首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effects of contrasting light environments on the relationship between the host plant size of Poulsenia armata and the abundance of two gall midges in a tropical rain forest in Veracruz, Mexico. The number and density of two gall morphs (i.e., laminar and vein‐petiole galls) were positively correlated with plant size only in trees found in the forest but not in gaps. The availability of foliar area of P. armata trees was greater in forest gaps than in the forest. The foliar area was positively correlated with the abundance of laminar galls in trees in forest sites, but not with vein‐petiole galls. We concluded that the abundance of two morphs of gall midges on P. armata was associated with host plant size only in the forest trees. Larger plants had more galls than small plants, although this relationship was affected by local light environments.  相似文献   

2.
Abstract.  1. The relative importance of direct and indirect interactions in controlling organism abundance is still an unresolved question. This study investigated the role of the direct and indirect interactions involving ants, aphids, parasitoids, and the host plant Baccharis dracunculifolia (Asteraceae) on a galling herbivore Baccharopelma dracunculifoliae (Homoptera: Psyllidae).
2. The effects of these interactions on the galling herbivore's performance were evaluated by an exclusion experiment during two consecutive generations of the galling insect.
3. Ants had a direct negative effect on the performance of the galling herbivore by reducing the number of nymphs per gall. In contrast, ants had no indirect effects on gall mortality through the associated parasitoids.
4. Aphids negatively affected gall development, suggesting that galls and aphids might be partitioning photoassimilates and nutrients moving throughout host-plant tissues.
5. In addition, galls that developed during the rainy season were heavier, indicating that variation in the host plant, due to weather changes, can affect the development of B. dracunculifoliae galls. However, variation in the development of B. dracunculifoliae galls due to presence of aphids or the weather changes did not affect parasitoid attack.
6. These results suggest that direct interactions between ants and galls influenced galling insect abundance, whereas numerical indirect effects involving galling insects, ants, aphids, and host plants were less conspicuous.  相似文献   

3.
Galls are anomalies in plant development of parasitic origin that affect the cellular differentiation or growth and represent a remarkable plant–parasite interaction. Byrsonima sericea DC. (Malpighiaceae) is a super host of several different types of gall in both vegetative and reproductive organs. The existence of galls in reproductive organs and their effects on the host plant are seldom described in the literature. In this paper, we present a novel study of galls in plants of the Neotropical region: the ‘witches' broom’ galls developed in floral structures of B. sericea. The unaffected inflorescences are characterised by a single indeterminate main axis with spirally arranged flower buds. The flower buds developed five unaffected brownish hairy sepals and five pairs of elliptical yellow elaiophores, five yellow fringed petals, 10 stamens and a pistil with superior tricarpellar and trilocular ovary. The affected inflorescences showed changes in architecture, with branches arising from the main axis and flower buds. The flower buds exhibited several morphological and anatomical changes. The sepals, petals and carpels converted into leaf‐like structures after differentiation. Stamens exhibited degeneration of the sporogenous tissue and structures containing hyphae and spores. The gynoecium did not develop, forming a central meristematic region, from which emerges the new inflorescence. In this work, we discuss the several changes in development of reproductive structures caused by witches' broom galls and their effects on reproductive success of the host plants.  相似文献   

4.
Cynipid galls are examples of induced plant development, where the gall inducer is in control of cell differentiation and morphogenesis of a new plant organ. This study concentrates on the tissues of the larval chamber common to all cynipid galls. The protein content of the inner gall tissue was compared to that of non‐gall plant tissues. We investigated three oak and two rose galls and their respective host plants. Total protein signatures of inner gall tissues were different from those of non‐gall plant tissues, and among the five galls. N‐terminal sequences were obtained for two abundant proteins from the inner gall tissues of D. spinosa and A. quercuscalicis, which were common to all galls, at 62 and 43 kDa. Database queries suggest the 62 kDa protein to be homologous to a protein disulphide isomerase (PDI), and the 43 kDa protein to be homologous to NAD‐dependent formate dehydrogenase (FDH). A naturally biotinylated protein was detected at 33 kDa during Western analyses with streptavidin. Western analyses revealed the presence of the biotinylated protein and PDI in the inner gall tissues of all five galls, while FDH was only detected in A. quercuscalicis and A. fecundator. PDI was also common to all non‐gall tissues, while FDH was not detected in non‐gall tissues, and the biotinylated protein was only detected in seeds. The proteins identified in the inner gall tissue suggest that (a) inner gall tissues in some galls are under respiratory stress, and (b) cynipid gall formation might involve the ectopic expression of seed‐specific proteins.  相似文献   

