首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To clarify the full picture of the connectin (titin) filament network in situ, we selectively removed actin and myosin filaments from cardiac muscle fibers by gelsolin and potassium acetate treatment, respectively, and observed the residual elastic filament network by deep-etch replica electron microscopy. In the A bands, elastic filaments of uniform diameter (6-7 nm) projecting from the M line ran parallel, and extended into the I bands. At the junction line in the I bands, which may correspond to the N2 line in skeletal muscle, individual elastic filaments branched into two or more thinner strands, which repeatedly joined and branched to reach the Z line. Considering that cardiac muscle lacks nebulin, it is very likely that these elastic filaments were composed predominantly of connectin molecules; indeed, anti-connectin monoclonal antibody specifically stained these elastic filaments. Further, striations of approximately 4 nm, characteristic of isolated connectin molecules, were also observed in the elastic filaments. Taking recent analyses of the structure of isolated connectin molecules into consideration, we concluded that individual connectin molecules stretched between the M and Z lines and that each elastic filament consisted of laterally-associated connectin molecules. Close comparison of these images with the replica images of intact and S1-decorated sarcomeres led us to conclude that, in intact sarcomeres, the elastic filaments were laterally associated with myosin and actin filaments in the A and I bands, respectively. Interestingly, it was shown that the elastic property of connectin filaments was not restricted by their lateral association with actin filaments in intact sarcomeres. Finally, we have proposed a new structural model of the cardiac muscle sarcomere that includes connectin filaments.  相似文献   

2.
We have examined the cytoskeletal architecture and its relationship with synaptic vesicles in synapses by quick-freeze deep-etch electron microscopy (QF.DE). The main cytoskeletal elements in the presynaptic terminals (neuromuscular junction, electric organ, and cerebellar cortex) were actin filaments and microtubules. The actin filaments formed a network and frequently were associated closely with the presynaptic plasma membranes and active zones. Short, linking strands approximately 30 nm long were found between actin and synaptic vesicles, between microtubules and synaptic vesicles. Fine strands (30-60 nm) were also found between synaptic vesicles. Frequently spherical structures existed in the middle of the strands between synaptic vesicles. Another kind of strand (approximately 100 nm long, thinner than the actin filaments) between synaptic vesicles and plasma membranes was also observed. We have examined the molecular structure of synapsin 1 and its relationship with actin filaments, microtubules, and synaptic vesicles in vitro using the low angle rotary shadowing technique and QF.DE. The synapsin 1, approximately 47 nm long, was composed of a head (approximately 14 nm diam) and a tail (approximately 33 nm long), having a tadpole-like appearance. The high resolution provided by QF.DE revealed that a single synapsin 1 cross-linked actin filaments and linked actin filaments with synaptic vesicles, forming approximately 30-nm short strands. The head was on the actin and the tail was attached to the synaptic vesicle or actin filament. Microtubules were also cross-linked by a single synapsin 1, which also connected a microtubule to synaptic vesicles, forming approximately 30 nm strands. The spherical head was on the microtubules and the tail was attached to the synaptic vesicles or to microtubules. Synaptic vesicles incubated with synapsin 1 were linked with each other via fine short fibrils and frequently we identified spherical structures from which two or three fibril radiated and cross-linked synaptic vesicles. We have examined the localization of synapsin 1 using ultracryomicrotomy and colloidal gold-immunocytochemistry of anti-synapsin 1 IgG. Synapsin 1 was exclusively localized in the regions occupied by synaptic vesicles. Statistical analyses indicated that synapsin 1 is located mostly at least approximately 30 nm away from the presynaptic membrane. These data derived via three different approaches suggest that synapsin 1 could be a main element of short linkages between actin filaments and synaptic vesicles, and between microtubules and synaptic vesicles, and between synaptic vesicles in the nerve terminals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Replicas of the apical surface of hair cells of the inner ear (vestibular organ) were examined after quick freezing and rotary shadowing. With this technique we illustrate two previously undescribed ways in which the actin filaments in the stereocilia and in the cuticular plate are attached to the plasma membrane. First, in each stereocilium there are threadlike connectors running from the actin filament bundle to the limiting membrane. Second, many of the actin filaments in the cuticular plate are connected to the apical cell membrane by tiny branched connecting units like a "crow's foot." Where these "feet" contact the membrane there is a small swelling. These branched "feet" extend mainly from the ends of the actin filaments but some connect the lateral surfaces of the actin filaments as well. Actin filaments in the cuticular plate are also connected to each other by finer filaments, 3 nm in thickness and 74 +/- 14 nm in length. Interestingly, these 3-nm filaments (which measure 4 nm in replicas) connect actin filaments not only of the same polarity but of opposite polarities as documented by examining replicas of the cuticular plate which had been decorated with subfragment 1 (S1) of myosin. At the apicolateral margins of the cell we find two populations of actin filaments, one just beneath the tight junction as a network, the other at the level of the zonula adherens as a ring. The latter which is quite substantial is composed of actin filaments that run parallel to each other; adjacent filaments often show opposite polarities, as evidenced by S1 decoration. The filaments making up this ring are connected together by the 3-nm connectors. Because of the polarity of the filaments this ring may be a "contractile" ring; the implications of this is discussed.  相似文献   

