首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Protection of colonic epithelial integrity and function is critical, because compromises in mucosal functions can lead to adverse and potentially life-threatening effects. The gut flora may contribute to this protection, in part, through the sustained induction of cytoprotective heat shock proteins (HSPs) in surface colonocytes. In this study, we investigated whether Escherichia coli LPS mediates bacteria-induced HSP by using cultured young adult mouse colon (YAMC) cells, an in vitro model of the colonic epithelium. E. coli LPS led to an epithelial cell-type specific induction of HSP25 in a time- and concentration-dependent manner, an effect that did not involve changes in HSP72. YAMC cells expressed the toll-like receptors (TLR)2 and TLR4 but not the costimulatory CD14 molecule. Whereas LPS stimulated both the p38 and ERK1/2 but not the stress-activated protein kinase/c-Jun NH(2)-terminal kinase, signaling pathways in the YAMC cells, all three were stimulated in RAW macrophage cells (in which no LPS-induced HSP25 expression was observed). The p38 inhibitor SB-203580 and the MAP kinase kinase-1 inhibitor PD-98059 inhibited HSP25 induction by LPS. LPS treatment also conferred protection against actin depolymerization induced by the oxidant monochloramine. The HSP25 dependence of the LPS protective effect was outlined in inhibitor studies and through adenovirus-mediated overexpression of HSP25. In conclusion, LPS may be an important mediator of enteric bacteria-induced expression of intestinal epithelial HSP25, an effect that may contribute to filamentous actin stabilization under physiological as well as pathophysiological conditions and thus protection of colonic epithelial integrity.  相似文献   

2.
3.
4.
The present study examined phosphorylation-dependent cellular localization and the thermoprotective role of heat shock protein (HSP) 25 in hippocampal HiB5 cells. HSP25 was induced and phosphorylated by heat shock (at 43 degrees C for 3 h). HSP25, which was located in the cytoplasm in the normal condition, translocated into the nucleus after the heat shock. Transfection experiments with hsp27 mutants in which specific serine phosphorylation residues (Ser(78) and Ser(82)) were substituted with alanines or aspartic acids showed that phosphorylation of HSP27 is accompanied by its nuclear translocation. Phosphorylation of mitogen-activated protein kinases (MAPKs) such as p38 MAPK and ERK was markedly increased by the heat shock, and SB203580 (a p38 MAPK kinase inhibitor) and/or PD098059 (a MEK inhibitor) inhibited the phosphorylation of HSP25, indicating that p38 MAPK and ERK are upstream regulators of HSP25 phosphorylation in the heat shock condition. In the absence of heat shock, actin filament stability was not affected by SB203580 and/or PD098059. Heat shock caused disruption of the actin filament and cell death when phosphorylation of HSP25 was inhibited by SB203580 and/or PD098059. In addition, actin filament was more stable in Asp(78,82)-hsp27 (mimics the phosphorylated form) transfected HiB5 cells than in the normal and Ala(78,82)-hsp27 (nonphosphorylative form) transfected cells. In accordance with actin filament stability, the survival rate against the heat shock increased markedly in Asp(15,78,82)-hsp27 expressing HiB5 cells but decreased in Ala(15,78,82)-hsp27 expressing cells. These results support the idea that phosphorylation of HSP25 is critical for the maintenance of actin filament and enhancement of thermoresistance. Interestingly, HSP25 was dephosphorylated and returned to cytoplasm in a recovery time-dependent manner. This phenomenon was accompanied by an increment of apoptotic cell death as determined by nuclear and DNA fragmentation and fluorescence-activated cell sorter analysis. These results suggest that nuclear-translocated HSP25 might function to protect nuclear structure, thereby preventing apoptotic cell death.  相似文献   