5.
The diversity and abundance of gall‐inducing organisms are directly proportional to the structural complexity of the host plant. This hypothesis is controversial for forest environments, such as mangroves. Avicennia germinans (L.), a principal mangrove tree species found in the Neotropical region, is considered to be a superhost for gall‐inducing insects. Using a generalized linear mixed model (GLMM) based on the analysis of 1000 apical branches from 50 A. germinans trees, we examined the diversity and abundance of gall morphotypes (GM), together with the structural attributes of replanted 5‐ to 9‐year‐old mangroves, in the Amazon coast of Brazil. A total of 7602 galls were registered, averaging 1.3 ± 0.4 galls per leaf. Sixteen of the 22 morphotypes identified were found at all study sites. Two gall morphotypes (GM7 and GM4) were the most abundant, representing approximately 40 percent of the total. The structural complexity of the plant (mainly based on the number of leaves) directly affected the abundance and diversity of these organisms. While A. germinans is a superhost, this type of parasitism did not affect plant development or survival. The ample distribution of A. germinans, the formation of monospecific forests, and the high palatability of this plant make it an essential resource for the survival of the gall‐inducing guild in the mangroves of the Neotropics.  相似文献   

6.
A new genus Oxycephalomyia is described to contain the gall midge that was previously known as Asteralobia styraci (Shinji). Oxycephalomyia styraci, comb. nov., produces leaf vein galls on Styrax japonicus (Styracaceae). The adult of O. styraci is redescribed, and its full‐grown larva and pupa are described for the first time. The annual life cycle of the gall midge in northern Kyushu was clarified; the first instars overwinter in the galls on the host plant. However, the galls of O. styraci mature much later in the season than those of other gall midges with a similar life history pattern, and the durations of second and third larval instars are remarkably short. Such a life history pattern is considered to have an adaptive significance in avoiding larval parasitism, particularly by early attackers. The number of host axillary buds as oviposition sites decreased in bearing years and increased in off years, but there was no sign of oviposition site shortage even in bearing years, probably due to the low population density of the gall midge. An unidentified lepidopteran that feeds on galled and ungalled host buds and a Torymus sp. that attacks pupae of O. styraci were recognized as mortality factors of the gall midge.  相似文献   

7.
Different gall inducers belonging to distinct insect orders are rarely known to induce similarly shaped galls on the same host plant organs. We report that Asphondylia tojoi Elsayed & Tokuda sp. nov. (Diptera: Cecidomyiidae) and Ceratoneura sp. (Hymenoptera: Eulophidae) induce galls on leaf buds of Schoepfia jasminodora Sieb. et Zucc. (Schoepfiaceae). We describe the gall midge species as new to science and report a phylogenetic analysis for known Japanese Asphondylia species. We also describe life histories of the two species, based on monthly surveys during 2015–2017: although both species are multivoltine, A. tojoi overwinters as first instars in galls, whereas Ceratoneura sp. possibly does so as adults outside the galls. In addition, the internal structure of galls differed between the two species. Galls containing A. tojoi consist of a single chamber with inner walls clearly covered with whitish fungal mycelia after the gall midges develop into second instars. Those containing the Ceratoneura sp. have multiple chambers with hard black inner walls. Although some eulophids are known to be inquilines of galls induced by Asphondylia species, we consider that the Ceratoneura sp. is probably a true gall inducer because of the different gall structure and absence of fungal mycelia in their galls. This is the first report detailing the annual life history of a Ceratoneura species. Asphondylia tojoi represents the first example of monophagous Asphondylia species with a multivoltine life history on a deciduous tree.  相似文献   

