首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural abundance 13C solid-state nuclear magnetic resonance spectroscopy was used to investigate the effect of the incorporation of cholesterol on the dynamics of dimyristoylphosphatidylcholine (DMPC) bilayers in the liquid-crystalline phase. In particular, the use of a combination of the cross-polarization and magic angle spinning techniques allows one to obtain very high resolution spectra from which can be distinguished several resonances attributed to the polar head group, the glycerol backbone, and the acyl chains of the lipid molecule. To examine both the fast and slow motions of the lipid bilayers, 1H spin-lattice relaxation times as well as proton and carbon spin-lattice relaxation times in the rotating frame were measured for each resolved resonance of DMPC. The use of the newly developed ramped-amplitude cross-polarization technique results in a significant increase in the stability of the cross-polarization conditions, especially for molecular groups undergoing rapid motions. The combination of T1 and T1 rho measurements indicates that the presence of cholesterol significantly decreases the rate and/or amplitude of both the high and low frequency motions in the DMPC bilayers. This effect is particularly important for the lipid acyl chains and the glycerol backbone region.  相似文献   

2.
Natural abundance solid-state 13C-NMR spin-lattice relaxation experiments in the laboratory (T1) and off-resonance rotating (T(1rho)) frames were applied for qualitative comparison of the internal molecular dynamics of barstar, hen egg white lysozyme and bacteriophage T4 lysozyme in both the microcrystalline and the rehydrated (water content is 50% of the protein mass) lyophilized states. The microcrystalline state of proteins provides a better spectral resolution; however, less is known about the local structure and dynamics in the different states. We found by visual comparison of both T1 and T(1rho) relaxation decays of various resonance bands of the CPMAS spectra that within the ns-mus range of correlation times there is no appreciable difference in the internal dynamics between rehydrated lyophilized and crystalline states for all three proteins tested. This suggests that the internal conformational dynamics depends weakly if at all on inter-protein interactions in the solid state. Hence, physical properties of globular proteins in a fully hydrated solid state seem to be similar to those in solution. This result at least partly removes concerns about biological relevance of studies of globular proteins in the solid state.  相似文献   

3.
13C-NMR and permeability studies are described for sonicated vesicles of phosphatidylcholines bearing two 16-carbon saturated hydrocarbon chains with (a) one ether linkage at carbon 1 (3) or 2 of glycerol and one ester linkage at carbon 2 or 1 (3) of glycerol; (b) two ether linkages and (c) two ester linkages at carbons 1 (3) and 2 of glycerol. The results of 13C-NMR relaxation enhancement measurements using cholesterol enriched with 13C at the 4 position indicate that no significant relocation of the cholesterol molecules takes place in the bilayer when a methylene group is substituted for a carbonyl group in phosphatidylcholine. The 4-13C atom of cholesterol undergoes similar fast anisotropic motions in diester- and diether -phosphatidylcholine bilayers, as judged by spin-lattice relaxation time measurements in the liquid-crystalline phase; although the fast motions are unaltered, linewidth and spin-spin relaxation time measurements suggested some restriction of the slow motions of cholesterol molecules in bilayers from phosphatidylcholines containing an O-alkyl linkage at the sn-2 position instead of an acyl linkage. At temperatures above the gel to liquid-crystal phase transition, the kinetics of ionophore A23187-mediated 45Ca2+ efflux from vesicles prepared from each type of phosphatidylcholine molecule were the same; the kinetics of spontaneous carboxyfluorescein diffusion from diester- and diether -phosphatidylcholine vesicles were the same, whereas mixed ether/ester phosphatidylcholine molecules gave bilayers which are less permeable. The rate constants were reduced on cholesterol incorporation into the bilayers of each type of phosphatidylcholine molecule. The reductions were not statistically significant for 45Ca2+ release. The rate constants for carboxyfluorescein release were also reduced by cholesterol to the same extent in vesicles from diester-, diether -, and 1-ether, and 1-ether-2-ester-phosphatidylcholines; however, a smaller reduction was noted in bilayers from the 1-ester-2-ether analog. The results provide further evidence that there are no highly specific requirements for ester or ether linkages in phosphatidylcholine for cholesterol to reduce bilayer permeability. This is a reflection of the fact that in both diester- and diether -phosphatidylcholine bilayers, the 4-13C atom of cholesterol is located in the region of the acyl carboxyl group or the glyceryl ether oxygen atom.  相似文献   

