首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The alkaline single-cell gel electrophoresis (comet) assay can be combined with fluorescence in situ hybridization (FISH) methodology to investigate the localization of specific gene domains within an individual cell. The position of the fluorescent hybridization spots in the comet head or tail indicates whether the sequence of interest lies within or in the vicinity of a damaged region of DNA. In this study, we used the comet-FISH assay to examine initial DNA damage and subsequent repair in the TP53 gene region of RT4 and RT112 bladder carcinoma cells after 5 Gy gamma irradiation. In addition to standard comet parameter measurements, the number and location of TP53 hybridization spots within each comet was recorded at each repair time. The results indicate that the rate of repair of the TP53 gene region was fastest during the first 15 min after damage in both cell lines. When compared to overall genomic repair, the repair of the TP53 gene region was observed to be significantly faster during the first 15 min and thereafter followed a rate similar to that for the overall genome. The data indicate that the TP53 domain in RT4 and RT112 cells is repaired rapidly after gamma irradiation. Furthermore, this repair may be preferential compared to the repair of overall genomic DNA, which gives a measure of the average DNA repair response of the whole genome. We suggest that the comet-FISH assay has considerable potential in the study of gene-specific repair after DNA damage.  相似文献   

2.
The repair kinetics of the gamma rays induced DNA damage was determined in murine peripheral blood leukocytes in vivo by the comet assay. Mice were exposed to 1.0 Gy of gamma rays in a 137Cs source and samples of peripheral blood were taken from their tails at different times. The repair was evaluated per mice in separate experiments by measuring the proportion of cells with tail (comets) in each sample. An average of nearly 80% of comets was obtained at the initial time after the exposure; 2 min later the frequency decreased to 45% and continued diminishing to 22% at 15 min. This evidences the presence of a rapid repair mechanism. For a period of 25 to 40 min after exposure there was a slight but consistent increase of comets from 22 to 38% followed by a second reduction, which could be due to a late repair process that causes strand breaks and then joined them. In summary our results indicated that this system seems to be appropriate for the study of the repair capacity of cells following exposure to ionizing radiation.  相似文献   

3.
The comet assay was performed to elucidate the linearity of calibration curves and detection limits for DNA damage in multiple organs of whole body X-irradiated mice, and rates of reduction in DNA damage by DNA repair during the irradiation period were estimated in the respective organs by comparing the rates of increase in DNA damage at different absorbed dose rates of X-rays. Of the assay parameters, tail length and the percentage DNA in the tail showed a higher sensitivity to DNA damage in most organs than Olive tail moment. Data at the higher absorbed dose rates (2.22 or 1.44 Gy/min) showed good correlations between absorbed doses and these two parameters, with correlation coefficients of more than 0.7 in many organs. However, this assay had difficulty detecting DNA damage at the lower absorption dose rate (0.72 Gy/min). The estimated rates of increase in DNA damage and those of DNA repair during the irradiation period in the respective organs suggested differences in the radiosensitivity of nuclear DNA and DNA repair capacity among organs. Our results indicated that absorbed dose rates of 1.0-1.3 Gy/min or greater were needed to induce detectable DNA damages by the comet assay in many organs.  相似文献   

4.
We collected peripheral blood (PB) from 556 patients with various types of cancer who had undergone radiotherapy and from 81 healthy volunteers. We exposed whole PB and Epstein-Barr virus-transformed lymphoblastoid cell lines (EBLs) derived from the PB mononucleocytes to X-irradiation (5 Gy). Using the alkaline comet assay, we measured the immediate DNA damage and, at 15 min, the % residual damage. In PB, the immediate damage was similar in patients and healthy volunteers while the % residual damage (mean+/-S.D.) was significantly higher in patients with breast (54.3+/-A23.9), cervical (54.7+/-A23.9), head/neck (56.8+/-A24.4), lung (60.1+/-23.5), or esophageal cancers (59.5+/-A33.7) than in healthy donors (42.9+/-19.6) (P<0.05). We did not observe such differences in the EBV-transformed cell lines. Thus, radiation sensitivity of fresh PB cells measured by the alkaline comet assay was related to cancer status.  相似文献   

