首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
Failure of a continuously aerated sequencing batch reactor (SBR) pilot plant-enhanced biological phosphorus removal (EBPR) process, designed to remove phosphorus from the clarified effluent from a conventional non-EBPR wastewater treatment plant, was associated with the dominance ( c . 50% of the biovolume) of gammaproteobacterial coccobacilli. Flow cytometry and subsequent clone library generation from an enriched population of these Gammaproteobacteria showed that their 16S rRNA genes were most similar to partial clone sequences obtained from an actively denitrifying SBR community, and from anaerobic : aerobic EBPR communities. Under the SBR operating conditions used here, these cells stained for poly-β-hydroxyalkanoates, but never polyphosphate. Applying FISH probes designed against them in combination with microautoradiography showed that they could also assimilate acetate 'aerobically'. FISH analyses of biomass samples from the full-scale treatment plant providing the pilot plant feed showed that they were present there in high numbers. However, they were not detected by FISH in laboratory-scale communities of the same aerated laboratory-scale EBPR process even when EBPR had failed, or from several full-scale EBPR plants or other activated sludge processes.  相似文献   

2.
Biofilms associated with brewery plants can harbour spoiling microorganisms that potentially damage the final product. Most beer-spoiling microorganisms are thought to depend on numerous interactions with the accompanying microbiota. However, there is no information on the microbial community structure of biofilms from bottling plants. The conveyors that transport the bottles to and from the plant are known as potential sources of microbial contamination of beer. Consequently, the material buildup from two conveyors was analysed using a cultivation/isolation approach, and the culture-independent techniques of whole cell fatty acid analysis and fluorescence in situ hybridisation (FISH). Heterogeneous communities were present at both conveyors. Although characteristic fatty acids for Eukarya were present, FISH-signals for Eukarya were extremely low. The Proteobacteria, in particular the Gammaproteobacteria, were abundant at both sample sites. Bacterial isolates were obtained for every dominating group detected by FISH: the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria, the Xanthomonadaceae, the Actinobacteria, the Bacteroidetes and the Firmicutes.  相似文献   

3.
活性污泥微生物菌群研究方法进展   总被引:20,自引:0,他引:20  
活性污泥是活性污泥法处理污水系统的功能主体。人类对活性污泥微生物菌群的认识随着其研究方法的发展而逐步深入。传统培养方法只能检测到活性污泥中1%~15%的微生物。随着一系列基于免培养的分子生物学技术的出现,活性污泥中菌群的复杂性和多样性以惊人的速度被人们认识,大量依靠传统检测方法未能发现却在活性污泥中起关键作用的微生物逐渐被发现。许多模拟活性污泥菌群生存环境条件的现代培养技术开始发展,且已成功培养了一部分传统培养方法不能培养的细菌类群,这为研究基于免培养方法发现的大量新的微生物菌群的生理特性和作用机制提供了可能,也无疑将把人们对活性污泥菌群的认识推向一个新的层次.主要介绍活性污泥微生物菌群研究的一系列方法,从传统培养方法到基于免培养的现代分子生物学技术,再到现代培养技术,着重论述了现代分子生物学技术及其在活性污泥微生物菌群研究中的进展。  相似文献   