4.
The spin labels, 5-doxylstearate, 12-doxylstearate, 16-doxylstearate and 1-oxyl-2,2,6,6-tetramethyl-4-dodecylphosphopiperidine, have been incorporated into dodecylphosphocholine micelles and mixed dodecylphosphocholine glucagon micelles. The EPR spectral parameters for the different spin labels and the 1H- and 13C-NMR relaxation rates for nuclei of the detergent molecules indicated that inclusion of up to one spin label molecule per micelle had little influence on the spatial organization of the micelles. Furthermore, the location and environment of the spin labels in the dodecylphosphocholine micelles were not noticeably affected by the addition of glucagon and the 1H-NMR spectra observed for glucagon in mixed spin label/deuterated dodecylphosphocholine/glucagon micelles showed that the different spin labels had essentially no effect on the conformation of glucagon. Approximate spatial locations within the micelle for the nitroxide moieties of the different spin labels were determined from the NMR relaxation rates observed for different nuclei of dodecylphosphocholine. On this basis, the line broadening of individually assigned glucagon 1H-NMR lines by the different spin labels was used to determine the approximate orientation of the polypeptide chain with respect to the micelle surface. Overall, the data indicate that the glucagon backbone runs roughly parallel to the micelle surface, with the depth of immersion adjusted so that polar and apolar side chains can be oriented towards the surface or interior of the micelle, respectively.  相似文献   

5.
The extent of rapid (picosecond) backbone motions within the glucocorticoid receptor DNA-binding domain (GR DBD) has been investigated using proton-detected heteronuclear NMR spectroscopy on uniformly 15N-labeled protein fragments containing the GR DBD. Sequence-specific 15N resonance assignments, based on two- and three-dimensional heteronuclear NMR spectra, are reported for 65 of 69 backbone amides within the segment C440-A509 of the rat GR in a protein fragment containing a total of 82 residues (MW = 9200). Individual backbone 15N spin-lattice relaxation times (T1), rotating-frame spin-lattice relaxation times (T1 rho), and steady-state (1H)-15N nuclear Overhauser effects (NOEs) have been measured at 11.74 T for a majority of the backbone amide nitrogens within the segment C440-N506. T1 relaxation times and NOEs are interpreted in terms of a generalized order parameter (S2) and an effective correlation time (tau e) characterizing internal motions in each backbone amide using an optimized value for the correlation time for isotropic rotational motions of the protein (tau R = 6.3 ns). Average S2 order parameters are found to be similar (approximately 0.86 +/- 0.07) for various functional domains of the DBD. Qualitative inspection as well as quantitative analysis of the relaxation and NOE data suggests that the picosecond flexibility of the DBD backbone is limited and uniform over the entire protein, with the possible exception of residues S448-H451 of the first zinc domain and a few residues for which relaxation and NOE parameters were not obtained. in particular, we find no evidence for extensive rapid backbone motions within the second zinc domain. Our results therefore suggest that the second zinc domain is not disordered in the uncomplexed state of DBD, although the possibility of slowly exchanging (ordered) conformational states cannot be excluded in the present analysis.  相似文献   

6.
1H- and 2H-NMR study of bovine serum albumin solutions   总被引:1,自引:0,他引:1  
Frozen, native and denatured bovine serum albumin solutions have been studied with a wide-band NMR pulse spectrometer. Both macromolecular and water protons spin-spin and spin-lattice relaxation times--t2m, t1m, t2w, t1w--have been measured between 170 and 360 K. In the native sample, the t2m process is the tumbling rate of the bovine serum albumin molecules. It gives to the spin-lattice relaxation an omega 0(-2) frequency dependence at room temperature in the studied frequency range, 6-90 MHz. An additional process contributes to t1m-1; it arises from internal backbone or segmental motions and provides a lower frequency behaviour. On denaturation, bovine serum albumin molecules lose their tumbling motion and form a rigid network, while internal backbone motions seem unaffected. Calorimetric Cp measurement confirms the occurrence of a phase transition upon denaturation. 1H and 2H spin-lattice relaxation times of water protons depend mainly on bound water mobility. 1H and 2H t2w depend also on the tertiary structure of bovine serum albumin and on its mobility, because of a fast exchange process between water and some protein protons (or deutons), while a cross-relaxation process between protein and water protons contributes to 1H t1w. Denaturation has no influence on bound water motional properties and bound water population.  相似文献   