5.
The comet assay was performed to elucidate the linearity of calibration curves and detection limits for DNA damage in multiple organs of whole body X-irradiated mice, and rates of reduction in DNA damage by DNA repair during the irradiation period were estimated in the respective organs by comparing the rates of increase in DNA damage at different absorbed dose rates of X-rays. Of the assay parameters, tail length and the percentage DNA in the tail showed a higher sensitivity to DNA damage in most organs than Olive tail moment. Data at the higher absorbed dose rates (2.22 or 1.44 Gy/min) showed good correlations between absorbed doses and these two parameters, with correlation coefficients of more than 0.7 in many organs. However, this assay had difficulty detecting DNA damage at the lower absorption dose rate (0.72 Gy/min). The estimated rates of increase in DNA damage and those of DNA repair during the irradiation period in the respective organs suggested differences in the radiosensitivity of nuclear DNA and DNA repair capacity among organs. Our results indicated that absorbed dose rates of 1.0–1.3 Gy/min or greater were needed to induce detectable DNA damages by the comet assay in many organs.  相似文献   

6.
Human blood cultures were exposed to a 1.9 GHz continuous-wave (CW) radiofrequency (RF) field for 2 h using a series of six circularly polarized, cylindrical waveguides. Mean specific absorption rates (SARs) of 0.0, 0.1, 0.26, 0.92, 2.4 and 10 W/kg were achieved, and the temperature within the cultures during a 2-h exposure was maintained at 37.0 +/- 0.5 degrees C. Concurrent negative (incubator) and positive (1.5 Gy (137)Cs gamma radiation) control cultures were run for each experiment. DNA damage was quantified immediately after RF-field exposure using the alkaline comet assay, and four parameters (tail ratio, tail moment, comet length and tail length) were used to assess DNA damage for each comet. No evidence of increased primary DNA damage was detected by any parameter for RF-field-exposed cultures at any SAR tested. The formation of micronuclei in the RF-field-exposed blood cell cultures was assessed using the cytokinesis-block micronucleus assay. There was no significant difference in the binucleated cell frequency, incidence of micronucleated binucleated cells, or total incidence of micronuclei between any of the RF-field-exposed cultures and the sham-exposed controls at any SAR tested. These results do not support the hypothesis that acute, nonthermalizing 1.9 GHz CW RF-field exposure causes DNA damage in cultured human leukocytes.  相似文献   

7.
A method for measuring DNA damage to individual cells, based on the technique of microelectrophoresis, was described by Ostling and Johanson in 1984 (Biochem. Biophys. Res. Commun. 123, 291-298). Cells embedded in agarose are lysed, subjected briefly to an electric field, stained with a fluorescent DNA-binding stain, and viewed using a fluorescence microscope. Broken DNA migrates farther in the electric field, and the cell then resembles a "comet" with a brightly fluorescent head and a tail region which increases as damage increases. We have used video image analysis to define appropriate "features" of the comet as a measure of DNA damage, and have quantified damage and repair by ionizing radiation. The assay was optimized for lysing solution, lysing time, electrophoresis time, and propidium iodide concentration using Chinese hamster V79 cells. To assess heterogeneity of response of normal versus malignant cells, damage to both tumor cells and normal cells within mouse SCC-VII tumors was assessed. Tumor cells were separated from macrophages using a cell-sorting method based on differential binding of FITC-conjugated goat anti-mouse IgG. The "tail moment", the product of the amount of DNA in the tail and the mean distance of migration in the tail, was the most informative feature of the comet image. Tumor and normal cells showed significant heterogeneity in damage produced by ionizing radiation, although the average amount of damage increased linearly with dose (0-15 Gy) and suggested similar net radiosensitivities for the two cell types. Similarly, DNA repair rate was not significantly different for tumor and normal cells, and most of the cells had repaired the damage by 30 min following exposure to 15 Gy. The heterogeneity in response did not appear to be a result of differences in response through the cell cycle.  相似文献   

