首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
We tested toxins of Bacillus thuringiensis against larvae from susceptible, Cry1C-resistant, and Cry1A-resistant strains of diamondback moth (Plutella xylostella). The Cry1C-resistant strain, which was derived from a field population that had evolved resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai, was selected repeatedly with Cry1C in the laboratory. The Cry1C-resistant strain had strong cross-resistance to Cry1Ab, Cry1Ac, and Cry1F, low to moderate cross-resistance to Cry1Aa and Cry9Ca, and no cross-resistance to Cry1Bb, Cry1Ja, and Cry2A. Resistance to Cry1C declined when selection was relaxed. Together with previously reported data, the new data on the cross-resistance of a Cry1C-resistant strain reported here suggest that resistance to Cry1A and Cry1C toxins confers little or no cross-resistance to Cry1Bb, Cry2Aa, or Cry9Ca. Therefore, these toxins might be useful in rotations or combinations with Cry1A and Cry1C toxins. Cry9Ca was much more potent than Cry1Bb or Cry2Aa and thus might be especially useful against diamondback moth.  相似文献   

2.
Yu J  Xie R  Tan L  Xu W  Zeng S  Chen J  Tang M  Pang Y 《Current microbiology》2002,45(2):133-138
Bacillus thuringiensis produces a 130–135-kDa insecticidal protein in the form of bipyramidal crystal which is toxic to lepidopteran larvae. Part of the C-terminal region of the native Cry1Ab was replaced by a heterologous sequence of Cry11Aa C-terminus to get a 3′-spliced cry1Ab gene. The full-length cry1Ab and 3′-spliced cry1Ab, which were both cloned into the E. coli–B. thuringiensis shuttle expression vector pHZB1, were expressed in a 135-kDa crystal protein minus derivative of B. thuringiensis subsp. kyushuensis (4U1-Cry−135). The crystal shape of Cry1Ab proteins from both recombinants was regularly bipyramidal, while the crystal size of the intact Cry1Ab was approximately fivefold larger than the 3′-spliced Cry1Ab. In addition, these two kinds of Cry1Ab proteins had similar toxicity against Argyrogramma agnata larvae. Received: 19 October 2001 / Accepted: 7 December 2001  相似文献   

3.
Assessment of protoxin composition in Bacillus thuringiensis parasporal crystals is principally hampered by the fact that protoxins in a single strain usually possess high sequence homology. Therefore, new strategies towards the identification of protoxins have been developed. Here, we established a powerful method through embedding solubilized protoxins in a polyacrylamide gel block coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of in-gel-generated peptides for protoxin identification. Our model study revealed that four protoxins (Cry1Aa, Cry1Ab, Cry1Ac and Cry2Aa) and six protoxins (Cry4Aa, Cry4Ba, Cry10Aa, Cry11Aa, Cyt1Aa, and Cyt2Ba) could be rapidly identified from B. thuringiensis subsp. kurstaki HD1 and subsp. israelensis 4Q2-72, respectively. The experimental results indicated that our method is a straightforward tool for analyzing protoxin expression profile in B. thuringiensis strains. Given its technical simplicity and sensitivity, our method might facilitate the present screening program for B. thuringiensis strains with new insecticidal properties. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Zujiao Fu and Yunjun Sun contributed equally to this work.  相似文献   

4.
The influence of Bacillus thuringiensis subsp. kurstaki HD-1 spores upon the toxicity of purified Cry1Ab and Cry1C crystal proteins toward susceptible and BT-resistant Indianmeal moth (IMM, Plodia interpunctella) larvae was investigated. With susceptible larvae, HD-1 spores were toxic in the absence of crystal protein and highly synergistic (approximately 35- to 50-fold) with either Cry1Ab or Cry1C protein. With BT-resistant IMM larvae, HD-1 spores were synergistic with Cry1Ab and Cry1C protein in all three resistant strains examined. Synergism was highest (approximately 25- to 44-fold) in insects with primary resistance toward Cry1C (IMM larvae with resistance to B. thuringiensis subsp. aizawai or entomocidus). However, HD-1 spores also synergized either Cry1Ab or Cry1C toxicity toward larvae resistant to B. thuringiensis subsp. kurstaki at a lower level (approximately five- to sixfold). With susceptible larvae, the presence of spores reduced the time of death when combined with each of the purified Cry proteins. Without spores, the speed of intoxication and eventual death for larvae treated with Cry1C and Cry1Ab proteins was much slower than for the HD-1 preparation containing both spores and crystals together. Neither spores nor toxin dose affected the mean time of death of resistant larvae treated with either Cry1Ab or Cry1C toxins. Both Cry1Ab and Cry1C toxins appeared to reduce feeding and consequently toxin consumption. Received: 1 December 1995 / Accepted: 3 January 1996  相似文献   