4.
The actin filament network immediately under the plasma membrane at the leading edge of rapidly moving cells consists of short, branched filaments, while those deeper in the cortex are much longer and are rarely branched. Nucleation by the Arp2/3 complex activated by membrane-bound factors (Rho-family GTPases and PIP(2)) is postulated to account for the formation of the branched network. Tropomyosin (TM) binds along the sides of filaments and protects them from severing proteins and pointed-end depolymerization in vitro. Here, we show that TM inhibits actin filament branching and nucleation by the Arp2/3 complex activated by WASp-WA. Tropomyosin increases the lag at the outset of polymerization, reduces the concentration of ends by 75%, and reduces the number of branches by approximately 50%. We conclude that TM bound to actin filaments inhibits their ability to act as secondary activators of nucleation by the Arp2/3 complex. This is the first example of inhibition of branching by an actin binding protein. We suggest that TM suppresses the nucleation of actin filament branches from actin filaments in the deep cortex of motile cells. Other abundant actin binding proteins may also locally regulate the branching nucleation by the Arp2/3 complex in cells.  相似文献   

5.
Mesenchymal cell motility is characterized by a polarized distribution of actin filaments, with a network of short branched actin filaments at the leading edge, and polymers of actin filaments arranged into distinct classes of actin stress fibres behind the leading edge. Importantly, the distinct actin filaments are characteristically associated with discrete adhesion structures and both the adhesions and the actin filaments are co-ordinately regulated during cell migration. While it has long been known that these macromolecular structures are intimately linked in cells, precisely how they are co-ordinately regulated is presently unknown. Live imaging data now suggests that the focal adhesions may act as sites of actin polymerization resulting in the generation of tension-bearing actin bundles of actin filaments (stress fibres). Moreover, a picture is emerging to suggest that the tropomyosin family of proteins that can determine actin filament dynamics may also play a key role in determining the transition between adhesion states. Molecules such as the tropomyosins are therefore tantalizing candidates to orchestrate the coordination of actin and adhesion dynamics during mesenchymal cell migration.  相似文献   

6.
Among a superfamily of myosin, class VI myosin moves actin filaments backwards. Here we show that myosin VI moves processively on actin filaments backwards with large ( approximately 36 nm) steps, nevertheless it has an extremely short neck domain. Myosin V also moves processively with large ( approximately 36 nm) steps and it is believed that myosin V strides along the actin helical repeat with its elongated neck domain that is critical for its processive movement with large steps. Myosin VI having a short neck cannot take this scenario. We found by electron microscopy that myosin VI cooperatively binds to an actin filament at approximately 36 nm intervals in the presence of ATP, raising a hypothesis that the binding of myosin VI evokes "hot spots" on actin filaments that attract myosin heads. Myosin VI may step on these "hot spots" on actin filaments in every helical pitch, thus producing processive movement with 36 nm steps.  相似文献   