8.
A method for measuring DNA damage to individual cells, based on the technique of microelectrophoresis, was described by Ostling and Johanson in 1984 (Biochem. Biophys. Res. Commun. 123, 291-298). Cells embedded in agarose are lysed, subjected briefly to an electric field, stained with a fluorescent DNA-binding stain, and viewed using a fluorescence microscope. Broken DNA migrates farther in the electric field, and the cell then resembles a "comet" with a brightly fluorescent head and a tail region which increases as damage increases. We have used video image analysis to define appropriate "features" of the comet as a measure of DNA damage, and have quantified damage and repair by ionizing radiation. The assay was optimized for lysing solution, lysing time, electrophoresis time, and propidium iodide concentration using Chinese hamster V79 cells. To assess heterogeneity of response of normal versus malignant cells, damage to both tumor cells and normal cells within mouse SCC-VII tumors was assessed. Tumor cells were separated from macrophages using a cell-sorting method based on differential binding of FITC-conjugated goat anti-mouse IgG. The "tail moment", the product of the amount of DNA in the tail and the mean distance of migration in the tail, was the most informative feature of the comet image. Tumor and normal cells showed significant heterogeneity in damage produced by ionizing radiation, although the average amount of damage increased linearly with dose (0-15 Gy) and suggested similar net radiosensitivities for the two cell types. Similarly, DNA repair rate was not significantly different for tumor and normal cells, and most of the cells had repaired the damage by 30 min following exposure to 15 Gy. The heterogeneity in response did not appear to be a result of differences in response through the cell cycle.  相似文献   

9.
The suitability of comet assay to identify DNA damage induced by neutrons of varying energy was tested. For this purpose, monoenergetic neutrons from Hiroshima University Radiobiological Research Accelerator (HIRRAC) were used to induce DNA damage in irradiated human peripheral blood lymphocytes. The level of damage was computed as tail moment for different doses (0.125-1 Gy) and compared with the effects resulting from irradiation with (60)Co gamma. The neutron-irradiated cells exhibited longer comet tails consisting of tiny pieces of broken DNA in contrast to the streaking tails generated by (60)Co gamma. The peak biological effectiveness occurred at 0.37 and 0.57 MeV; a further increase or decrease in neutron energy led to a reduced RBE value. The RBE values, as measured by the comet assay, were 6.3, 5.4, 4.7, 4.3, 2.6, and 1.7 for 0.37, 0.57, 0.79, 0.186, 1, and 2.3 MeV neutrons. The lower RBE value obtained by the comet assay when compared to that for other biological end points is discussed. This study reports the usefulness of the alkaline comet assay for identifying DNA damage induced by neutrons of the same radiation weighting factor. The comet assay is a potential tool for use in neutron therapy, as well as a method for the rapid screening of samples from individuals accidentally exposed to radiation.  相似文献   

10.
A comparative comet-assay study of X-ray influence on DNA of leukocytes of peripheral blood from both cancer patients in the course of chemotherapy and on healthy donors was carried out. The amount of DNA registered in comet tails of blood samples from 18 healthy donors was between 0.8-3.6%. The mean value was 2.9 +/- 0.5%. In the preparations of cancer patients, an increase in comet tail DNA was observed for each chemotherapy course and in each subsequent course compared to the previous one. The individual variations were found in the level of DNA damage in the response to the administration of cyclophosphane, of methotrexate, of 5-fluorourocil (CMF protocol). The X-ray radiation (4 Gy) challenge test of blood cells showed an increase in comet tail DNA, the dynamics of radiation-induced lesions varying between individuals. The combined use of X-ray radiation and of the comet-assay in evaluating the capacity of the defence systems of the whole blood cells during chemotherapy let us to hold the monitoring of the state of genome of leukocytes without their isolation. This approach enables additional information on leukocyte genome to be rapidly obtained.  相似文献   