4.
5.
The composition of the microbial community present in the nitrifying-denitrifying activated sludge of an industrial wastewater treatment plant connected to a rendering facility was investigated by the full-cycle rRNA approach. After DNA extraction using three different methods, 94 almost full-length 16S rRNA gene clones were retrieved and analyzed phylogenetically. 59% of the clones were affiliated with the Proteobacteria and clustered with the beta- (29 clones), alpha- (24), and delta-class (2 clones), respectively. 15 clones grouped within the green nonsulfur (GNS) bacteria and 11 clones belonged to the Planctomycetes. The Verrucomicrobia, Acidobacteria, Nitrospira, Bacteroidetes, Firmicutes and Actinobacteria were each represented by one to five clones. Interestingly, the highest 'species richness' [measured as number of operational taxonomic units (OTUs)] was found within the alpha-class of Proteobacteria, followed by the Planctomycetes, the beta-class of Proteobacteria, and the GNS-bacteria. The microbial community composition of the activated sludge was determined quantitatively by using 36 group-, subgroup-, and OTU-specific rRNA-targeted oligonucleotide probes for fluorescence in situ hybridization (FISH), confocal laser scanning microscopy and digital image analysis. 89% of all bacteria detectable by FISH with a bacterial probe set could be assigned to specific divisions. Consistent with the 16S rRNA gene library data, members of the beta-class of Proteobacteria dominated the microbial community and represented almost half of the biovolume of all bacteria detectable by FISH. Within the beta-class, 98% of the cells could be identified by the application of genus- or OTU-specific probes demonstrating a high in situ abundance of bacteria related to Zoogloea and Azoarcus sensu lato. Taken together, this study provides the first encompassing, high-resolution insight into the in situ composition of the microbial community present in a full-scale, industrial wastewater treatment plant.  相似文献   

6.
7.
The ammonia-oxidizing and nitrite-oxidizing bacterial populations occurring in the nitrifying activated sludge of an industrial wastewater treatment plant receiving sewage with high ammonia concentrations were studied by use of a polyphasic approach. In situ hybridization with a set of hierarchical 16S rRNA-targeted probes for ammonia-oxidizing bacteria revealed the dominance of Nitrosococcus mobilis-like bacteria. The phylogenetic affiliation suggested by fluorescent in situ hybridization (FISH) was confirmed by isolation of N. mobilis as the numerically dominant ammonia oxidizer and subsequent comparative 16S rRNA gene (rDNA) sequence and DNA-DNA hybridization analyses. For molecular fine-scale analysis of the ammonia-oxidizing population, a partial stretch of the gene encoding the active-site polypeptide of ammonia monooxygenase (amoA) was amplified from total DNA extracted from ammonia oxidizer isolates and from activated sludge. However, comparative sequence analysis of 13 amoA clone sequences from activated sludge demonstrated that these sequences were highly similar to each other and to the corresponding amoA gene fragments of Nitrosomonas europaea Nm50 and the N. mobilis isolate. The unexpected high sequence similarity between the amoA gene fragments of the N. mobilis isolate and N. europaea indicates a possible lateral gene transfer event. Although a Nitrobacter strain was isolated, members of the nitrite-oxidizing genus Nitrobacter were not detectable in the activated sludge by in situ hybridization. Therefore, we used the rRNA approach to investigate the abundance of other well-known nitrite-oxidizing bacterial genera. Three different methods were used for DNA extraction from the activated sludge. For each DNA preparation, almost full-length genes encoding small-subunit rRNA were separately amplified and used to generate three 16S rDNA libraries. By comparative sequence analysis, 2 of 60 randomly selected clones could be assigned to the nitrite-oxidizing bacteria of the genus Nitrospira. Based on these clone sequences, a specific 16S rRNA-targeted probe was developed. FISH of the activated sludge with this probe demonstrated that Nitrospira-like bacteria were present in significant numbers (9% of the total bacterial counts) and frequently occurred in coaggregated microcolonies with N. mobilis.  相似文献   

8.
Biological autotrophic sulfur oxidation processes have been proposed to remove heavy metals from wastewater treatment sludge by bioleaching. We made a characterization of the microbial population in batch and continuous sludge bioleaching reactors using fluorescent in situ hybridization of fluorescently-labeled oligonucleotidic probes targeting rRNA in a ‚top to bottom approach’. Batch incubations of sludge with 0.2% (w/v) elemental sulfur resulted in a pH value of 5. Alpha-Proteobacteria hybridizing with probe ALF1b were dominant in this incubation. Members of the Acidophilium-group (hybridizing with probe Acdp821) of Nitrospira/Leptospirillum phylum (Ntspa712 probe) and from the archaeal domain (ARCH915) were also detected. When sludge was incubated with 1% elemental sulfur in batch or continuous reactor experiments, final pH values were always below 2. Active microbial communities consisted almost exclusively of gamma-Proteobacteria (hybridizing with probe GAM42a). However, further hybridization experiments with probe Thio820 targeting Acidithiobacillus ferroxidans and Acidithiobacillus thioxidans gave negative results. A new probe, named THIO181, encompassing all known members of the genus was designed. Hybridization perfomed with THIO181 and GAM42a showed a perfect co-localization of the hybridization signals. Further hybridization experiments with probe THIO181 and THC642, specific for the species Acidithiobacillus caldus, confirmed that this bacteria was largely responsible for the sulfur oxidation reaction in our acidophilic sludge bioleaching reactors.  相似文献   