7.
The function of ERM (ezrin/radixin/moesin) proteins as general cross-linkers between actin filaments and plasma membranes is regulated downstream of Rho, through the transition between active and inactive forms. To directly examine the conformational change between the active and inactive forms of ERM proteins, we applied low-angle rotary-shadowing electron microscopy to the radixin molecules, wild-type, T564A-non-phosphorylated-type, and T564E-phosphorylated-type, since most of the active forms are reportedly stabilized in cells by the C-terminal threonine phosphorylation. As a result, the T564A- and wild-type radixin molecules yielded the globular closed forms, approximately 8-14 nm in diameter, with some striations on their surfaces. In contrast, the T564E-radixin molecules tended to take elongated open forms, in which two globular structures measuring approximately 8 nm and approximately 5 nm in diameter were associated with both ends of the filamentous structures. The filamentous structure took either a approximately 20-25 nm-long straight course or a folded course. Taken together with the biochemical and the crystal structural results obtained to date, the closed and open forms represent the inactive and active forms of radixin as cross-linkers between actin filaments and plasma membranes.  相似文献   

8.
BACKGROUND: Cellular movements are powered by the assembly and disassembly of actin filaments. Actin dynamics are controlled by Arp2/3 complex, the Wiskott-Aldrich syndrome protein (WASp) and the related Scar protein, capping protein, profilin, and the actin-depolymerizing factor (ADF, also known as cofilin). Recently, using an assay that both reveals the kinetics of overall reactions and allows visualization of actin filaments, we showed how these proteins co-operate in the assembly of branched actin filament networks. Here, we investigated how they work together to disassemble the networks. RESULTS: Actin filament branches formed by polymerization of ATP-actin in the presence of activated Arp2/3 complex were found to be metastable, dissociating from the mother filament with a half time of 500 seconds. The ADF/cofilin protein actophorin reduced the half time for both dissociation of gamma-phosphate from ADP-Pi-actin filaments and debranching to 30 seconds. Branches were stabilized by phalloidin, which inhibits phosphate dissociation from ADP-Pi-filaments, and by BeF3, which forms a stable complex with ADP and actin. Arp2/3 complex capped pointed ends of ATP-actin filaments with higher affinity (Kd approximately 40 nM) than those of ADP-actin filaments (Kd approximately 1 microM), explaining why phosphate dissociation from ADP-Pi-filaments liberates branches. Capping protein prevented annealing of short filaments after debranching and, with profilin, allowed filaments to depolymerize at the pointed ends. CONCLUSIONS: The low affinity of Arp2/3 complex for the pointed ends of ADP-actin makes actin filament branches transient. By accelerating phosphate dissociation, ADF/cofilin promotes debranching. Barbed-end capping proteins and profilin allow dissociated branches to depolymerize from their free pointed ends.  相似文献   

9.
We have examined the structure of actin-binding molecules in solution and interacting with actin filaments. At physiological ionic strength, actin-binding protein has a Mr value of 540 × 103 as determined by direct and indirect hydrodynamic measurements. It is an asymmetrical dimer composed of 270 × 103 dalton subunits. Viewed in the electron microscope after negative staining or low angle shadowing, actin-binding protein molecules assume a broad range of conformations varying from closed circular structures to fully extended strands 162 nm in contour length. All configurations are apparently derived from the same structure which consists of two monomer chains connected end-to-end. The radius of gyration determined from the electron microscopic images was 21.3 nm in agreement with the value of 17.6 nm calculated from hydrodynamic assays. The average axial ratio from hydrodynamic measurements was 17:1, whereas fully extended dimer molecules in the electron microscope would have an axial ratio of 54:1. All of these observations indicate that actin-binding protein dimers are extremely flexible. The flexibility parameter λ (Landau &; Lifshits, 1958) for actinbinding protein is 0.18 nm?1.As determined by sedimentation, actin-binding protein binds to actin filaments with a Ka value of 2 × 106m?1 and a capacity of one dimer to 14 actin monomers in filaments. After incubation of high concentrations (molar ratio to actin ≥ 1:10) of actin-binding protein with actin filaments, long filament bundles are visible in the electron microscope. Under these conditions, actin-binding protein molecules decorate the actin filaments in the bundles at regular 40 nm intervals or once every 15 monomers, approximately equivalent to the binding capacity measured by sedimentation. Low concentrations of actin-binding protein (molar ratio to actin ≥ 1:50) which promote the gelation of actin filaments in solution, did not detectably alter the isotropy of the actin filaments. Direct visualization of actinbinding protein molecules between actin filaments in the electron microscope showed that dimers are sufficient for crossbridging of actin filaments and that actinbinding protein dimers are bipolar, composed of monomers connected head-to-head and having actin-binding sites located on the free tails.We conclude that actin-binding protein is a dimer at physiological ionic strength. Each dimer has two actin filament binding sites and is therefore sufficient to gel actin filaments in solution. The length and flexibility of the actin-binding protein subunits render this molecule structurally suited for the crosslinking of large helical filaments into isotropic networks.  相似文献   