11.
Experiments using the alkaline comet assay, which measures all single-strand breaks regardless of their origin, were performed to evaluate the biological effectiveness of photons with different energies in causing these breaks. The aim was to measure human lymphocytes directly for DNA damage and subsequent repair kinetics induced by mammography 29 kV X rays relative to 220 kV X rays, 137Cs gamma rays and 60Co gamma rays. The level of DNA damage, predominantly due to single-strand breaks, was computed as the Olive tail moment or percentage DNA in the tail for different air kerma doses (0.5, 0.75, 1, 1.5, 2 and 3 Gy). Fifty cells were analyzed per slide with a semiautomatic imaging system. Data from five independent experiments were transformed to natural logarithms and fitted using a multiple linear regression analysis. Irradiations with the different photon energies were performed simultaneously for each experiment to minimize interexperimental variation. Blood from only one male and one female was used. The interexperimental variation and the influence of donor gender were negligible. In addition, repair kinetics and residual DNA damage after exposure to a dose of 3 Gy were evaluated in three independent experiments for different repair times (10, 20, 30 and 60 min). Data for the fraction of remaining damage were fitted to the simple function F(d) = A/(t + A), where F(d) is the fraction of remaining damage, t is the time allowed for repair, and A (the only fit parameter) is the repair half-time. It was found that the comet assay data did not indicate any difference in the initial radiation damage produced by 29 kV X rays relative to the reference radiation types, 220 kV X rays and the gamma rays of 137Cs and 60Co, either for the total dose range or in the low-dose range. These results are, with some restrictions, consistent with physical examinations and predictions concerning, for example, the assessment of the possible difference in effectiveness in causing strand breaks between mammography X rays and conventional (150-250 kV) X rays, indicating that differences in biological effects must arise through downstream processing of the damage.  相似文献   

12.
The gamma radiation-induced DNA damage in adult maize weevils, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), was assessed using single-cell electrophoresis (comet assay). Analysis of DNA damage following 0.5 and 1.0 kGy of gamma radiation was performed using cells from 1- and 15-day-old adults. Gamma-irradiated adults from both age groups showed typical DNA fragmentation, whereas cells from non-irradiated adults showed more intact DNA than young S. zeamais. Investigations using the comet assay showed that tail length, % tail DNA and % DNA damage all increased in adults of both age groups when compared to the control insects. A maximum comet length of 227.33 μm was recorded for 15-day-old adults at 24h after irradiation with 1.0 kGy and a minimum of 50.12 μm for 1-day-old adults at 0 h after irradiation with 0.5 kGy. The percentage of DNA damage increased up to 57.31% and 68.15% for 1- and 15-day-old adults, respectively, at 24h after irradiation with 1.0 kGy, whereas only 8.58% and 12.22% DNA damage were observed in the control batches. The results also showed that percentage of DNA damage increased at 24h after irradiation compared to that at 0 h. However, further studies are needed to confirm these results.  相似文献   