7.
The spin labels, 5-doxylstearate, 12-doxylstearate, 16-doxylstearate and 1-oxyl-2,2,6,6-tetramethyl-4-dodecylphospiperidine, have been incorporated into dodecylphospocholine micelles and mixed dodecylphosphocholine/ glucagon micelles. The EPR spectral parameters for the different spin labels and the 1H- and 13C-NMR relaxation rates for nuclei of the detergent molecules indicated that inclusion of up to one spin label molecule per micelle had little influence on the spatial organization of the micelles. Furthermore, the location and environment of the spin labels in the dodecylphosphocholine micelles were not noticeably affected by the addition of glucagon and the 1H-NMR spectra observed for glucagon in mixed spin label/deuterated dodecylphosphocholine/glucagon micelles showed that the different spin labels had essentially no effect on the conformation of glucagon. Approximate spatial locations within the micelle for the nitroxide moieties of the different spin labels were determined from the NMR relaxation rates observed for different nuclei of dodecylphosphocholine. On this basis, the line broadening of individually assigned glucagon 1H-NMR lines by the different spin labels was used to determine the approximate orientation of the polypeptide chain with respect to the micelle surface. Overall, the data indicate that the glucagon backbone runs roughly parallel to the micelle surface, with the depth of immersion adjusted so that polar and apolar side chains can be oriented towards the surface or interior of the micelle, respectively.  相似文献   

8.
We have used 2H-nmr to study backbone dynamics of the 2H-labeled, slowly exchanging amide sites of fully hydrated, crystalline hen egg white lysozyme. Order parameters are determined from the residual quadrupole coupling and values increase from S2 = 0.85 at 290 K to S2 = 0.94 at 200 K. Dynamical rates are determined from spin-lattice relaxation at three nmr frequencies (38.8, 61.5, and 76.7 MHz). The approach used here is thus distinct from solution nmr studies where dynamical amplitudes and rates are both determined from relaxation measurements. At temperatures below 250 K, relaxation is independent of the nmr frequency indicating that backbone motions are fast compared to the nmr frequencies. However, as the temperature is increased above 250 K, relaxation is significantly more efficient at the lowest frequency, which shows, in addition, the presence of motions that are slow compared to the nmr frequencies. Using the values of S2 determined from the residual quadrupole coupling and a model-free relaxation formalism that allows for fast and slow internal motions, we conclude that these slow motions have correlation times in the range of 0.1 to 1.0 microsecond and are effectively frozen out at 250 K where fast motions of the amide planes with approximately 15 ps effective correlation times and 9 degrees rms amplitudes dominate relaxation. The fast internal motions increase slightly in amplitude as the temperature rises toward 290 K, but the correlation time, as is also observed in solution nmr studies of RNase H, is approximately constant. These findings are consistent with hypotheses of dynamic glass transitions in hydrated proteins arising from temperature-dependent damping of harmonic modes of motion above the transition point.  相似文献   