10.
Immunofluorescence and phase-contrast microscopic studies of goldfish xanthophores with aggregated or dispersed pigment show two unusual features. First, immunofluorescence studies with anti-actin show punctate structures instead of filaments. These punctate structures are unique for the xanthophores and are absent from both goldfish dermal non-pigment cells and a dedifferentiated cell line (GEM-81) derived from a goldfish xanthophore tumor. Comparison of immunofluorescence and phase-contrast microscopic images with electron microscopic images of thin sections and of Triton-insoluble cytoskeletons show that these punctate structures represent pterinosomes with radiating F-actin. The high local concentration of actin around the pterinosomes results in strong localized fluorescence such that, when the images have proper brightness for these structures, individual actin filaments elsewhere in the cell are too weak in their fluorescence to be visible in the micrographs. Second, whereas immunofluorescence images with anti-tubulin show typical patterns in xanthophores with either aggregated or dispersed pigment, namely, filaments radiating out from the microtubule organizing center, immunofluorescence images with anti-actin or with anti-intermediate filament proteins show different patterns in xanthophores with aggregated versus dispersed pigment. In cells with dispersed pigment, the punctate structures seen with anti-actin are relatively evenly distributed in the cytoplasm, and intermediate filaments appear usually as a dense perinuclear band and long filaments elsewhere in the cytoplasm. In cells with aggregated pigment, both intermediate filaments and pterinosomes with associated actin are largely excluded from the space occupied by the pigment aggregate, and the band of intermediate filaments surrounds not only the nucleus but also the pigment aggregate. The patterns of distribution of the different cytoskeleton components, together with previous results from this laboratory, indicate that formation of the pigment aggregate depends at least in part on the interaction between pigment organelles and microtubules. The possibility that intermediate filaments may play a role in the formation/stabilization of the pigment aggregate is discussed.  相似文献   

11.
The structure of acto-heavy meromyosin has been examined by electron microscopy. When heavy meromyosin is mixed with actin at ~ 2 mg/ml a gel is formed. At lower actin concentrations more ordered assemblies are formed in which the actin filaments are in “rafts” about 300 Å apart cross-linked by heavy meromyosin. These results indicate that in solution the two heads of a heavy meromyosin molecule can bind to different actin filaments.  相似文献   

12.
Actin-aldolase rafts provide insights into the use of rafts as models for three-dimensional actin bundles. Although aldolase has three twofold axes, filaments in actin-aldolase rafts were not strictly related by a twofold axis. Interfilament angles were on average +15 degrees off the expected 180 degrees, and most rafts appeared handed; that is, rows of cross-bridges were tilted in a clockwise direction off the perpendicular. We can account for both the deviation of the angle from 180 degrees and the handedness of the rafts by a steric constraint due to the lipid layer. We further found that the axial spacings of cross-bridges varied significantly from raft to raft. We suggest that this difference arises from variations in the twist of the filaments that nucleate raft formation; that is, filaments added to a raft adopt the symmetry of those in the raft. We conclude that the organization of filaments in rafts can be modulated by outside factors such as the lipid layer and that the variable twist of filaments in the nucleating core of the raft are imposed on all the filaments in the raft. These results provide a measure of the potential for polymorphism in actin assemblies.  相似文献   