8.
We examined how leaf galls, induced by the cynipid wasp Phanacis taraxaci, influence the partitioning of photoassimilates within the host, the common dandelion, Taraxacum officinale. Galled and ungalled plants were exposed to 14CO2 and the labelled photoassimilates accumulating within galls and other parts of the host were measured. During the growth phase of the gall they were physiological sinks for photoassimilates, accumulating 9% to 70% of total carbon produced by the host, depending upon the number of galls per plant. High levels of 14C assimilation in the leaves of galled plants compared to controls, suggest that galls actively redirect carbon resources from unattacked leaves of their host plant. This represents a significant drain on the carbon resources of the host, which increases with the number and size of galls per plant. Active assimilation of 14C by the gall is greatest in the growth phase and is several orders of magnitude lower in the maturation phase. This finding is consistent with physiological and anatomical changes that occur during the two phases of gall development and represents a key developmental strategy by cynipids to ensure adequate food resources before larval growth begins.  相似文献   

9.
Abstract 1. Immature stages of the gall midge, Asphondylia borrichiae, are attacked by four species of parasitoids, which vary in size and relative abundance within patches of the gall midge’s primary host plant, sea oxeye daisy (Borrichia frutescens). 2. In the current study, a bagging experiment found that the smallest wasp, Galeopsomyia haemon, was most abundant in galls exposed to natural enemies early in the experiment, when gall diameter is smallest, while the wasp with the longest ovipositor, Torymus umbilicatus, dominated the parasitoid community in galls that were not exposed until the 5th and 6th weeks when gall diameter is maximal. 3. Moreover, the mean number of parasitoids captured using large artificial galls were 70% and 150% higher compared with medium and small galls respectively, while stem height of artificial galls significantly affected parasitoid distribution. Galls that were level with the top of the sea oxeye canopy captured 60% more parasitoids compared with those below the canopy and 50% more than galls higher than the plant canopy. 4. These non‐random patterns were driven primarily by the differential distribution of the largest parasitoid, T. umbilicatus, which was found significantly more often than expected on large galls and the smallest parasitoid of the guild, G. haemon, which tended to be more common on stems level with the top of the plant canopy. 5. Large Asphondylia galls, especially those located near the top of the Borrichia canopy, were more likely to be discovered by searching parasitoids. Results using artificial galls were consistent with rates of parasitism of Asphondylia galls in native patches of sea oxeye daisy. Gall diameter was 19% greater and the rate of parasitism was reduced by almost 50% on short stems; as a result, gall abundance was 24% higher on short stems compared with ones located near the top of the plant canopy. 6. These results suggest that parasitoid community composition within galls is regulated by both interspecific differences in ovipositor length and preferences for specific gall size and/or stem length classes.  相似文献   

10.
Associational resistance mediated by natural enemies   总被引:1,自引:0,他引:1  
Abstract.  1. Associational resistance theory suggests that the association of herbivore-susceptible plant species with herbivore-resistant plant species can reduce herbivore density on the susceptible plant species. Several casual mechanisms are possible but none has so far invoked natural enemies. Associational resistance mediated by natural enemies was tested for by examining densities of a gall fly, Asphondylia borrichiae (Diptera: Cecidomyiidae), and levels of parasitism on two closely related seaside plants, Borrichia frutescens and Iva frutescens , when alone and when co-occurring.
2. Both Borrichia and Iva grow alone or together on small offshore islands in Florida. Each host plant species has its own associated race of fly, but both races of fly are attacked by the same four species of parasitoids. Borrichia normally has a higher density of galls than Iva , and galls are larger on Borrichia than on Iva .
3. Gall size, gall abundance, parasitism levels, and parasitoid community composition were quantified on both Borrichia and Iva on islands where each species grew alone or together. Some islands were then manipulated by adding Borrichia to islands supporting only Iva , and by adding Iva to islands supporting only Borrichia . Subsequent gall densities and gall parasitism levels on the original native species were then examined.
4. On both natural and experimentally manipulated islands, gall densities on Iva were significantly lowered by the presence of Borrichia . This is because bigger parasitoid species that were common on Borrichia galls, which are bigger, spilled over and attacked the smaller Iva galls. Thus, parasitism rates on Iva were higher on islands where Borrichia co-occurred than on islands where Borrichia were absent. Most parasitoids from Iva were too small to successfully attack the large Borrichia galls and so gall density on Borrichia was unaffected by the presence of Iva .  相似文献   