5.
AimsWith the advancement of small intestinal (double balloon and capsule) endoscopy technology, incidence of small intestinal lesion caused by nonsteroidal anti-inflammatory drugs (NSAIDs) has been known to be high. However, therapy for small intestinal mucosal lesion has not yet been developed. Previous studies have shown that heat shock proteins (HSPs) are involved in cytoprotection mediated by their function as a molecular chaperone. In this study, we examined the effect of HSP60 or HSP70 overexpression on hydrogen peroxide-induced (H2O2) or indomethacin-induced cell damage in the small intestinal epithelial cells.Main methodscDNA of human HSP60 or HSP70 was transfected to rat small intestinal (IEC-6) cells, and HSP60- or HSP70-overexpressing cells were cloned. IEC-6 cells transfected with vector only were used as control cells. These cells were treated with H2O2 (0–0.14 mM) or indomethacin (0–2.5 mM). The cell viability was determined by MTT-assay. Cell necrosis was evaluated by LDH-release assay. Further, apoptosis was evaluated by caspases-3/7 activity and TUNEL assay.Key findingsCell viability after H2O2 or indomethacin treatment was significantly higher in HSP60-overexpressing cells compared with that in control cells and HSP60-overexpressing cells. Apoptotic cells were also reduced in HSP60-overexpressing. Conclusion: These results indicate that HSP60 plays an important role in protecting small intestinal mucosal cells from H2O2-induced or indomethacin-induced cell injury. HSP70-overexpressing cells did not show anti-apoptotic ability.SignificanceThese findings possibly suggest that function of each HSP is different in the small intestine. Therefore, for the therapy of small intestinal mucosal lesion, HSP60-induction therapy could be a new therapeutic strategy.  相似文献   

6.
Yao K  Yin Y  Li X  Xi P  Wang J  Lei J  Hou Y  Wu G 《Amino acids》2012,42(6):2491-2500
α-Ketoglutarate (AKG) is a key intermediate in glutamine metabolism. Emerging evidence shows beneficial effects of AKG on clinical and experimental nutrition, particularly with respect to intestinal growth and integrity. However, the underlying mechanisms are unknown. Intestinal porcine epithelial cells (IPEC-1) were used to test the hypothesis that AKG inhibits glutamine degradation and enhances protein synthesis. IPEC-1 cells were cultured for 3 days in Dulbecco's modified Eagle's-F12 Ham medium (DMEM-F12) containing 0, 0.2, 0.5 or 2 mM of AKG. At the end of the 3-day culture, cells were used to determine L-[U-14C]glutamine utilization, protein concentration, protein synthesis, and the total and phosphorylated levels of the mammalian target of the rapamycin (mTOR), ribosomal protein S6 kinase-1 (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein-1 (4E-BP1). Compared with 0 mM of AKG (control), 0.2 and 0.5 mM of AKG dose-dependently reduced (P<0.05) glutamine degradation and the production of glutamate, alanine and aspartate in IPEC-1 cells. Addition of 0.5 and 2 mM of AKG to culture medium enhanced protein synthesis (P<0.05) by 78 and 101% without affecting protein degradation, compared to the control group. Rapamycin (50 nM; a potent inhibitor of mTOR) attenuated the stimulatory effect of AKG on protein synthesis. Consistent with these metabolic data, the addition of 0.5 or 2 mM of AKG to culture medium increased (P<0.05) the phosphorylated levels of mTOR, S6k1 and 4E-BP1 proteins. Collectively, these results indicate that AKG can spare glutamine and activate the mTOR signaling pathway to stimulate protein synthesis in intestinal epithelial cells.  相似文献   