13.
Lipid rafts are meso-scale (5-200 nm) cell membrane domains where signaling molecules assemble and function. However, due to their dynamic nature, it has been difficult to unravel the mechanism of signal transduction in lipid rafts. Recent advanced imaging techniques have revealed that signaling molecules are frequently, but transiently, recruited to rafts with the aid of protein-protein, protein-lipid, and/or lipid-lipid interactions. Individual signaling molecules within the raft are activated only for a short period of time. Immobilization of signaling molecules by cytoskeletal actin filaments and scaffold proteins may facilitate more efficient signal transmission from rafts. In this review, current opinions of how the transient nature of molecular interactions in rafts generates digital-like signal transduction in cell membranes, and the benefits this phenomenon provides, are discussed.  相似文献   

14.
Arp2/3 complex is an important actin filament nucleator that creates branched actin filament networks required for formation of lamellipodia and endocytic actin structures. Cellular assembly of branched actin networks frequently requires multiple Arp2/3 complex activators, called nucleation promoting factors (NPFs). We recently presented a mechanism by which cortactin, a weak NPF, can displace a more potent NPF, N-WASP, from nascent branch junctions to synergistically accelerate nucleation. The distinct roles of these NPFs in branching nucleation are surprising given their similarities. We biochemically dissected these two classes of NPFs to determine how their Arp2/3 complex and actin interacting segments modulate their influences on branched actin networks. We find that the Arp2/3 complex-interacting N-terminal acidic sequence (NtA) of cortactin has structural features distinct from WASP acidic regions (A) that are required for synergy between the two NPFs. Our mutational analysis shows that differences between NtA and A do not explain the weak intrinsic NPF activity of cortactin, but instead that cortactin is a weak NPF because it cannot recruit actin monomers to Arp2/3 complex. We use TIRF microscopy to show that cortactin bundles branched actin filaments using actin filament binding repeats within a single cortactin molecule, but that N-WASP antagonizes cortactin-mediated bundling. Finally, we demonstrate that multiple WASP family proteins synergistically activate Arp2/3 complex and determine the biochemical requirements in WASP proteins for synergy. Our data indicate that synergy between WASP proteins and cortactin may play a general role in assembling diverse actin-based structures, including lamellipodia, podosomes, and endocytic actin networks.  相似文献   