9.
Summary This study aimed at isolating filamentous bacteria from full-scale activated sludge processes and studying them in pure culture. Three cultures were isolated using conventional microbiological techniques. The isolates were positively identified as Gordonia amarae, Thiothrix nivea and Type 1863/Acinetobacter spp., using fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. However, a ‘morphological shift’ from filamentous to single-cell form was observed in pure culture. The application of fluorescent in situ hybridization (FISH) showed filamentous bacteria to be much more diverse in their ability to adapt to their changing enviroments. Pure culture studies of filamentous bacteria form the basis for application in full-scale activated sludge plants. It therefore remains important that the taxonomic status of filamentous bacteria be determined.  相似文献   

10.
Assessment of denitrifying bacterial composition in activated sludge   总被引:2,自引:0,他引:2  
The abundance and structure of denitrifying bacterial community in different activated sludge samples were assessed, where the abundance of denitrifying functional genes showed nirS in the range of 10(4)-10(5), nosZ with 10(4)-10(6) and 16S rRNA gene in the range 10(9)-10(10) copy number per ml of sludge. The culturable approach revealed Pseudomonas sp. and Alcaligenes sp. to be numerically high, whereas culture independent method showed betaproteobacteria to dominate the sludge samples. Comamonas sp. and Pseudomonas fluorescens isolates showed efficient denitrification, while Pseudomonas mendocina, Pseudomonas stutzeri and Brevundimonas diminuta accumulated nitrite during denitrification. Numerically dominant RFLP OTUs of the nosZ gene from the fertilizer factory sludge samples clustered with the known isolates of betaproteobacteria. The data also suggests the presence of different truncated denitrifiers with high numbers in sludge habitat.  相似文献   

11.
Biofilms were grown in annular reactors supplied with drinking water enriched with 235 microg C/L. Changes in the biofilms with ageing, disinfection, and phosphate treatment were monitored using fluorescence in situ hybridization. EUB338, BET42a, GAM42a, and ALF1b probes were used to target most bacteria and the alpha (alpha), beta (beta), and gamma (gamma) subclasses of Proteobacteria, respectively. The stability of biofilm composition was checked after the onset of colonization between T = 42 days and T = 113 days. From 56.0% to 75.9% of the cells detected through total direct counts with DAPI (4'-6-diamidino-2-phenylindole) were also detected with the EUB338 probe, which targets the 16S rRNA of most bacteria. Among these cells, 16.9%-24.7% were targeted with the BET42a probe, 1.8%-18.3% with the ALF1b probe, and <2.5% with the GAM42a probe. Phosphate treatment induced a significant enhancement to the proportion of gamma-Proteobacteria (detected with the GAM42a probe), a group that contains many health-related bacteria. Disinfection with monochloramine for 1 month or chlorine for 3 days induced a reduction in the percentage of DAPI-stained cells that hybridized with the EUB338 probe (as expressed by percentages of EUB338 counts/DAPI) and with any of the ALF1b, BET42a, and GAM42a probes. The percentage of cells detected by any of the three probes (ALF1b+BET42a+GAM42a) tended to decrease, and reached in total less than 30% of the EUB338-hybridized cells. Disinfection with chlorine for 7 days induced a reverse shift; an increase in the percentage of EUB338 counts targeted by any of these three probes was noted, which reached up to 87%. However, it should be noted that the global bacterial densities (heterotrophic plate counts and total direct counts) tended to decrease over the duration of the experiment. Therefore, those bacteria that could be considered to resist 7 days of chlorination constituted a small part of the initial biofilm community, up to the point at which the other bacterial groups were destroyed by chlorination. The results suggest that there were variations in the kinetics of inactivation by disinfectant, depending on the bacterial populations involved.  相似文献   