9.
The molecular dynamics of solid poly-L-lysine has been studied by the following natural abundance (13)C-NMR relaxation methods: measurements of the relaxation times T(1) at two resonance frequencies, off-resonance T(1rho) at two spin-lock frequencies, and proton-decoupled T(1rho). Experiments were performed at different temperatures and hydration levels (up to 17% H(2)O by weight). The natural abundance (13)C-CPMAS spectrum of polylysine provides spectral resolution of all types of backbone and side chain carbons and thus, dynamic parameters could be determined separately for each of them. At the same time, the conformational properties of polylysine were investigated by Fourier transform infrared spectroscopy. The data obtained from the different NMR experiments were simultaneously analyzed using the correlation function formalism and model-free approach. The results indicate that in dry polylysine both backbone and side chains take part in two low amplitude motions with correlation times of the order of 10(-4) s and 10(-9) s. Upon hydration, the dynamic parameters of the backbone remain almost constant except for the amplitude of the slower process that increases moderately. The side chain dynamics reveals a much stronger hydration response: the amplitudes of both slow and fast motions increase significantly and the correlation time of the slow motion shortens by about five orders of magnitude, and at hydration levels of more than 10% H(2)O fast and slow side chain motions are experimentally indistinguishable. These changes in the molecular dynamics cannot be ascribed to any hydration-dependent conformational transitions of polylysine because IR spectra reveal almost no hydration dependence in either backbone or side chain absorption domains. The physical nature of the fast and slow motions, their correlation time distributions, and hydration dependence of microdynamic parameters are discussed.  相似文献   

10.
Solid-state 1H, 13C, 14N, and 31P NMR spectroscopy was used to study the effects of the bee venom peptide, melittin, on aligned multilayers of dimyristoyl-, dilauryl- and ditetradecyl-phosphatidylcholines above the gel to liquid-crystalline transition temperature, Tc. Both 31P spectra from the lipid headgroups and 1H resonances from the lipid acyl chain methylene groups indicate that the peptide does not affect the mosaic spread of the lipid molecules at lipid:peptide molar ratios of 10:1, or higher. None of the samples prepared above Tc showed any evidence of the formation of hexagonal or isotropic phases. Melittin-induced changes in the chemical shift anisotropy of the headgroup phosphate and the lipid carbonyl groups, and in the choline 14N quadrupole splittings, show that the peptide has effects on the headgroup order and on the molecular organization in the sections of the acyl chains nearest to the bilayer surface. The spin-lattice relaxation time for the lipid acyl chain methylene protons was found to increase and the rotating-frame longitudinal relaxation time to markedly decrease with the addition of melittin, suggesting that motions on the nanosecond time scale are restricted, whereas the slower, collective motions are enhanced in the presence of the peptide.  相似文献   

11.
13C-NMR spectra have been obtained at 50.3 MHz for monoarachidoylphosphatidylcholine (MAPC) and dipalmitoylphosphatidylcholine (DPPC) dispersions from 25 degrees C to 55 degrees C and for DPPC polycrystals at 25 degrees C using the cross polarization/magic angle spinning technique. Differential scanning calorimetric studies on DPPC and MAPC dispersions show comparable lipid phase transitions with transition temperatures at 41 degrees C and 45 degrees C, respectively, and thus enable the comparison of thermal, structural and dynamic differences between these two systems at corresponding temperatures. Conformational-dependent 13C chemical shift studies on DPPC dispersions demonstrate not only the coexistence of the tilted gel (L beta') and liquid-crystalline (L alpha) phases in the rippled gel (P beta') phase, but also the presence of an intermediate third microscopic phase as evidenced by three resolvable peaks for omega - 1 methylene carbon signals at the temperature interval between Tp and Tm. By comparing chemical shifts of MAPC in the hydrocarbon chain region with those of DPPC at similar reduced temperatures, it can be concluded that the packings are perturbed markedly in the middle segment of the fatty acyl chain during the lamellar to micellar transition. However, terminal methylene and methyl groups of interdigitated MAPC lamellae were found to be more ordered than those of non-interdigitated DPPC bilayers in the gel state. Interestingly, the terminal methyl groups of MAPC in the micelles remain to be relatively ordered; in fact, they are more ordered than the corresponding acyl chain end of DPPC in the liquid-crystalline state. Analysis of data obtained from rotating frame proton spin-lattice relaxation measurements shows a highly mobile phosphocholine headgroup, a rigid carbonyl group and an ordered hydrocarbon chain for lamellar MAPC in the interdigitated state. Furthermore, results suggest that free rotations of the glycerol C2-C3 bond within MAPC molecules may occur in the interdigitated bilayer, whereas intramolecular exchange between two conformations of the glycerol backbone in DPPC become possible at temperatures close to the pretransition temperature. Without isotope enrichment, we conclude that high-resolution solid-state 13C-NMR is indeed a useful technique which can be employed to study the packing and dynamics of phospholipids.  相似文献   