5.
Insecticidal crystal proteins from Bacillus thuringiensis in sprays and transgenic crops are extremely useful for environmentally sound pest management, but their long-term efficacy is threatened by evolution of resistance by target pests. The diamondback moth (Plutella xylostella) is the first insect to evolve resistance to B. thuringiensis in open-field populations. The only known mechanism of resistance to B. thuringiensis in the diamondback moth is reduced binding of toxin to midgut binding sites. In the present work we analyzed competitive binding of B. thuringiensis toxins Cry1Aa, Cry1Ab, Cry1Ac, and Cry1F to brush border membrane vesicles from larval midguts in a susceptible strain and in resistant strains from the Philippines, Hawaii, and Pennsylvania. Based on the results, we propose a model for binding of B. thuringiensis crystal proteins in susceptible larvae with two binding sites for Cry1Aa, one of which is shared with Cry1Ab, Cry1Ac, and Cry1F. Our results show that the common binding site is altered in each of the three resistant strains. In the strain from the Philippines, the alteration reduced binding of Cry1Ab but did not affect binding of the other crystal proteins. In the resistant strains from Hawaii and Pennsylvania, the alteration affected binding of Cry1Aa, Cry1Ab, Cry1Ac, and Cry1F. Previously reported evidence that a single mutation can confer resistance to Cry1Ab, Cry1Ac, and Cry1F corresponds to expectations based on the binding model. However, the following two other observations do not: the mutation in the Philippines strain affected binding of only Cry1Ab, and one mutation was sufficient for resistance to Cry1Aa. The imperfect correspondence between the model and observations suggests that reduced binding is not the only mechanism of resistance in the diamondback moth and that some, but not all, patterns of resistance and cross-resistance can be predicted correctly from the results of competitive binding analyses of susceptible strains.  相似文献   

6.
Bacillus thuringiensis subsp. israelensis is a bioinsecticide increasingly used worldwide for mosquito control. Despite its apparent low level of persistence in the field due to the rapid loss of its insecticidal activity, an increasing number of studies suggested that the recycling of B. thuringiensis subsp. israelensis can occur under specific, unknown conditions. Decaying leaf litters sampled in mosquito breeding sites in the French Rhône-Alpes region several months after a treatment were shown to exhibit a high level of larval toxicity and contained large amounts of spores. In the present article, we show that the high concentration of toxins found in these litters is consistent with spore recycling in the field, which gave rise to the production of new crystal toxins. Furthermore, in these toxic leaf litter samples, Cry4Aa and Cry4Ba toxins became the major toxins instead of Cyt1Aa in the commercial mixture. In a microcosm experiment performed in the laboratory, we also demonstrated that the toxins, when added in their crystal form to nontoxic leaf litter, exhibited patterns of differential persistence consistent with the proportions of toxins observed in the field-collected toxic leaf litter samples (Cry4 > Cry11 > Cyt). These results give strong evidence that B. thuringiensis subsp. israelensis recycled in specific breeding sites containing leaf litters, and one would be justified in asking whether mosquitoes can become resistant when exposed to field-persistent B. thuringiensis subsp. israelensis for several generations.  相似文献   