11.
In most gall-forming aphids, only the fundatrix is able to induce a gall on the host plant. In Smynthurodes betae Westw. (and a few other species), F2 descendants emerge from the mother gall and induce their own, morphologically different galls. This constitutes an added complexity to the already very complex life cycle of gall-forming aphids. We investigated the ecology of S. betae on marked trees and shoots at four sites in Israel. Gall initiation, gall distribution and density, and temporal changes in clone size within the galls were investigated during two consecutive years. We discuss the possibility that the two-gall life cycle evolved from the typical one-gall system of most gall aphids, and the possible selective advantage of this added complexity in the life-history strategy of gall aphids. Although the total reproductive output of S. betae is not higher than in related species with a single gall per life cycle, there seems to be an advantage in the subdivision of each aphid clone into several galls, thus reducing the risk of the accidental extinction of the clone (genotype) by environmental factors, including parasites and predators.  相似文献   

12.
猕猴桃属植物Actinidia spp,自然分布于中国的亚热带地区。对萼猕猴桃A.valvata的花芽受Pseudasphond ylia 瘿蚊属一未知种的寄生而形成花芽虫瘿,这种花芽瘿由于近年来在制药工业上的应用而受到重视。在中国中南地区研究对萼猕猴桃—瘿蚊的相互关系过程中,我们的记载表明该造瘿昆虫在一定情形下可能改变其寄主植物的雌雄异株之生殖模式。野外调查与实验证明寄主植物受寄生而形成虫瘿的比例很高。但虫瘿密度却于不同沟谷间,或同一沟谷内不同植株间有异。在二条沟谷内,92%和75%植株分别被寄生,而在第3条沟谷内没有植株受寄生。受寄生的雄性植株只产生虫瘿,而受寄生的雌性植株则产生正常果与虫瘿。有迹象显示当寄主植株有虫瘿形成时其正常果数量也更多。作者认为这可能是昆虫诱导功能上雌雄异株植物形成雄性异株雌雄同株之生殖模式的少数例子  相似文献   

13.
The putative mutualism between different host-specific Fergusobia nematodes and Fergusonina flies is manifested in a variety of gall types involving shoot or inflorescence buds, individual flower buds, stems, or young leaves in the plant family Myrtaceae. Different types of galls in the early-to-middle stages of development, with host-specific species of Fergusobia/Fergusonina, were collected from Australian members of the subfamily Leptospermoideae (six species of Eucalyptus, two species of Corymbia, and seven species of broad-leaved Melaleuca). Galls were sectioned and histologically examined to assess morphological changes induced by nematode/fly mutualism. The different gall forms were characterized into four broad categories: (i) individual flower bud, (ii) terminal and axial bud, (iii) ''basal rosette'' stem, and (iv) flat leaf. Gall morphology in all four types appeared to result from species-specific selection of the oviposition site and timing and number of eggs deposited in a particular plant host. In all cases, early parasitism by Fergusobia/Fergusonina involved several layers of uninucleate, hypertrophied cells lining the lumen of each locule (gall chamber where each fly larva and accompanying nematodes develop). Hypertrophied cells in galls were larger than normal epidermal cells, and each had an enlarged nucleus, nucleolus, and granular cytoplasm that resembled shoot bud gall cells induced by nematodes in the Anguinidae.  相似文献   

14.
Complex interactions within multitrophic communities are fundamental to the evolution of individual species that reside within them. One common outcome of species interactions are fitness trade‐offs, where traits adaptive in some circumstances are maladaptive in others. Here, we identify a fitness trade‐off between fecundity and survival in the cynipid wasp Callirhytis quercusbatatoides that induces multichambered galls on the stem of its host plant Quercus virginiana. We first quantified this trade‐off in natural populations by documenting two relationships: a positive association between the trait gall size and fecundity, as larger galls contain more offspring, and a negative association between gall size and survival, as larger galls are attacked by birds at a higher rate. Next, we performed a field‐based experimental evolution study where birds were excluded from the entire canopy of 11 large host trees for five years. As a result of the five‐year release from avian predators, we observed a significant shift to larger galls per tree. Overall, our study demonstrates how two opposing forces of selection can generate stabilizing selection on a critical phenotypic trait in wild populations, and how traits can evolve rapidly in the predicted direction when conditions change.  相似文献   