12.
13C-NMR and permeability studies are described for sonicated vesicles of phosphatidylcholines bearing two 16-carbon saturated hydrocarbon chains with (a) one ether linkage at carbon 1 (3) or 2 of glycerol and one ester linkage at carbon 2 or 1 (3) of glycerol; (b) two ether linkages and (c) two ester linkages at carbons 1 (3) and 2 of glycerol. The results of 13C-NMR relaxation enhancement measurements using cholesterol enriched with 13C at the 4 position indicate that no significant relocation of the cholesterol molecules takes place in the bilayer when a methylene group is substituted for a carbonyl group in phosphatidylcholine. The 4-13C atom of cholesterol undergoes similar fast anisotropic motions in diester- and diether-phosphatidylcholine bilayers, as judged by spin-lattice relaxation time measurements in the liquid-crystalline phase; although the fast motions are unaltered, linewidth and spin-spin relaxation time measurements suggested some restriction of the slow motions of cholesterol molecules in bilayers from phosphatidylcholines containing an O-alkyl linkage at the sn-2 position instead of an acyl linkage. At temperatures above the gel to liquid-crystal phase transition, the kinetics of ionophore A23187-mediated 45Ca2+ efflux from vesicles prepared from each type of phosphatidylcholine molecule were the same; the kinetics of spontaneous carboxyfluorescein diffusion from diester- and diether-phosphatidylcholine vesicles were the same, whereas mixed ether/ester phosphatidylcholine molecules gave bilayers which are less permeable. The rate constants were reduced on cholesterol incorporation into the bilayers of each type of phosphatidylcholine molecule. The reductions were not statistically significant for 45Ca2+ release. The rate constants for carboxyfluorescein release were also reduced by cholesterol to the same extent in vesicles from diester-, diether-, and 1-ether-2-ester-phosphatidylcholines; however, a smaller reduction was noted in bilayers from the 1-ester-2-ether analog. These results provide further evidence that there are no highly specific requirements for ester or ether linkages in phosphatidylcholine for cholesterol to reduce bilayer permeability. This is a reflection of the fact that in both diester- and diether-phosphatidylcholine bilayers, the 4-13C atom of cholesterol is located in the region of the acyl carboxyl group or the glyceryl ether oxygen atom.  相似文献   

13.
The order parameters as well as the rates of overall and internal motions of aggregated surfactants can be obtained from deuteron and carbon-13 nuclear relaxation experiments. The main contribution to the relaxation is generally the quadrupolar coupling (2H) or the short range dipolar interaction with protons (13C). In some cases it is convenient to derive the same information from the13C relaxation induced by long range dipolar interactions with a paramagnetic probe exchanging rapidly among the polar heads of surfactant molecules. This paper outlines the methods of interpretation of relaxation data by means of a rotational jump model of internal motions, taking into account most of the accessible conformers. The conformational and dynamical parameters are obtained from the magnetic field dependence of the longitudinal relaxation rates (micelles) or from the simultaneous fit of these rates and of the dipolar or quadrupolar splittings (liquid crystals). Some examples of application of these methods are given from recent works on single and double detailed surfactants.  相似文献   

14.
L P Kelsh  J F Ellena  D S Cafiso 《Biochemistry》1992,31(22):5136-5144
Alamethicin is a channel-forming peptide antibiotic that produces a highly voltage-dependent conductance in planar bilayers. To provide insight into the mechanisms for its voltage dependence, the dynamics of the peptide were examined in solution using nuclear magnetic resonance. Natural-abundance 13C spin-lattice relaxation rates and 13C-1H nuclear Overhauser effects of alamethicin were measured at two magnetic field strengths in methanol. This information was interpreted using a model-free approach to obtain values for the overall correlation times as well as the rates and amplitudes of the internal motions of the peptide. The picosecond, internal motions of alamethicin are highly restricted along the peptide backbone and indicate that it behaves as a rigid helical rod in solution. The side chain carbons exhibit increased segmental motion as their distance from the peptide backbone is increased; however, these motions are not unrestricted. Methyl group dynamics are also consistent with the restricted motions observed for the backbone carbons. There is no evidence from these dynamics measurements for a hinged motion of the peptide about proline-14. Alamethicin appears to be slightly less structured in methanol than in the membrane; as a result, alamethicin is also expected to behave as a rigid helix in the membrane. This suggests that the gating of this peptide involves changes in the orientation of the entire helix, rather than the movement of a segment of the peptide backbone.  相似文献   