7.
8.
Bacillus thuringiensis serovar israelensis (B. thuringiensis subsp. israelensis) produces four insecticidal crystal proteins (ICPs) (Cry4A, Cry4B, Cry11A, and Cyt1A). Toxicity of recombinant B. thuringiensis subsp. israelensis strains expressing only one of the toxins was determined with first instars of Tipula paludosa (Diptera: Nematocera). Cyt1A was the most toxic protein, whereas Cry4A, Cry4B, and Cry11A were virtually nontoxic. Synergistic effects were recorded when Cry4A and/or Cry4B was combined with Cyt1A but not with Cry11A. The binding and pore formation are key steps in the mode of action of B. thuringiensis subsp. israelensis ICPs. Binding and pore-forming activity of Cry11Aa, which is the most toxic protein against mosquitoes, and Cyt1Aa to brush border membrane vesicles (BBMVs) of T. paludosa were analyzed. Solubilization of Cry11Aa resulted in two fragments, with apparent molecular masses of 32 and 36 kDa. No binding of the 36-kDa fragment to T. paludosa BBMVs was detected, whereas the 32-kDa fragment bound to T. paludosa BBMVs. Only a partial reduction of binding of this fragment was observed in competition experiments, indicating a low specificity of the binding. In contrast to results for mosquitoes, the Cyt1Aa protein bound specifically to the BBMVs of T. paludosa, suggesting an insecticidal mechanism based on a receptor-mediated action, as described for Cry proteins. Cry11Aa and Cyt1Aa toxins were both able to produce pores in T. paludosa BBMVs. Protease treatment with trypsin and proteinase K, previously reported to activate Cry11Aa and Cyt1Aa toxins, respectively, had the opposite effect. A higher efficiency in pore formation was observed when Cyt1A was proteinase K treated, while the activity of trypsin-treated Cry11Aa was reduced. Results on binding and pore formation are consistent with results on ICP toxicity and synergistic effect with Cyt1Aa in T. paludosa.  相似文献   

9.
Crystal proteins from Bacillus thuringiensis subsp. thompsoni strain HnC are active against the codling moth, Cydia pomonella, a major pest of orchards. Inclusion bodies purified from strain HnC displayed an LC50 of 3.34 × 10−3μg/μl. HnC-purified crystals were tenfold more active than Cry2Aa and Cry1Aa toxins, and 100-fold more toxic than Cry1Ab. The 34-kDa and 40-kDa proteins contained in HnC inclusion bodies were shown to act synergistically. The toxicity of crystal proteins produced by the recombinant B. thuringiensis strain BT-OP expressing the full-length native operon was about tenfold higher than that of the 34-kDa protein. When the gene encoding the non-insecticidal 40-kDa protein, which is not active, was introduced into the recombinant strain producing only the 34-kDa protein, the toxicity was raised tenfold and was similar to that of the strain BT-OP. Received: 25 August 1999 / Accepted: 5 October 1999  相似文献   

10.
A Brazilian Bacillus thuringiensis subspecies israelensis, toxic to Diptera, including mosquitoes, was found also to show toxicity to the coleopteran boll weevil Anthonomus grandis Boheman at an equivalent level to that of the standard coleopteran-active B. thuringiensis subspecies tenebrionis T08017. Recombinant B. thuringiensis strains expressing the individual Cyt1Aa, Cry4Aa, Cry4Ba and Cry11Aa toxins from this strain were assessed to evaluate their potential contribution to the activity against A. grandis, either alone or in combination. Whilst individual toxins produced mortality, none was sufficiently potent to allow calculation of LC50 values. Combinations of toxins were unable to attain the same potency as the parental B. thuringiensis subsp. israelensis, suggesting a major role for other factors produced by this strain.  相似文献   