15.
《The Journal of cell biology》1986,103(3):1007-1020
A highly branched filament network is the principal structure in the periphery of detergent-extracted cytoskeletons of macrophages that have been spread on a surface and either freeze or critical point dried, and then rotary shadowed with platinum-carbon. This array of filaments completely fills lamellae extended from the cell and bifurcates to form 0.2-0.5 micron thick layers on the top and bottom of the cell body. Reaction of the macrophage cytoskeletons with anti-actin IgG and with anti-IgG bound to colloidal gold produces dense staining of these filaments, and incubation with myosin subfragment 1 uniformly decorates these filaments, identifying them as actin. 45% of the total cellular actin and approximately 70% of actin-binding protein remains in the detergent-insoluble cell residue. The soluble actin is not filamentous as determined by sedimentation analysis, the DNAase I inhibition assay, and electron microscopy, indicating that the cytoskeleton is not fragmented by detergent extraction. The spacing between the ramifications of the actin network is 94 +/- 47 nm and 118 +/- 72 nm in cytoskeletons prepared for electron microscopy by freeze drying and critical point drying, respectively. Free filament ends are rare, except for a few which project upward from the body of the network or which extend down to the substrate. Filaments of the network intersect predominantly at right angles to form either T-shaped and X-shaped overlaps having striking perpendicularity or else Y-shaped intersections composed of filaments intersecting at 120-130 degrees angles. The actin filament concentration in the lamellae is high, with an average value of 12.5 mg/ml. The concentration was much more uniform in freeze-dried preparations than in critical point-dried specimens, indicating that there is less collapse associated with the freezing technique. The orthogonal actin network of the macrophage cortical cytoplasm resembles actin gels made with actin-binding protein. Reaction of cell cytoskeletons and of an actin gel made with actin- binding protein with anti-actin-binding protein IgG and anti-IgG-coated gold beads resulted in the deposition of clusters of gold at points where filaments intersect and at the ends of filaments that may have been in contact with the membrane before its removal with detergent. In the actin gel made with actin-binding protein, 75% of actin-fiber intersections labeled, and the filament spacing between intersections is consistent with that predicted on theoretical grounds if each added actin-binding protein molecule cross-links two filaments to form an intersection in the gel.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
We have examined fragments of the filamentous network underlying the human erythrocyte membrane by high-resolution electron microscopy. Networks were released from ghosts by extraction with Triton X-100, freed of extraneous proteins in 1.5 M NaCl, and collected by centrifugation onto a sucrose cushion. These preparations contained primarily protein bands 1 + 2 (spectrin), band 4.1 and band 5 (actin). The networks were partially disassembled by incubation at 37 degrees C in 2 mM NaPi (pH 7), which caused the preferential dissociation of spectrin tetramers to dimers. The fragments so generated were fractionated by gel filtration chromatography and visualized by negative staining with uranyl acetate on fenestrated carbon films. Unit complexes, which sedimented at approximately 40S, contained linear filaments approximately 7-8 nm diam from which several slender and convoluted filaments projected. The linear filaments had a mean length of 52 +/- 17 nm and a serrated profile reminiscent of F-actin. They could be decorated in an arrowhead pattern with S1 fragments of muscle heavy meromyosin which, incidentally, displaced the convoluted filaments. Furthermore, the linear filaments nucleated the polymerization of rabbit muscle G-actin, predominantly but not exclusively from the fast-growing ends. On this basis, we have identified the linear filaments as F-actin; we infer that the convoluted filaments are spectrin. Spectrin molecules were usually attached to actin filaments in clusters that showed a preference for the ends of the F-actin. We also observed free globules up to 15 nm diam, usually associated with three spectrin molecules, which also nucleated actin polymerization; these may be simple junctional complexes of spectrin, actin, and band 4.1. In larger ensembles, spectrin tetramers linked actin filaments and/or globules into irregular arrays. Intact networks were an elaboration of the basic pattern manifested by the fragments. Thus, we have provided ultrastructural evidence that the submembrane skeleton is organized, as widely inferred from less direct information, into short actin filaments linked by multiple tetramers of spectrin clustered at sites of association with band 4.1.  相似文献   

17.
The vertebrate striated muscle Z-band connects actin filaments of opposite polarity from adjacent sarcomeres and allows tension to be transmitted along a myofibril during contraction. Z-bands in different muscles have a modular structure formed by layers of alpha-actinin molecules cross-linking actin filaments. Successive layers occur at 19 nm intervals and have 90 degrees rotations between them. 3D reconstruction from electron micrographs show a two-layer "simple" Z-band in fish body fast muscle, a three-layer Z-band in fish fin fast muscle, and a six-layer Z-band in mammalian slow muscle. Related to the number of these layers, longitudinal sections of the Z-band show a number of zigzag connections between the oppositely oriented actin filaments. The number of layers also determines the axial width of the Z-band, which is a useful indicator of fibre type; fast fibres have narrow (approximately 30-50 nm) Z-bands; slow and cardiac fibres have wide (approximately 100-140 nm) Z-bands. Here, we report the first observation of two different Z-band widths within a single sarcomere. By comparison with previous studies, the narrower Z-band comprises three layers. Since the increase in width of the wider Z-band is about 19 nm, we conclude that it comprises four layers. This finding is consistent with a Z-band assembly model involving molecular control mechanisms that can add additional layers of 19 nm periodicity. These multiple Z-band structures suggest that different isoforms of nebulin and titin with a variable number of Z-repeats could be present within a single sarcomere.  相似文献   