15.
P A Mirau  R W Behling  D R Kearns 《Biochemistry》1985,24(22):6200-6211
Proton NMR relaxation measurements are used to compare the molecular dynamics of 60 base pair duplexes of B- and Z-form poly(dG-dC).poly(dG-dC). The relaxation rates of the exchangeable guanine imino protons (Gim) in H2O and in 90% D2O show that below 20 degrees C spin-lattice relaxation is exclusively from proton-proton magnetic dipolar interactions while proton-nitrogen interactions contribute about 30% to the spin-spin relaxation. The observation that the spin-lattice relaxation is nonexponential and that the initial spin-lattice relaxation rate of the Gim, G-H8 and C-H6 protons depends on the selectivity of the exciting pulse shows that spin-diffusion dominates the spin-lattice relaxation. The relaxation rates of the Gim, C-H5, and C-H6 in B- and Z-form poly(dG-dC).poly(dG-dC) cannot be explained by assuming the DNA behaves as a rigid rod. The data can be fit by assuming large-amplitude out of plane motions (+/- 30-40 degrees, tau = 1-100 ns) and fast, large-amplitude local torsional motions (+/- 25-90 degrees, tau = 0.1-1.5 ns) in addition to collective torsional motions. The results for the B and Z forms show that the rapid internal motions are similar and large in both conformations although backbone motions are slightly slower, or of lower amplitude, in Z DNA. At high temperatures (greater than 60 degrees C), imino proton exchange with solvent dominates the spin-lattice relaxation of B-form poly(dG-dC).poly(dG-dC), but in the Z form no exchange contribution (less than 2 s-1) is observed at temperatures as high as 85 degrees C. Conformational fluctuations that expose the imino protons to the solvent are strikingly different in the B and Z forms. The results obtained here are compared with those previously reported for poly(dA-dT).poly(dA-dT).  相似文献   

16.
Goddard Y  Korb JP  Bryant RG 《Biopolymers》2007,86(2):148-154
The (1)H nuclear magnetic relaxation dispersion profiles were measured from 10 kHz to 30 MHz as a function of temperature for polyglycine, polyalanine, polyvaline, and polyphenylalanine to examine the contributions of different side chain motions to the polypeptide proton relaxation rate constants. The spin-fracton theory for (1)H relaxation is modified to account for high frequency motions of side chains that are dynamically connected to the linear polymer backbone. The (1)H relaxation is dominated by propagation of rare disturbances along the backbone of the polymer. The side-chain dynamics cause an off-set in the field dependence of the (1)H spin-lattice relaxation rate constants which obey a power law in the Larmor frequency in the limit of low and high magnetic field strength.  相似文献   