11.
So far, the only insect that has evolved resistance in the field to Bacillus thuringiensis toxins is the diamondback moth (Plutella xylostella). Documentation and analysis of resistant strains rely on comparisons with laboratory strains that have not been exposed to B. thuringiensis toxins. Previously published reports show considerable variation among laboratories in responses of unselected laboratory strains to B. thuringiensis toxins. Because different laboratories have used different unselected strains, such variation could be caused by differences in bioassay methods among laboratories, genetic differences among unselected strains, or both. Here we tested three unselected strains against five B. thuringiensis toxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ca, and Cry1Da) using two bioassay methods. Tests of the LAB-V strain from The Netherlands in different laboratories using different bioassay methods yielded only minor differences in results. In contrast, side-by-side comparisons revealed major genetic differences in susceptibility between strains. Compared with the LAB-V strain, the ROTH strain from England was 17- to 170-fold more susceptible to Cry1Aa and Cry1Ac, respectively, whereas the LAB-PS strain from Hawaii was 8-fold more susceptible to Cry1Ab and 13-fold more susceptible to Cry1Da and did not differ significantly from the LAB-V strain in response to Cry1Aa, Cry1Ac, or Cry1Ca. The relative potencies of toxins were similar among LAB-V, ROTH, and LAB-PS, with Cry1Ab and Cry1Ac being most toxic and Cry1Da being least toxic. Therefore, before choosing a standard reference strain upon which to base comparisons, it is highly advisable to perform an analysis of variation in susceptibility among field and laboratory populations.  相似文献   

12.
A 2,175-bp modified gene (cry11Ba-S1) encoding Cry11Ba from Bacillus thuringiensis subsp. jegathesan was designed and the recombinant protein was expressed as a fusion protein with glutathione S-transferase in Escherichia coli. The recombinant Cry11Ba was highly toxic against Culex pipiens mosquito larvae, being nine and 17 times more toxic than mosquitocidal Cry4Aa and Cry11Aa from Bacillus thuringiensis subsp. israelensis, respectively. Interestingly, a further increase in the toxicity of the recombinant Cry11Ba was achieved by mixing with Cry4Aa, but not with Cry11Aa. These findings suggested that Cry11Ba worked synergistically with Cry4Aa, but not with Cry11Aa, in exhibiting toxicity against C. pipiens larvae. On the other hand, the amount of Cry toxin bound to brush border membrane vesicles (BBMVs) did not significantly change between individual toxins and the toxin mixtures, suggesting that the increase in toxins binding to BBMVs was not a reason for the observed synergistic effect. It is generally accepted that synergism of toxins is a potentially powerful tool for enhancing insecticidal activity and managing Cry toxin resistance in mosquitoes. The mixture of Cry4Aa and Cry11Ba in order to increase toxicity would be very valuable in terms of mosquito control.  相似文献   

13.
A Cry46Ab toxin derived from Bacillus thuringiensis strain TK-E6 shows mosquitocidal activity against Culex pipiens pallens Coquillett (Diptera: Culicidae) larvae as well as preferential cytotoxicity against human cancer cells. In B. thuringiensis cells, Cry46Ab is produced and accumulates as a protein crystal that is processed into the active 29-kDa toxin upon solubilization in the alkaline environment of the insect midgut. The Cry46Ab protoxin is 30 kDa, and is therefore thought to require an accessory protein such as P20 and/or ORF2 for efficient crystal formation. In the present study, the potency of the 4AaCter-tag was investigated for the production of alkali-soluble inclusion bodies of recombinant Cry46Ab in Escherichia coli. The 4AaCter-tag is a polypeptide derived from the C-terminal region of the B. thuringiensis Cry4Aa toxin and facilitates the formation of alkali-soluble protein inclusion bodies in E. coli. Fusion with the 4AaCter-tag enhanced both Cry46Ab production and the formation of Cry46Ab inclusion bodies. In addition, upon optimization of protein expression procedures, the Cry46Ab–4AaCter inclusion bodies showed mosquitocidal activity and stability in aqueous environments comparable to Cry46Ab without the 4AaCter-tag. Our study suggests that use of the 4AaCter-tag is a straightforward approach for preparing formulations of smaller-sized Cry toxins such as Cry46Ab in E. coli.  相似文献   