12.
The microbial community structures of a conventional activated sludge and MBR systems treating the municipal wastewater were studied using Fluorescent in-situ Hybridization (FISH) analysis to identify differences in both systems. The oligonucleotide probes specific for overall bacteria, including α-, β-, and γ-subclasses of Proteobacteria, ammonia-oxidizing bacteria (Nitrosomonas), and nitrite-oxidizing bacteria (Nitrobacter) were used to compare the microbial community structure of both systems. A trend of less hybridization with bacteria-specific probe EUB338 was observed in MBR systems operated under aerobic condition, compared to conventional activated sludge system. The less hybridization trend with the probes could be associated with low ribosomal RNA (rRNA) content in the biomass, which suggests that the biomass in the MBR system was not in a physiological state characteristic for growth due to low substrate per unit biomass  相似文献   

13.
The bacterial community structure of the activated sludge from a 25 million-gal-per-day industrial wastewater treatment plant was investigated using rRNA analysis. 16S ribosomal DNA (rDNA) libraries were created from three sludge samples taken on different dates. Partial rRNA gene sequences were obtained for 46 rDNA clones, and nearly complete 16S rRNA sequences were obtained for 18 clones. Seventeen of these clones were members of the beta subdivision, and their sequences showed high homology to sequences of known bacterial species as well as published 16S rDNA sequences from other activated sludge sources. Sixteen clones belonged to the alpha subdivision, 7 of which showed similarity to Hyphomicrobium species. This cluster was chosen for further studies due to earlier work on Hyphomicrobium sp. strain M3 isolated from this treatment plant. A nearly full-length 16S rDNA sequence was obtained from Hyphomicrobium sp. strain M3. Phylogenetic analysis revealed that Hyphomicrobium sp. strain M3 was 99% similar to Hyphomicrobium denitrificans DSM 1869(T) in Hyphomicrobium cluster II. Three of the cloned sequences from the activated sludge samples also grouped with those of Hyphomicrobium cluster II, with a 96% sequence similarity to that of Hyphomicrobium sp. strain M3. The other four cloned sequences from the activated sludge sample were more closely related to those of the Hyphomicrobium cluster I organisms (95 to 97% similarity). Whole-cell fluorescence hybridization of microorganisms in the activated sludge with genus-specific Hyphomicrobium probe S-G-Hypho-1241-a-A-19 enhanced the visualization of Hyphomicrobium and revealed that Hyphomicrobium appears to be abundant both on the outside of flocs and within the floc structure. Dot blot hybridization of activated sludge samples from 1995 with probes designed for Hyphomicrobium cluster I and Hyphomicrobium cluster II indicated that Hyphomicrobium cluster II-positive 16S rRNA dominated over Hyphomicrobium cluster I-positive 16S rRNA by 3- to 12-fold. Hyphomicrobium 16S rRNA comprised approximately 5% of the 16S rRNA in the activated sludge.  相似文献   

14.
Two alphaproteobacterial Neisser negative ‘Nostocoida limicola’ morphotypes differing slightly in their trichome diameter and filament regularity were dominant populations in the Bendigo, Victoria, Australia activated sludge community removing phosphorus (P). Neither responded to the FISH probes available for any of the other alphaproteobacterial ‘N. limicola’ morphotypes. Instead both fluoresced with the DF988 FISH probe designed originally to target alphaproteobacterial cluster II Defluviicoccus tetrad forming organisms. A 16S rRNA based clone library from this biomass revealed that the alphaproteobacterial clones grouped closely with CandidatusMonilibacter batavus’ and Defluviicoccus clones in a cluster separate from the existing cluster I and II Defluviicoccus. When a FISH probe was designed against these, it only hybridized to the thinner and less abundant ‘N. limicola’ morphotype. Micromanipulation–RT-PCR was used to selectively recover the main ‘N. limicola’ morphotype and a FISH probe designed against the 16S rRNA clones generated from it showed only this filament fluoresced. From FISH based surveys, both ‘N. limicola’ variants occurred frequently in phosphorus removal activated sludge systems in Australia treating domestic waste. The data suggest that they represent two new strains of CandidatusMonilibacter’, which on this evidence are filamentous members of the genus Defluviicoccus, a potential competitor for the polyphosphate accumulating organisms in these communities.  相似文献   