13.
The studies reported in this communication had two major objectives: first to validate the in-house developed SCGE-Pro: a software developed for automated image analysis and data processing for Comet assay using human peripheral blood leucocytes exposed to radiation doses, viz. 2, 4 and 8 Gy, which are known to produce DNA/chromosome damage using alkaline Comet assay. The second objective was to investigate the effect of gamma radiation on DNA damage in mouse peripheral blood leucocytes using identical doses and experimental conditions, e.g. lyses, electrophoretic conditions and duration of electrophoresis which are known to affect tail moment (TM) and tail length (TL) of comets. Human and mouse whole blood samples were irradiated with different doses of gamma rays, e.g. 2, 4 and 8 Gy at a dose rate of 0.668Gy/min between 0 and 4 degrees C in air. After lyses, cells were electrophorased under alkaline conditions at pH 13, washed and stained with propidium iodide. Images of the cells were acquired and analyzed using in-house developed imaging software, SCGE-Pro, for Comet assay. For each comet, total fluorescence, tail fluorescence and tail length were measured. Increase in TM and TL was considered as the criteria of DNA damage. Analysis of data revealed heterogeneity in the response of leucocytes to gamma ray induced DNA damage both in human as well as in mouse. A wide variation in TM and TL was observed in control and irradiated groups of all the three donors. Data were analyzed for statistical significance using one-way ANOVA. Though a small variation in basal level of TM and TL was observed amongst human and mouse controls, the differences were not statistically significant. A dose-dependent increase in TM (P<0.001) and TL (P<0.001) was obtained at all the radiation doses (2-8 Gy) both in human and mouse leucocytes. However, there was a difference in the nature of dose response curves for human and mouse leucocytes. In human leucocytes, a linear increase in TM and TL was observed up to the highest radiation dose of 8 Gy. However, in case of mouse leucocytes, a sharp increase in TM and TL was observed only up to 4 Gy, and there after saturation ensued. In human samples, the dose response of both TM and TL showed best fits with linear model (r(TM)=0.999 and r(TL)=0.999), where as in mouse, the best fit was obtained with Sigmoid (Boltzman) model. From the present data on leucocytes with increase in TM and TL as the criteria of DNA damage, it appears that mouse is relatively more sensitive to radiation damage than humans.  相似文献   

14.
The capacity of an individual to process DNA damage is considered a crucial factor in carcinogenesis. The comet assay is a phenotypic measure of the combined effects of sensitivity to a mutagen exposure and repair capacity. In this paper, we evaluate the association of the DNA repair kinetics, as measured by the comet assay, with prostate cancer risk. In a pilot study of 55 men with prostate cancer, 53 men without the disease, and 71 men free of cancer at biopsy, we investigated the association of DNA damage with prostate cancer risk at early (0-15 min) and later (15-45 min) stages following gamma-radiation exposure. Although residual damage within 45 min was the same for all groups (65% of DNA in comet tail disappeared), prostate cancer cases had a slower first phase (38% vs. 41%) and faster second phase (27% vs. 22%) of the repair response compared to controls. When subjects were categorized into quartiles, according to efficiency of repairing DNA damage, high repair-efficiency within the first 15 min after exposure was not associated with prostate cancer risk while higher at the 15-45 min period was associated with increased risk (OR for highest-to-lowest quartiles=3.24, 95% CI=0.98-10.66, p-trend=0.04). Despite limited sample size, our data suggest that DNA repair kinetics marginally differ between prostate cancer cases and controls. This small difference could be associated with differential responses to DNA damage among susceptible individuals.  相似文献   

15.
Ionizing radiation is known to produce a variety of cellular and sub cellular damage in both prokaryotic and eukaryotic cells. Present studies were undertaken to assess gamma ray induced DNA damage in different organs of the chick embryo using alkaline comet assay and peripheral blood micronucleus test. Further the suitability of chick embryo, as an alternative model for genotoxicity evaluation of environmental agents was assessed. Fertilized eggs of Rhode island red strain were exposed to 0.5, 1 and 2 Gy of gamma rays delivered at a dose rate of 0.316 Gy/min using a 60Co teletherapy machine. Peripheral blood smears were prepared from 8- to 11-day-old chick embryos for micronucleus test. Alkaline comet assay was performed on 11-day-old chick embryos in different organs such as the heart, liver, lung, blood, bone marrow, brain and kidney.Analysis of the data revealed a significant increase in the frequency of micronucleated polychromatic erythrocytes, micronucleated normochromatic erythrocytes and total micronucleated erythrocytes in the peripheral blood of gamma irradiated chick embryos at all the doses tested as compared to the respective controls. The polychromatic to normochromatic erythrocytes ratio which is an indicator of proliferation rate of hematopoetic tissue, decreased in the irradiated groups as compared to the controls. Data obtained from comet assay, clearly demonstrated a significant increase in DNA strand breaks in all the organs of irradiated chick embryos as compared to the respective controls. However, maximum damage was observed in the heart tissue on all the doses tested, followed by kidney, brain, lung, blood and liver. The lowest damage was observed in the bone marrow tissue. Both micronucleus test and comet assay were found to be suitable biomarkers for the evaluation of genotoxicity of gamma radiation in the chick embryo.  相似文献   