14.
Culex quinquefasciatus mosquito larvae resistant to the Cry11A toxin showed marginal cross-resistance to the multiple toxin crystals from B. thuringiensis subsp. israelensis and also to toxin crystals from three other mosquitocidal strains, i.e. B. thuringiensis subsp. fukuokaensis, subsp. jegathesan, and subsp. kyushuensis. Cross-resistance patterns of the Cry11A-resistant larvae to mosquitocidal strains of B. thuringiensis together with the immunological screening using antisera raised against Cry11A indicated the presence of Cry11A-like toxins in these strains and could be used as a screening tool for the identification of novel toxins. The Cry11A-resistant larvae had significantly less resistance to the Cry11B toxin from B. thuringiensis subsp. jegathesan. The occurrence of cytolytic toxins in all of these mosquitocidal strains partially explains the marginal cross-resistance observed with multiple toxin crystals since each of these crystals also contains cytolytic toxins.  相似文献   

15.
The potential of Bacillus thuringiensis Cry proteins to control the grape pest Lobesia botrana was explored by testing first-instar larvae with Cry proteins belonging to the Cry1, Cry2, and Cry9 groups selected for their documented activities against Lepidoptera. Cry9Ca, a toxin from B. thuringiensis, was the protein most toxic to L. botrana larvae, followed in decreasing order by Cry2Ab, Cry1Ab, Cry2Aa, and Cry1Ia7, with 50% lethal concentration values of 0.09, 0.1, 1.4, 3.2, and 8.5 μg/ml of diet, respectively. In contrast, Cry1Fa and Cry1JA were not active at the assayed concentration (100 μg/ml). In vitro binding and competition experiments showed that none of the toxins tested (Cry1Ia, Cry2Aa, Cry2Ab, and Cry9C) shared binding sites with Cry1Ab. We conclude that either Cry1Ia or Cry9C could be used in combination with Cry1Ab to control this pest, either as the active components of B. thuringiensis sprays or expressed together in transgenic plants.  相似文献   

16.
Crops genetically engineered to produce Bacillus thuringiensis toxins for insect control can reduce use of conventional insecticides, but insect resistance could limit the success of this technology. The first generation of transgenic cotton with B. thuringiensis produces a single toxin, Cry1Ac, that is highly effective against susceptible larvae of pink bollworm (Pectinophora gossypiella), a major cotton pest. To counter potential problems with resistance, second-generation transgenic cotton that produces B. thuringiensis toxin Cry2Ab alone or in combination with Cry1Ac has been developed. In greenhouse bioassays, a pink bollworm strain selected in the laboratory for resistance to Cry1Ac survived equally well on transgenic cotton with Cry1Ac and on cotton without Cry1Ac. In contrast, Cry1Ac-resistant pink bollworm had little or no survival on second-generation transgenic cotton with Cry2Ab alone or with Cry1Ac plus Cry2Ab. Artificial diet bioassays showed that resistance to Cry1Ac did not confer strong cross-resistance to Cry2Aa. Strains with >90% larval survival on diet with 10 μg of Cry1Ac per ml showed 0% survival on diet with 3.2 or 10 μg of Cry2Aa per ml. However, the average survival of larvae fed a diet with 1 μg of Cry2Aa per ml was higher for Cry1Ac-resistant strains (2 to 10%) than for susceptible strains (0%). If plants with Cry1Ac plus Cry2Ab are deployed while genes that confer resistance to each of these toxins are rare, and if the inheritance of resistance to both toxins is recessive, the efficacy of transgenic cotton might be greatly extended.  相似文献   

17.
Baseline susceptibility of Plutella xylostella, Crocidolomia binotalis and Hellula undalis to Bacillus thuringiensis (B.t.) δ-endotoxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ca) and a formulation (Xentari®) was assessed using a leaf-dip bioassay method. The toxins Cry1Ac, Cry1Aa and Cry1Ca were equally toxic to P. xylostella. Crocidolomia binotalis was highly susceptible to all Cry1A toxins and it was least sensitive to Cry1Ca. Conversely, H. undalis was highly sensitive to Cry1Ca, but less susceptible to Cry1A toxins. Hence, the susceptibility of H. undalis to Xentari®, a formulation containing Cry1C as a major toxin, was significantly higher than C. binotalis or P. xylostella.  相似文献   