7.
8.
9.
Little is known about the pathogenesis of Entamoeba histolytica and how epithelial cells respond to the parasite. Herein, we characterized the interactions between E. histolytica and colonic epithelial cells and the role macrophages play in modulating epithelial cell responses. The human colonic epithelial cell lines Caco-2 and T84 were grown either as monoculture or co-cultured in transwell plates with differentiated human THP-1 macrophages for 24 h before stimulation with soluble amebic proteins (SAP). In naive epithelial cells, prolonged stimulation with SAP reduced the levels of heat shock protein (Hsp) 27 and 72. However in THP-1 conditioned intestinal epithelial cells SAP enhanced Hsp27 and Hsp72, which was dependent on the activation of ERK MAP kinase. Hsp synthesis induced by SAP conferred protection against oxidative and apoptotic injuries. Treatment with SAP inhibited NF-kappaB activation induced by interleukin-1beta; specifically, the NF-kappaB-DNA binding, nuclear translocation of p65 subunit, and phosphorylation of IkappaB-alpha were reduced. Gene silencing by small interfering RNA confirmed the role of Hsp27 in suppressing NF-kappaB activation at IkappaB kinase (IKK) level. By co-immunoprecipitation studies, we found that Hsp27 interacts with IKK-alpha and IKK-beta, and this association was increased in SAP-treated conditioned epithelial cells. Overexpression of wild type Hsp27 amplified the effects of SAP, whereas a phosphorylation-deficient mutant of Hsp27 abrogated SAP-induced NF-kappaB inhibition. In conditioned epithelial cells, Hsp27 was phosphorylated at serine 15 after prolonged exposure to SAP. This mechanism may explain the absence of colonic inflammation seen in the majority of individuals infected with E. histolytica.  相似文献   

10.
11.
Heat shock proteins (HSP) 25 and 72 are expressed normally by surface colonocytes but not by small intestinal enterocytes. We hypothesized that luminal commensal microflora maintain the observed colonocyte HSP expression. The ability of the small intestine to respond to bacteria and their products and modulate HSPs has not been determined. The effects of luminal bacterial flora in surgically created midjejunal self-filling (SFL) vs. self-emptying (SEL) small-bowel blind loops on epithelial HSP expression were studied. HSP25 and HSP72 expression were assessed by immunoblot and immunohistochemistry. SFL were chronically colonized, whereas SEL contained levels of bacteria normal for the proximal small intestine. SFL creation significantly increased HSP25 and HSP72 expression relative to corresponding sections from SEL. Metronidazole treatment, which primarily affects anaerobic bacteria as well as a diet lacking fermentable fiber, significantly decreased SFL HSP expression. Small bowel incubation with butyrate ex vivo induced a sustained and significant upregulation of HSP25 and altered HSP72 expression, confirming the role of short-chain fatty acids. To determine whether HSPs induction altered responses to an injury, effects of the oxidant, monochloramine, on epithelial resistance and short-circuit current (I(sc)) responses to carbachol and glucose were compared. Increased SFL HSP expression was associated with protection against oxidant-induced decreases in transmural resistance and I(sc) responses to glucose, but not secretory responses to carbachol. In conclusion, luminal microflora and their metabolic byproducts direct expression of HSPs in gut epithelial cells, an effect that contributes to preservation of epithelial cell viability under conditions of stress.  相似文献   

12.
13.
14.
15.
16.
Dengue virus requires the presence of an unidentified cellular receptor on the surface of the host cell. By using a recently published affinity chromatography approach, an 84-kDa molecule, identified as heat shock protein 90 (HSP90) by matrix-assisted laser desorption ionization-time of flight mass spectrometry, was isolated from neuroblastoma and U937 cells. Based on the ability of HSP90 (84 kDa) to interact with HSP70 (74 kDa) on the surface of monocytes during lipopolysaccharide (LPS) signaling and evidence that LPS inhibits dengue virus infection, the presence of HSP70 was demonstrated in affinity chromatography eluates and by pull-down experiments. Infection inhibition assays support the conclusion that HSP90 and HSP70 participate in dengue virus entry as a receptor complex in human cell lines as well as in monocytes/macrophages. Additionally, our results indicate that both HSPs are associated with membrane microdomains (lipid rafts) in response to dengue virus infection. Moreover, methyl-beta-cyclodextrin, a raft-disrupting drug, inhibits dengue virus infection, supporting the idea that cholesterol-rich membrane fractions are important in dengue virus entry.  相似文献   