18.
Through the coordinated action of diverse actin-binding proteins, cells simultaneously assemble actin filaments with distinct architectures and dynamics to drive different processes. Actin filament cross-linking proteins organize filaments into higher order networks, although the requirement of cross-linking activity in cells has largely been assumed rather than directly tested. Fission yeast Schizosaccharomyces pombe assembles actin into three discrete structures: endocytic actin patches, polarizing actin cables, and the cytokinetic contractile ring. The fission yeast filament cross-linker fimbrin Fim1 primarily localizes to Arp2/3 complex-nucleated branched filaments of the actin patch and by a lesser amount to bundles of linear antiparallel filaments in the contractile ring. It is unclear whether Fim1 associates with bundles of parallel filaments in actin cables. We previously discovered that a principal role of Fim1 is to control localization of tropomyosin Cdc8, thereby facilitating cofilin-mediated filament turnover. Therefore, we hypothesized that the bundling ability of Fim1 is dispensable for actin patches but is important for the contractile ring and possibly actin cables. By directly visualizing actin filament assembly using total internal reflection fluorescence microscopy, we determined that Fim1 bundles filaments in both parallel and antiparallel orientations and efficiently bundles Arp2/3 complex-branched filaments in the absence but not the presence of actin capping protein. Examination of cells exclusively expressing a truncated version of Fim1 that can bind but not bundle actin filaments revealed that bundling activity of Fim1 is in fact important for all three actin structures. Therefore, fimbrin Fim1 has diverse roles as both a filament "gatekeeper" and as a filament cross-linker.  相似文献   

19.
AlfA is a recently discovered DNA segregation protein from Bacillus subtilis that is distantly related to actin and the bacterial actin homologues ParM and MreB. Here we show that AlfA mostly forms helical 7/3 filaments, with a repeat of about 180 Å, that are arranged in three-dimensional bundles. Other polymorphic structures in the form of two-dimensional rafts or paracrystalline nets were also observed. Here AlfA adopted a 16/7 helical symmetry, with a repeat of about 387 Å. Thin polymers consisting of several intertwining filaments also formed. Observed helical symmetries of AlfA filaments differed from those of other members of the actin family: F-actin, ParM, or MreB. Both ATP and guanosine 5′-triphosphate are able to promote rapid AlfA filament formation with almost equal efficiencies. The helical structure is only preserved under physiological salt concentrations and at a pH between 6.4 and 7.4, the physiological range of the cytoplasm of B. subtilis. Polymerization kinetics are extremely rapid and compatible with a cooperative assembly mechanism requiring only two steps: monomer activation followed by elongation, making AlfA one of the most efficient polymerizing motors within the actin family. Phosphate release lags behind polymerization, and time-lapse total internal reflection fluorescence images of AlfA bundles are consistent with treadmilling rather than dynamic microtubule-like instability. High-pressure small angle X-ray scattering experiments reveal that the stability of AlfA filaments is intermediate between the stability of ParM and the stability of F-actin. These results emphasize that actin-like polymerizing machineries have diverged to produce a variety of filament geometries with diverse properties that are tailored for specific biological processes.  相似文献   

20.
The ultrastructure of detergent-resistant cytoskeletons in the noncortical cytoplasm of sea urchin eggs was studied by quick-freeze, deep-etch electron microscopy. Two different cytoskeletal organizations were identified in the detergent-treated sea urchin eggs. They were distinguished by the presence or the absence of long actin filaments and probably correspond to the cortex and the noncortical cytoplasm, respectively. The non-cortical cytoplasm was composed of a complex network (designated here as the ground network) of filaments 6 to 13 nm in diameter, that interconnected aggregates of small globular materials, yolk granules and a meshwork of uniform filaments (8-9 nm in diameter). The 6 to 13 nm filaments comprising the ground network were branched and associated with filaments of the same or other sizes, resulting in the formation of an extremely complex network. The meshwork of 8-9 nm filaments was homogeneous in composition and constitutes a novel structure which has not been previously described. The 8-9 nm filaments were connected to one another at their ends, forming a meshwork of polygons. Meshworks, ranging up to 3 microns in diameter, were distributed throughout the non-cortical cytoplasm of the egg. Similar cytoplasmic structures were also observed in fertilized eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号