18.
One strategy for delaying evolution of resistance to Bacillus thuringiensis crystal (Cry) endotoxins is the production of multiple Cry toxins in each transgenic plant (gene stacking). This strategy relies upon the assumption that simultaneous evolution of resistance to toxins that have different modes of action will be difficult for insect pests. In B. thuringiensis-transgenic (Bt) cotton, production of both Cry1Ac and Cry2Ab has been proposed to delay resistance of Heliothis virescens (tobacco budworm). After previous laboratory selection with Cry1Ac, H. virescens strains CXC and KCBhyb developed high levels of cross-resistance not only to toxins similar to Cry1Ac but also to Cry2Aa. We studied the role of toxin binding alteration in resistance and cross-resistance with the CXC and KCBhyb strains. In toxin binding experiments, Cry1A and Cry2Aa toxins bound to brush border membrane vesicles from CXC, but binding of Cry1Aa was reduced for the KCBhyb strain compared to susceptible insects. Since Cry1Aa and Cry2Aa do not share binding proteins in H. virescens, our results suggest occurrence of at least two mechanisms of resistance in KCBhyb insects, one of them related to reduction of Cry1Aa toxin binding. Cry1Ac bound irreversibly to brush border membrane vesicles (BBMV) from YDK, CXC, and KCBhyb larvae, suggesting that Cry1Ac insertion was unaffected. These results highlight the genetic potential of H. virescens to become resistant to distinct Cry toxins simultaneously and may question the effectiveness of gene stacking in delaying evolution of resistance.  相似文献   

19.
Theoretically, the activity of AB-type toxin molecules such as the insecticidal toxin (Cry toxin) from B. thuringiensis, which have one active site and two binding site, is improved in parallel with the binding affinity to its receptor. In this experiment, we tried to devise a method for the directed evolution of Cry toxins to increase the binding affinity to the insect receptor. Using a commercial T7 phage-display system, we expressed Cry1Aa toxin on the phage surface as fusions with the capsid protein 10B. These recombinant phages bound to a cadherin-like protein that is one of the Cry1Aa toxin receptors in the model target insect Bombyx mori. The apparent affinity of Cry1Aa-expressing phage for the receptor was higher than that of Cry1Ab-expressing phage. Phages expressing Cry1Aa were isolated from a mixed suspension of phages expressing Cry1Ab and concentrated by up to 130,000-fold. Finally, random mutations were made in amino acid residues 369–375 in domain 2 of Cry1Aa toxin, the mutant toxins were expressed on phages, and the resulting phage library was screened with cadherin-like protein-coated beads. As a result, phages expressing abnormal or low-affinity mutant toxins were excluded, and phages with high-affinity mutant toxins were selected. These results indicate that a method combining T7 phage display with selection using cadherin-like protein-coated magnetic beads can be used to increase the activity of easily obtained, low-activity Cry toxins from bacteria.  相似文献   

20.
Bacillus thuringiensis subsp. israelensis (Bti) produces at least four different crystal proteins that are specifically toxic to different mosquito species and that belong to two non-related family of toxins, Cry and Cyt named Cry4Aa, Cry4Ba, Cry11Aa and Cyt1Aa. Cyt1Aa enhances the activity of Cry4Aa, Cry4Ba or Cry11Aa and overcomes resistance of Culex quinquefasciatus populations resistant to Cry11Aa, Cry4Aa or Cry4Ba. Cyt1Aa synergized Cry11Aa by their specific interaction since single point mutants on both Cyt1Aa and Cry11Aa that affected their binding interaction affected their synergistic insecticidal activity. In this work we show that Cyt1Aa loop β6-αE K198A, E204A and β7 K225A mutants affected binding and synergism with Cry4Ba. In addition, site directed mutagenesis showed that Cry4Ba domain II loop α-8 is involved in binding and in synergism with Cyt1Aa since Cry4Ba SI303-304AA double mutant showed decreased binding and synergism with Cyt1Aa. These data suggest that similarly to the synergism between Cry11Aa and Cyt1Aa toxins, the Cyt1Aa also functions as a receptor for Cry4Ba explaining the mechanism of synergism between these two Bti toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号