15.
Abstract Currently there is no single accepted hypothesis to explain gall‐forming insect species richness at a particular locality. Hygrothermal stress, soil nutrient availability, plant species richness, plant structural complexity, plant family or genus size, and host plant geographical range size have all been implicated in the determination of gall‐forming insect species richness. Previous studies of such richness at xeric sites have included predominantly scleromorphic vegetation, usually on nutrient‐poor soils. This study is the first to investigate gall‐forming insect species richness of xeric, non‐scleromorphic vegetation. Two habitat types were sampled at each of five localities across a rainfall gradient in the savanna biome of South Africa. The habitat types differed with respect to plant species composition and topography. Gall‐forming insect species richness did not increase with increasing hygrothermal stress or decreasing soil fertility. Rather, gall‐forming insect species richness was largely dependent on the presence of Terminalia sericea as well as other members of the Combretaceae and Mimosaceae. Plots where all these taxa were present had the highest gall‐forming insect species richness, up to 15 species, whereas plots with none of these taxa had a maximum of four galling‐insect species. Despite herb, shrub and tree strata not differing in gall‐forming insect species richness, insect galls were more common on woody than non‐woody plants. Also, stem galls were more frequent than apical or leaf galls. An alternative hypothesis to explain local gall‐forming insect species richness is suggested: galling insects may preferentially select those plant species with characteristics such as chemical toxicity, mechanical strength, degree of lignification or longevity that can be manipulated to benefit the galler. Thus plant community composition should be considered when attempting to explain gall‐forming insect species richness patterns.  相似文献   

16.
We tested the Plant Vigor Hypothesis by determining the distribution of galls formed on leaves of witch hazel, Hamamelis virginiana , by the aphid Hormaphis hamamelidis , and by determining various factors that affect the fecundity of the gall-forming fundatrices. We also studied the role of the fundatrix in host plant manipulation. While the mean number of galls per leaf was low, galls had an aggregated distribution among leaves. Among trees, the average number of galls per leaf was not related to the mean leaf size, contrary to the preference prediction of the Plant Vigor Hypothesis. While fundatrices preferred the distal leaves of buds, which grew more than the proximal leaves, being on distal leaves conferred no increase in fecundity for fundatrices, contrary to predictions of the Plant Vigor Hypothesis. Gall size was the factor that explained the largest proportion of variation in fundatrix fecundity; fundatrix size explained somewhat less of the variation. Also, gall position on the leaf, number of aphid galls on the leaf, and on which leaf of the bud the gall was located all played small, statistically significant roles in explaining fundatrix fecundity, but their effects were variable between experiments. Removal of fundatrices shortly after galls had enclosed them limited the growth of galls, indicating the role of the fundatrices in gall growth. We compare and contrast this system versus other gall-forming insects, as well as discuss the adaptive significance of the aphid manipulation of the host plant. Much of the data contradict predictions of the Plant Vigor Hypothesis, and we discuss how gall size, as a measure of plant growth caused by insect manipulation, explains the observed patterns.  相似文献   

17.
We used a combination of morphometric, phylogenetic, and life-history information to analyze the evolution and possible adaptive significance of gall morphology in a clade of 24 species of gall-inducing thrips (Insecta: Thysanoptera) on Australian Acacia trees. Principal components analysis revealed that galls varied in morphology along two main axes, spherical versus elongate (PC1) and general size (PC2). A high degree of conservation of gall shape on an independently derived phylogeny of the insects and the presence of nine species of Acacia each bearing two or three morphologically disparate gall forms induced by different thrips species indicate that interspecific variation in gall form is determined predominantly by the insects. Character optimization of PC1 on the phylogeny of gall thrips suggested that the ancestral gall form was a simple roll or curl. The diversification of gall form involved four main processes: (1) the convergent evolution of relatively spherical galls in two clades; (2) the evolution of small elongate and hemispherical galls in one clade; (3) the evolution of a lobed interior in a species with a spherical gall and multiple within-gall generations; and (4) the evolution of intraspecific gall polymorphism in a clade of apparent sibling species. Comparative analyses indicated that gall sphericity was associated with the presence of physogastry (foundress hyperfecundity) and that small elongate and hemispherical forms may be associated with the presence of multiple generations in a gall and, perhaps, with the presence of soldier castes. The evolution of a lobed interior in one species, which greatly increases inner surface area, coincided with the evolution of multiple generations. In the clade with intraspecific gall polymorphism in some species, patterns of intraspecific variation mirror patterns of interspecific variation within the clade as a whole. This is the first study to analyze the evolution of gall size and shape in a phylogenetic context and to investigate the life-history correlates of evolutionary changes in gall form. Taken together, our findings indicate that the main selective pressures driving the evolution of gall form in Australian gall thrips on Acacia involve inner surface area to volume relationships, which change in concert with foundress fecundity and the number of within-gall generations.  相似文献   