15.
In situ uptake of [2,4,6,7-3H(N)]estrone ([3H]E1) by the major phylogenetic groups present in activated sludge samples from two different municipal wastewater treatment plants was investigated using microautoradiography-fluorescence in situ hybridization (MAR-FISH). Approximately 1-2% of the total cells confined in the samples by an EUB probe mix contributed to E1 assimilation. Almost all the detected E1-assimilating cells involved in the early phase of E1 degradation were affiliated with the Beta- and Gammaproteobacteria. In the early phase of E1 degradation, no E1-assimilating cells affiliated with the Alphaproteobacteria, Actinobacteria, the Cytophaga-Flavobacterium cluster of phylum Bacteroidetes, or the phyla Chloroflexi, Nitrospira and Planctomycetes were detected. Bacteria affiliated with the Betaproteobacteria in the shape of long rods or chains of rods were found to contribute most to in situ E1 degradation. They contributed 61% and 82% of total E1-assimilating cells in cultures from two sources of activated sludge spiked with [3H]E1. The E1-degrading bacteria related to the Betaproteobacteria differed phylogenetically from the aerobic E1-degrading bacterial isolates reported in previous studies. In addition, MAR-FISH revealed the significant contribution of E1-degrading bacteria affiliated with the Gammaproteobacteria in the degradation of E1 in activated sludge.  相似文献   

16.
Moving bed biofilm reactor (MBBR) systems are increasingly used for municipal and industrial wastewater treatment, yet in contrast to activated sludge (AS) systems, little is known about their constituent microbial communities. This study investigated the community composition of two municipal MBBR wastewater treatment plants (WWTPs) in Wellington, New Zealand. Monthly samples comprising biofilm and suspended biomass were collected over a 12-month period. Bacterial and archaeal community composition was determined using a full-cycle community approach, including analysis of 16S rRNA gene libraries, fluorescence in situ hybridization (FISH) and automated ribosomal intergenic spacer analysis (ARISA). Differences in microbial community structure and abundance were observed between the two WWTPs and between biofilm and suspended biomass. Biofilms from both plants were dominated by Clostridia and sulfate-reducing members of the Deltaproteobacteria (SRBs). FISH analyses indicated morphological differences in the Deltaproteobacteria detected at the two plants and also revealed distinctive clustering between SRBs and members of the Methanosarcinales, which were the only Archaea detected and were present in low abundance (<5%). Biovolume estimates of the SRBs were higher in biofilm samples from one of the WWTPs which receives both domestic and industrial waste and is influenced by seawater infiltration. The suspended communities from both plants were diverse and dominated by aerobic members of the Gammaproteobacteria and Betaproteobacteria. This study represents the first detailed analysis of microbial communities in full-scale MBBR systems and indicates that this process selects for distinctive biofilm and planktonic communities, both of which differ from those found in conventional AS systems.  相似文献   

17.
The structure and composition of microbial communities inhabiting the soft coral Alcyonium antarcticum were investigated across three differentially contaminated sites within McMurdo Sound, Antarctica. Diverse microbial communities were revealed at all sites using culture-based analysis, denaturing gradient gel electrophoresis (DGGE), 16S rRNA gene clone-library analysis, and FISH. Phylogenetic analysis of isolates and retrieved sequences demonstrated close affiliation with known psychrophiles from the Antarctic environment and high similarity to Gammaproteobacteria clades of sponge-associated microorganisms. The majority of bacteria detected with all techniques reside within the Gammaproteobacteria, although other phylogenetic groups including Alpha- and Betaproteobacteria, Bacteroidetes, Firmicutes, Actinomycetales, Planctomycetes, and Chlorobi and bacteria from the functional group of sulfate-reducing bacteria were also present. Multivariate (nMDS) analysis of DGGE banding patterns and principal component analysis of quantitative FISH data revealed no distinct differences in community composition between differentially contaminated sites. Rather, conserved coral-associated bacterial groups were observed within and between sites, providing evidence to support specific coral-microbial interactions. This is the first investigation of microbial communities associated with Antarctic soft corals, and the results suggest that spatially stable microbial associations exist across an environmental impact gradient.  相似文献   