16.
Human peripheral blood samples collected from three healthy human volunteers were exposed in vitro to pulsed-wave 2450 MHz radiofrequency (RF) radiation for 2 h. The RF radiation was generated with a net forward power of 21 W and transmitted from a standard gain rectangular antenna horn in a vertically downward direction. The average power density at the position of the cells in the flask was 5 mW/cm(2). The mean specific absorption rate, calculated by finite difference time domain analysis, was 2.135 (+/-0.005 SE) W/kg. Aliquots of whole blood that were sham-exposed or exposed in vitro to 50 cGy of ionizing radiation from a (137)Cs gamma-ray source were used as controls. The lymphocytes were examined to determine the extent of primary DNA damage (single-strand breaks and alkali-labile lesions) using the alkaline comet assay with three different slide-processing schedules. The assay was performed on the cells immediately after the exposures and at 4 h after incubation of the exposed blood at 37 +/- 1 degrees C to allow time for rejoining of any strand breaks present immediately after exposure, i.e. to assess the capacity of the lymphocytes to repair this type of DNA damage. At either time, the data indicated no significant differences between RF-radiation- and sham-exposed lymphocytes with respect to the comet tail length, fluorescence intensity of the migrated DNA in the tail, and tail moment. The conclusions were similar for each of the three different comet assay slide-processing schedules examined. In contrast, the response of lymphocytes exposed to ionizing radiation was significantly different from RF-radiation- and sham-exposed cells. Thus, under the experimental conditions tested, there is no evidence for induction of DNA single-strand breaks and alkali-labile lesions in human blood lymphocytes exposed in vitro to pulsed-wave 2450 MHz radiofrequency radiation, either immediately or at 4 h after exposure.  相似文献   

17.
The studies reported in this communication had two major objectives: first to validate the in-house developed SCGE-Pro: a software developed for automated image analysis and data processing for Comet assay using human peripheral blood leucocytes exposed to radiation doses, viz. 2, 4 and 8 Gy, which are known to produce DNA/chromosome damage using alkaline Comet assay. The second objective was to investigate the effect of gamma radiation on DNA damage in mouse peripheral blood leucocytes using identical doses and experimental conditions, e.g. lyses, electrophoretic conditions and duration of electrophoresis which are known to affect tail moment (TM) and tail length (TL) of comets. Human and mouse whole blood samples were irradiated with different doses of gamma rays, e.g. 2, 4 and 8 Gy at a dose rate of 0.668 Gy/min between 0 and 4°C in air. After lyses, cells were electrophorased under alkaline conditions at pH 13, washed and stained with propidium iodide. Images of the cells were acquired and analyzed using in-house developed imaging software, SCGE-Pro, for Comet assay. For each comet, total fluorescence, tail fluorescence and tail length were measured. Increase in TM and TL was considered as the criteria of DNA damage. Analysis of data revealed heterogeneity in the response of leucocytes to gamma ray induced DNA damage both in human as well as in mouse. A wide variation in TM and TL was observed in control and irradiated groups of all the three donors. Data were analyzed for statistical significance using one-way ANOVA. Though a small variation in basal level of TM and TL was observed amongst human and mouse controls, the differences were not statistically significant. A dose-dependent increase in TM (P<0.001) and TL (P<0.001) was obtained at all the radiation doses (2–8 Gy) both in human and mouse leucocytes. However, there was a difference in the nature of dose response curves for human and mouse leucocytes. In human leucocytes, a linear increase in TM and TL was observed up to the highest radiation dose of 8 Gy. However, in case of mouse leucocytes, a sharp increase in TM and TL was observed only up to 4 Gy, and there after saturation ensued. In human samples, the dose response of both TM and TL showed best fits with linear model (rTM=0.999 and rTL=0.999), where as in mouse, the best fit was obtained with Sigmoid (Boltzman) model. From the present data on leucocytes with increase in TM and TL as the criteria of DNA damage, it appears that mouse is relatively more sensitive to radiation damage than humans.  相似文献   