18.
Abstract Kiwifruit plants, Actinidia sp., are native to subtropical China. The flower-bud gall of A. valvata, which is induced by an undescribed gall midge in the genus Pseud as phond ylia, is valued by the pharmaceutical industry. When studying the biology of the Actinid ia/Pseud as phond ylia interaction in Central-south China we found evidence suggesting that under certain circumstances the gall insect modifies the reproductive mode of the dioecious host plant. Surveys and field experiments in the National Hupingshan Natural Reserve showed a high frequency of galled trees. The density of galled trees varied among valleys and among trees within the valleys. In two valleys, 92% and 75%, respectively, of all trees were attacked, while in a third valley no trees were attacked. When infested, staminate tree only produced galls, whereas pistillate plants produced normal fruits as well as galls. Gall shape differed between male and female trees. Trees with galls tended to produce more fruits than treea without galls. We speculate that this is one of a few documented examples of an insect that induces androdioecy in an otherwise functionally dioecious plant.  相似文献   

19.
刺桐姬小蜂发生习性及其虫瘿形成分析   总被引:10,自引:0,他引:10  
刺桐姬小蜂Quadrastichus erythrinaeKim是新发现的重要入侵害虫,在广东省深圳地区普遍发生且危害严重,受害植株超过10000株。寄主按受害程度依次为:杂色刺桐Erythrina variegata、金脉刺桐E.variegatevar.orientialis、鸡冠刺桐E.cristagalli和龙牙花E.corallodendron。移栽2年内的刺桐树受害严重。根据虫瘿形状,将其分为球形虫瘿、卷叶形虫瘿、肥厚叶虫瘿、分散虫瘿、粗柄形虫瘿、嫩枝肿大虫瘿、花蕾肿大虫瘿并对其形成过程进行分析。首次报道了刺桐姬小蜂为害鸡冠刺桐花蕾。刺桐姬小蜂在深圳无休眠和滞育现象,常年发生。  相似文献   

20.
Understanding factors that modulate plant development is still a challenging task in plant biology. Although research has highlighted the role of abiotic and biotic factors in determining final plant structure, we know little of how these factors combine to produce specific developmental patterns. Here, we studied patterns of cell and tissue organisation in galled and non‐galled organs of Baccharis reticularia, a Neotropical shrub that hosts over ten species of galling insects. We employed qualitative and quantitative approaches to understand patterns of growth and differentiation in its four most abundant gall morphotypes. We compared two leaf galls induced by sap‐sucking Hemiptera and stem galls induced by a Lepidopteran and a Dipteran, Cecidomyiidae. The hypotheses tested were: (i) the more complex the galls, the more distinct they are from their non‐galled host; (ii) galls induced on less plastic host organs, e.g. stems, develop under more morphogenetic constraints and, therefore, should be more similar among themselves than galls induced on more plastic organs. We also evaluated the plant sex preference of gall‐inducing insects for oviposition. Simple galls were qualitative and quantitatively more similar to non‐galled organs than complex galls, thereby supporting the first hypothesis. Unexpectedly, stem galls had more similarities between them than to their host organ, hence only partially supporting the second hypothesis. Similarity among stem galls may be caused by the restrictive pattern of host stems. The opposite trend was observed for host leaves, which generate either similar or distinct gall morphotypes due to their higher phenotypic plasticity. The Relative Distance of Plasticity Index for non‐galled stems and stem galls ranged from 0.02 to 0.42. Our results strongly suggest that both tissue plasticity and gall inducer identity interact to determine plant developmental patterns, and therefore, final gall structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号