactions of Rhodospirillum rubrum were investigated. The experiments were performed with cultures which did not form bacteriochlorophyll (Bchl) for about two cell mass doublings during the initial phase of adaptation to high light intensity. Lack of Bchl synthesis causes a decrease of Bchl contents of cells and membranes. Also, the cellular amounts of photosynthetically active intracytoplasmic membranes decrease.In crude membrane fractions containing both cytoplasmic and intracytoplasmic membranes the initial activities of NADH oxidizing reactions increase only slightly (about 1.2 times) per protein, but the initial activities of succinate oxidizing reactions decrease (multiplied by a factor of 0.7). On a Bchl basis activities of NADH oxidizing reactions increase 3.4 times while activities of succinate dependent reactions increase 1.9 times. With isolated intracytoplasmic membranes activities of NADH as well as succinate dependent reactions increase to a comparable extent on a Bchl basis (about 1.8 times) and stay nearly constant on a protein basis. Cytochrome c oxidase responds like succinate dependent reactions. The data indicate that in cells growing under the conditions applied NADH oxidizing electron transport systems are incorporated into both, cytoplasmic and intracytoplasmic membranes, while incorporation of succinate oxidizing systems is confined to intracytoplasmic membranes only.Activities of photophosphorylation and succinate dependent NAD+ reduction in the light increase per Bchl about 1.8 times. On a Bchl basis increases of the fast light induced on reactions at 422 nm and increases of soluble cytochrome c 2 levels are comparable to increases of photophosphorylations and succinate dependent activities. But increases of slow light off reactions at 428 nm and of b-type cytochrome levels become three times greater then increases of cytochrome c 2 reactions and levels. These results infer that although electrontransport reactions of intracytoplasmic membranes change correlated to each other, Bchl, cytochrome c 2 and b-type cytochromes cellular levels are independent of each other. Furthermore, the data indicate that cytochrome c 2 rather than b-type cytochrome is involved with steps rate limiting for photophosphorylation.Abbreviations Bchl bacteriochlorophyll - DCIP 2,6-dichlorophenolindophenol  相似文献   

15.
The cytochrome oxidase activity (oxygen uptake in the dark) of a membrane preparation from Anabaena variabilis was found to be stimulated by cytochrome c-553 and plastocyanin obtained from this alga. Cytochrome c from horse heart was as active as cytochrome c-553, whereas little or no stimulation of oxygen uptake was obtained with cytochromes c 2 from two Rhodospirillaceae, the plastidic cytochrome c-552 from Euglena, and plastocyanin from spinach. Cytochrome c-553 (A. variabilis) stimulated photosystem 1 activity in the same preparation much more than cytochrome c (horse heart). The results indicate that cytochrome c-553 and plastocyanin, besides their established function as electron donors of photosystem 1, participate in respiratory electron transport as reductants of a terminal oxidase. Photooxidation and dark oxidation show a different donor specificity.Abbreviations Chl chlorophyll a - TMPD N,N,N,N-tetramethyl-p-phenylenediamine  相似文献   

16.
Periplasmic extract from Desulfovibrio desulfuricans (NCIMB 8372) was found to contain two different c-type cytochromes. One is tetraheme cytochrome c3 and the other is monoheme cytochrome c553. Cytochrome c3 could be purified by a procedure involving only one chromatographic step, whereas cytochrome c553 required several such steps. Cytochrome c3 was found to have a relative molecular mass of 14300 and an isoionic point higher than 9. Analysis of the redox potentials indicated one heme at -260 mV and three hemes around -330 mV. Cytochrome c553 had a relative molecular mass of 7200, an isoionic point higher than 9 and a redox potential of 0 mV.  相似文献   

17.
Cytochrome c3 of Desulfovibrio desulfuricans strain G20 is an electron carrier for uranium (VI) reduction. When D. desulfuricans G20 was grown in medium containing a non-lethal concentration of uranyl acetate (1 mM), the rate at which the cells reduced U(VI) was decreased compared to cells grown in the absence of uranium. Western analysis did not detect cytochrome c3 in periplasmic extracts from cells grown in the presence of uranium. The expression of this predominant tetraheme cytochrome was not detectably altered by uranium during growth of the cells as monitored through a translational fusion of the gene encoding cytochrome c3 (cycA) to lacZ. Instead, cytochrome c3 protein was found tightly associated with insoluble U(IV), uraninite, after the periplasmic contents of cells were harvested by a pH shift. The association of cytochrome c3 with U(IV) was interpreted to be non-specific, since pure cytochrome c3 adsorbed to other insoluble metal oxides, including cupric oxide (CuO), ferric oxide (Fe2O3), and commercially available U(IV) oxide.An erratum to this article can be found at  相似文献   

18.
Soluble cytochrome c-554 (M r 10 kDa) is purified from the green sulfur bacterium Chlorobium tepidum. Its midpoint redox potential is determined to be +148 mV from redox titration at pH 7.0. The kinetics of cytochrome c-554 oxidation by a purified reaction center complex from the same organism were studied by flash absorption spectroscopy at room temperature, and the results indicate that the reaction partner of cytochrome c-554 is cytochrome c-551 bound to the reaction center rather than the primary donor P840. The second-order rate constant for the electron donation from cytochrome c-554 to cytochrome c-551 was estimated to be 1.7×107 M–1 s–1. The reaction rate was not significantly influenced by the ionic strength of the reaction medium.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

19.
Tatsuhiko Yagi 《BBA》1979,548(1):96-105
Cytochrome c-553 of Desulfovibrio vulgaris, Miyazaki, was purified to homogeneity. The absorption spectrum of the ferro form has four peaks at 553, 525, 417 and 317 nm with a plateau near 280 nm, and that of the ferri form has three peaks at 525, 410 and 360 nm with a plateau near 280 nm and a shoulder at 560 nm. The millimolar absorbance coefficient of the α-peak of the ferro form is 23.9. The molecular weight of cytochrome c-553 is 8000, and it contains one heme. Its isoelectric point is rather alkaline, and its standard redox potential is ?0.26 V at pH 7.0. Its amino acid composition is unique; it lacks proline, isoleucine and tryptophan.Ferrocytochrome c-553 does not combine with CO, nor does it transfer electrons directly to various redox carriers such as flavin nucleotides, methylene blue, indigodisulfonate, 5-methylphenazinium methyl sulfate, 1-methoxy-5-methylphenazinium methyl sulfate, viologens and cytochrome c3, but is oxidized by ferricyanide or by O2.Cytochrome c-553 can be reduced by formate dehydrogenase of this bacterium in the presence of formate, but not by hydrogenase under H2. The formate dehydrogenase does not reduce cytochrome c3 in the presence of formate. The systematic name for formate dehydrogenase of D. vulgaris is, therefore, established as formate:ferricytochrome c-553 oxidoreductase in EC subclass 1.2.2.—.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号