18.
We investigated the genotoxicity of middle distillate jet fuel, Jet Propulsion 8 (JP-8), on H4IIE rat hepatoma cells in vitro. DNA damage was evaluated using the comet (single cell gel electrophoresis) assay. Cells were exposed for 4h to JP-8 (solubilized in ethanol (EtOH) at 0.1% (v/v)) to concentrations ranging from 1 to 20microg/ml. Exposure to JP-8 resulted in an overall increase in mean comet tail moments ranging from 0.74+/-0.065 (0.1% EtOH control) to 3.13+/-0.018,4.36+/-0.32,5.40+/-0.29,7.70+/-0.52 and 11.23+/-0.77 for JP-8 concentrations 3, 5, 10, 15 and 20microg/ml, respectively. Addition of DNA repair inhibitors hydroxyurea (HU) and cytosine arabinoside (Ara-C) to cell culture with JP-8 resulted in accumulation of DNA damage strand breaks and increase in comet tail length. Inclusion of 4mM HU and 40microM Ara-C with 3, 5, 10 and 20microg/ml JP-8 concentrations resulted in increased mean tail moments to 5.94+/-0.43,10.12+/-0.72,17.03+/-0.96,and29.25+/-1.55. JP-8, in the concentrations used in this study, did not result in cytotoxicity or significant apoptosis, as measured using the terminal deoxynucleotidyl transferase (TDT)-mediated dUTP-X nick end labeling (TUNEL) assay. These results demonstrate that relevant exposures to JP-8 result in DNA damage to H4IIE cells, and suggest that DNA repair is involved in mitigating these effects.  相似文献   

19.
The assessment of tumor radiosensitivity would be particularly useful in optimizing the radiation dose during radiotherapy. Therefore, the degree of correlation between radiation-induced DNA damage, as measured by the alkaline and the neutral comet assays, and the clonogenic survival of different human tumor cells was studied. Further, tumor radiosensitivity was compared with the expression of genes associated with the cellular response to radiation damage. Five different human tumor cell lines were chosen and the radiosensitivity of these cells was established by clonogenic assay. Alkaline and neutral comet assays were performed in γ-irradiated cells (2-8Gy; either acute or fractionated). Quantitative PCR was performed to evaluate the expression of DNA damage response genes in control and irradiated cells. The relative radiosensitivity of the cell lines assessed by the extent of DNA damage (neutral comet assay) immediately after irradiation (4Gy or 6Gy) was in agreement with radiosensitivity pattern obtained by the clonogenic assay. The survival fraction of irradiated cells showed a better correlation with the magnitude of DNA damage measured by the neutral comet assay (r=-0.9; P<0.05; 6Gy) than evaluated by alkaline comet assay (r=-0.73; P<0.05; 6Gy). Further, a significant correlation between the clonogenic survival and DNA damage was observed in cells exposed to fractionated doses of radiation. Of 15 genes investigated in the gene expression study, HSP70, KU80 and RAD51 all showed significant positive correlations (r=0.9; P<0.05) with tumor radiosensitivity. Our study clearly demonstrated that the neutral comet assay was better than alkaline comet assay for assessment of radiosensitivities of tumor cells after acute or fractionated doses of irradiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号