17.
Induction of the heat shock proteins (HSPs) is involved in the increased resistance to cancer therapies such as chemotherapy and hyperthermia. We used two human ovarian cancer cell lines; a cisplatin (CDDP)-sensitive line A2780 and its CDDP-resistant derivative, A2780CP. The concentration of intracellular glutathione (GSH) is higher (2.7-fold increase) in A2780CP cells than in A2780 cells. A mild treatment with a heat stress (42 degrees C for 30 min) induced synthesis of both the heat shock protein 72 (Hsp72) mRNA and the HSP72 protein in A2780CP cells, but not in A2780 cells. In contrast, a severe heat stress (45 degrees C for 30 min) increased synthesis of the HSP72 protein in the two cell lines. The induced level of the HSP72 protein by the severe treatment was higher in A2780CP than in A2780 cells. The gel mobility shift assay showed that DNA binding activities of the heat shock factor (HSF) in the two cell lines were induced similarly and significantly by the mild heat stress. Immunocytochemistry using an anti HSF1 antibody also indicated that mild heat stress activated the HSF1 translocation from the cytosol to the nucleus similarly in the both cell lines. Pretreatment of CDDP-sensitive A2780 cells with N-acetyl-L-cysteine, a precursor of GSH, effectively enhanced induction of the Hsp72 mRNA by the mild heat stress. The present findings demonstrate that induction of the Hsp72 mRNA by the mild heat stress was more extensive in CDDP-resistant A2780CP cells. It is likely that the higher GSH concentration in A2780CP cells plays an important role in promoting Hsp72 gene expression induced by the mild heat stress probably through processes downstream of activation of HSF-DNA binding.  相似文献   

18.
The expression of heat shock proteins (HSPs) is known to be increased via activation of heat shock factor 1 (HSF1), and excess expression of HSPs exerts feedback inhibition of HSF1. However, the molecular mechanism to modulate such relationships between HSPs and HSF1 is not clear. In the present study, we show that stable transfection of either Hsp25 or inducible Hsp70 (Hsp70i) increased expression of endogenous HSPs such as HSP25 and HSP70i through HSF1 activation. However, these phenomena were abolished when the dominant negative Hsf1 mutant was transfected to HSP25 or HSP70i overexpressed cells. Moreover, the increased HSF1 activity by either HSP25 or HSP70i was found to result from dephosphorylation of HSF1 on serine 307 that increased the stability of HSF1. Either HSP25 or HSP70i inhibited ERK1/2 phosphorylation because of increased MKP1 phosphorylation by direct interaction of these HSPs with MKP1. Treatment of HOS and NCI-H358 cells, which showed high expressions of endogenous HSF1, with small interfering RNA (siRNA) of either HSP27 (siHSP27)or HSP70i (siHSP70i) inhibited both HSP27 and HSP70i proteins; this was because of increased ERK1/2 phosphorylation and serine phosphorylation of HSF1. The results, therefore, suggested that when the HSF1 protein level was high in cancer cells, excess expression of HSP27 or HSP70i strongly facilitates the expression of HSP proteins through HSF1 activation, resulting in severe radio- or chemoresistance.  相似文献   

19.
20.
Summary Heat shock proteins (HSPs) have been recognized as molecules that maintain cellular homeostasis during changes in the environment. Here we report that HSP90 functions not only in stress responses but also in certain aspects of cellular differentiation. We found that HSP90 slowed remarkably high expression in undifferentiated human embryonal carcinoma (EC) cells, which were subsequently dramatically down-regulated during in vitro cellular differentiation, following retinoic acid (RA) treatment, at the protein level. Surprisingly, heat shock treatment also triggered the down-regulation of HSP90 within 48 h at the protein level. Furthermore, the heat treatment induced cellular differentiation into neural cells. This down-regulation of HSP90 by heat treatment was shifted to an up-regulation attern after cellular differentiation in response to RA treatment. In order to clarify the functions of HSP90 in cellular differentiation, we conducted various experiments, including overexpression of HSP90 via gene transfer. We showed that the RA-induced differentiation of EC cells into a neural cell lineage was inhibited by overexpression of the HSP90α or-β isoform via the gene transfer method. On the other hand, the overexpression of HSP90β alone impaired cellular differentiation into trophoectoderm. These results show that down-regulation of HSP90 is a physiological critical event in the differentiation of human EC cells and that specific HSP90 isoforms may be involved in differentiation into specific cell lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号