17.
Packing of cholesterol molecules in human low-density lipoprotein   总被引:3,自引:0,他引:3  
High-resolution, proton-decoupled 13C nuclear magnetic resonance spectra (90.55 MHz) of human low-density lipoprotein (LDL) have been employed to investigate the physical state of unesterified cholesterol molecules in this particle. Approximately half of the cholesterol molecules in LDL were replaced with [4-13C]cholesterol by exchange from Celite. About two-thirds of the cholesterol molecules contribute to a resonance at delta 41.8 from the C-4 atom. This signal is assigned to cholesterol molecules located at the surface of the LDL particle in a mixed monolayer with phospholipid molecules; the spin-lattice relaxation of the C-4 nucleus of such cholesterol molecules is enhanced by the presence of Mn2+ ions in the aqueous phase. The remaining one-third of the cholesterol molecules are apparently neither associated with phospholipid nor exposed to the aqueous phase; these cholesterol molecules are presumed to be located in the core of the particle. Cholesterol molecules in the two microenvironments are in slow exchange on the NMR time scale but in fast exchange on a biological time scale, so that the cholesterol molecules in LDL behave physiologically as one pool. There is a loss of about 20% of the intensity of the N(CH3)3 resonance from phosphatidylcholine and sphingomyelin molecules in the LDL spectrum; this is attributed to the presence of apolipoprotein B in the surface of LDL particles, which may immobilize some of the phospholipid polar groups. Spin-lattice relaxation time measurements suggest that the fast axial motions of cholesterol molecules in the surface of LDL are the same as in high-density lipoprotein (HDL).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The combined application of one- and two-dimensional high-field NMR techniques has led to the first assignment of the 1H, 13C, and 15N spectra of the pentadecapeptide gramicidin A in dimethylsulphoxide solution. The 62.9-MHz and 100.6-MHz 13C spin-lattice relaxation times and 13C-[1H] NOE factors for the backbone alpha carbons have been analysed in the 'model-free' approach to give a single correlation time (tau m) for isotropic overall molecular motion and an order parameter and internal correlation time for each C alpha H group in the backbone. The relatively high and constant values for the order parameter along the backbone indicate a degree of ordering of the structure, while the internal correlation times show that internal motions are progressively more rapid towards the N terminus. The average values of the vicinal HNC alpha H couplings are 7.4 Hz and 8.4 Hz respectively for the alternate L- and D-amino acid residues. The values are not consistent with either a ribbon conformation for the backbone or a right-handed beta 6.3 helix; they are consistent with the model proposed by Glickson et al. [Glickson, J. D., Mayers, D. F., Settine, J. M. & Urry, D. W. (1972) Biochemistry 11, 477-486] in which there is a rapid conformational order in equilibrium disorder equilibrium, the ordered structure being the left-handed beta 6.3 helix and the disordered state having local random-coil character.  相似文献   

19.
The carbon-13 nuclear magnetic resonance (13C NMR) spectra of luteinizing hormone-releasing hormone (LH-RH) and lower homologous peptides have been assigned in aqueous solutions at various pH values. 13C spin-lattice relaxation times (T1) have been measured for all proton-bearing carbons at 25.2 and 67.9 MHz. From the T1 data the rates of overall molecular motion and intramolecular motion of side chains have been estimated. LH-RH is a flexible molecule in solution, having segmental motion along the backbone as well as in the nonaromatic side chains.  相似文献   

20.
Structurally characterizing partially folded peptides is problematic given the nature of their transient conformational states. 13C-NMR relaxation data can provide information on the geometry of bond rotations, motional restrictions, and correlated bond rotations of the backbone and side chains and, therefore, is one approach that is useful to assess the presence of folded structure within a conformational ensemble. A peptide 12mer, R1GITVNG7KTYGR12, has been shown to partially fold in a relatively stable beta-hairpin conformation centered at NG. Here, five residues, G2, V5, G7, Y10, G11, were selectively 13C-enriched, and 13C-NMR relaxation experiments were performed to obtain auto- and cross-correlation motional order parameters, correlation times, bond rotation angular variances, and bond rotational correlation coefficients. Our results indicate that, of the three glycines, G7 within the hairpin beta-turn displays the most correlated phi(t),psi(t) rotations with its axis of rotation bisecting the angle defined by the H-C-H bonds. These positively correlated bond rotations give rise to "twisting" type motions of the HCH group. V5 and Y10 phi,psi bond rotations are also positively correlated, with their CbetaCalphaH groups undergoing similar "twisting" type motions. Motions of near-terminal residues G2 and G11 are less restricted and less correlated and are best described as wobbling-in-a-cone. V5 and Y10 side-chain motions, aside from being highly restricted, were found to be correlated with phi,psi bond rotations. At 303 K, where the hairpin is considered "unfolded," the peptide exists in a transient, collapsed state because backbone and side-chain motions of V5, G7, and Y10 remain relatively restricted, unlike their counterparts in GXG-based tripeptides. These results provide unique information toward understanding conformational variability in the unfolded state of proteins, which is necessary to solve the protein folding problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号