18.
The integrated fixed-film activated sludge (IFAS) system is a variation of the activated sludge wastewater treatment process, in which hybrid suspended and attached biomass is used to treat wastewater. Although the function and performance of the IFAS system are well studied, little is known about its microbial community structure. In this study, the composition and diversity of the bacterial community of suspended and attached biomass samples were investigated in a full-scale IFAS system using a highthroughput pyrosequencing technology. Distinct bacterial community compositions were examined for each sample and appeared to be important for its features different from conventional activated sludge processes. The abundant bacterial groups were Betaproteobacteria (59.3%), Gammaproteobacteria (8.1%), Bacteroidetes (5.2%), Alphaproteobacteria (3.9%), and Actinobacteria (3.2%) in the suspended sample, whereas Actinobacteria (14.6%), Firmicutes (13.6%), Bacteroidetes (11.6%), Betaproteobacteria (9.9%), Gammaproteobacteria (9.25%), and Alphaproteobacteria (7.4%) were major bacterial groups in the attached sample. Regarding the diversity, totals of 3,034 and 1,451 operational taxonomic units were identified at the 3% cutoff for the suspended and attached samples, respectively. Rank abundance and community analyses demonstrated that most of the diversity was originated from rare species in the samples. Taken together, the information obtained in this study will be a base for further studies relating to the microbial community structure and function of the IFAS system.  相似文献   

19.
A bacterial community in activated sludge from a full-scale municipal wastewater treatment plant was monitored throughout the year with the use of FISH, RISA and DGGE techniques. In the investigated range of temperatures (11.9-21.6 degrees C), a rise in temperature resulted in a lower total bacteria richness, while organic load rate changes from 0.09 to 0.21 g COD x g TSS(-1) x d(-1) were positively correlated with the number of bands in RISA patterns. The most diverse pattern (29 different bands) was characteristic for the activated sludge sample collected at the end of January at wastewater temperature of 11.9 degrees C. The ammonia-oxidising bacteria community did not change during the study, and comprised of 4 different bacterial populations with one dominant species closely related to Nitrosospira sp. REGAU (GenBank accession number AY635572.1). The percentage of ammonia-oxidising bacteria in the activated sludge varied from 6.2 to 19.5% and depended on temperature (R = 0.61, p = 0:02) and organic load rate (R = -0.55, p = 0.04).  相似文献   

20.
The formation of viscous foams on aeration basins and secondary clarifiers of activated sludge plants is a common and widespread problem. Foam formation is often attributed to the presence of mycolic acid-containing actinomycetes (mycolata). In order to examine the relationship between the number of mycolata and foam, we developed a group-specific probe targeting the 16S rRNA of the mycolata, a protocol to permeabilize mycolata, and a statistically robust quantification method. Statistical analyses showed that a lipase-based permeabilization method was quantitatively superior to previously described methods (P < 0.05). When mixed liquor and foam samples were examined, most of the mycolata present were rods or cocci, although filamentous mycolata were also observed. A nested analysis of variance showed that virtually all of the measured variance occurred between fields of view and not between samples. On this basis we determined that as few as five fields of view could be used to give a statistically meaningful sample. Quantitative fluorescent in situ hybridization (FISH) was used to examine the relationship between foaming and the concentration of mycolata in a 20-m(3) completely mixed activated sludge plant. Foaming occurred when the number of mycolata exceeded a certain threshold value. Baffling of the plant affected foaming without affecting the number of mycolata. We tentatively estimated that the threshold foaming concentration of mycolata was about 2 x 10(6) cells ml(-1) or 4 x 10(12) cells m(-2). We concluded that quantitative use of FISH is feasible and that quantification is a prerequisite for rational investigation of foaming in activated sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号