首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 960 毫秒
1.
For subterranean rodents, searching for food by extension of the tunnel system and maintenance of body temperature are two of the most important factors affecting their life underground. In this study we assess the effect of ambient temperature on energetics and thermoregulation during digging in Ctenomys talarum. We measured VO2 during digging and resting at ambient temperature (Ta) below, within, and above thermoneutrality. Digging metabolic rate was lowest at Ta within the thermoneutral zone and increased at both lower and higher temperatures, but body temperature (Tb) remained constant at all Tas. Below thermoneutrality, the cost of digging and thermoregulation are additive. Heat production for thermoregulation would be compensated by heat produced as a by-product of muscular activity during digging. Above thermoneutrality, conduction would be an important mechanism to maintain a constant Tb during digging.  相似文献   

2.
In spite of the abundance and broad distribution of social wasps, little information exists concerning thermoregulation by individuals. We measured body temperatures of the yellowjackets Vespula germanica and V. maculifrons and examined their thermoregulatory mechanisms. V. germanica demonstrated thermoregulation via a decreasing gradient between thorax temperature and ambient temperature as ambient temperature increased. V. maculifrons exhibited a constant gradient at lower ambient temperatures but thorax temperature was constant at high ambient temperatures. Head temperature exhibited similar patterns in both species. In spite of low thermal conductances, a simple heat budget model predicts substantial heat loads in warm conditions in the absence of thermoregulation. Both species regurgitated when heated on the head. A smaller volume of regurgitant was produced at lower head temperatures and a larger volume at higher head temperatures. Small regurgitations resulted in stabilization of head temperature, while large ones resulted in 4°C decreases in head temperature. Regurgitation was rare when wasps were heated upon the thorax. Abdomen temperature was 3–4°C above ambient temperature, and approached ambient temperature under the hottest conditions. No evidence was found for shunting of hot hemolymph from thorax to abdomen as a cooling mechanism. The frequency of regurgitation in workers returning to the nest increased with ambient temperature. Regurgitation may be an important thermoregulatory strategy during heat stress, but is probably not the only mechanism used in yellowjackets.Abbreviations M b body mass - M th thorax mass - T a ambient temperature - T ab abdomen temperature - T b body temperature - T h head temperature - T th thorax temperature - C t thermal conductance  相似文献   

3.
Summary Lacerta viridis maintained under natural photoperiodic conditions show daily and seasonal changes in metabolic rates and body temperature (T b) as well as seasonal differences in sensitivity to temperature change. At all times of the year lizards have a daily fluctuation in oxygen consumption, with higher metabolic rates during the light phase of the day when tested at a constant ambient temperature (T a) of 30°C. Rhythmicity of metabolic rate persists under constant darkness, but there is a decrease in the amplitude of the rhythm.Oxygen consumption measured at various Tas shows significant seasonal differences at T as above 20°C. Expressed as the Arrhenius activation energy, metabolic sensitivity of Lacerta viridis shows temperature dependence in autumn, which changes to metabolic temperature independence in spring at T as above 20°C. The results indicate a synergic relationship between changing photoperiod and body temperature selection, resulting in seasonal metabolic adjustment and seasonal adaptation.Abbreviations ANOVA analysis of variance - LD long day (16 h light) - SD short day (8 h light) - T a ambient temperature - T b body temperature  相似文献   

4.
Most mammals are known to have clear circadian rhythms of body temperature (Tb) and metabolic rate. Large parts of the rhythms correspond to the oscillation of nonshivering thermogenesis (NST), dependent on visceral organ mass, and, affected by mass of brown adipose tissue (BAT). I tested whether: (1) a different levels of BMR result in respective changes of Tb values and the magnitude of daily RMR oscillations both within and below thermoneutrality; (2) the amplitude of daily variation of RMR depends on ambient temperature (Ta). I studied: (1) daily variation of body temperature at Ta of 23 °C, and (2) the rate of resting metabolism (RMR) within and below thermoneutrality at the time of minimum and increasing Tb (minimum and maximum NST capacity), in two lines of laboratory mice subjected to divergent, artificial selection toward high (HBMR) and low (LBMR) basal rate of metabolism (BMR). All mice had a clear circadian rhythm of Tb with minimum of 36.4±0.2 °C at 7:00 and maximum of 37.8±0.2 °C at 21:00. Their RMR measured below thermoneutrality exhibited significant daily variation, with the maximum between 16:00 and 19:00, when Tb was rising. Within thermoneutral zone (TNZ) I found between-line, but not between-time, differences in RMR. All between-line differences in RMR could be explained by the magnitude of BMR. I did not find any between-line differences of RMR value in temperatures below thermoneutrality. The amplitude of daily variation of RMR measured below TNZ depended neither on the Ta value nor on level of BMR (or visceral organs).  相似文献   

5.
Summary Cold acclimation lowers the selected body temperature (T b) in many ectothermic vertebrates. This change in behavioural thermoregulation is accompanied by an increase in the proportion of polyunsaturated fatty acids in tissues and cellular membranes. We investigated how diets containing different fatty acids, known to significantly alter the fatty acid composition of animal tissues and membranes, affect the selected T b of the lizard Tiliqua rugosa. Lizards on a diet containing many polyunsaturated fatty acids (10% sunflower oil) showed a 3–5°C decrease in T b, whereas T b in animals on a diet containing mainly saturated fatty acids (10% sheep fat) did not change. Our study suggests that the composition of dietary lipids influences thermoregulation in ectothermic vertebrates and may thus play a role in the seasonal adjustment of their physiology.Abbreviations CST central standard time - T a air temperature - T b Body temperature  相似文献   

6.
Thermoregulatory abilities, which may play a role in physiological adaptations, were compared between two field mouse species (Apodemus mystacinus and A. hermonensis) from Mount Hermon. While A. hermonensis is common at altitudes above 2100 m, A. mystacinus is common at 1650 m. The following variables were compared in mice acclimated to an ambient temperature of 24°C with a photoperiod of 12L:12D, body temperature during exposure to 4°C for 6 h, O2 consumption and body temperature at various ambient temperature, non-shivering thermogenesis measured as a response to a noradrenaline injection, and the daily rhythm of body temperature. Both species could regulate their body temperature at ambient temperatures between 6 and 34°C. The thermoneutral zone for A. mystacinus lies between 28 and 32°C, while for A. hermonensis a thermoneutral point is noted at 28°C. Both species increased O2 consumption and body temperature as a response to noradrenalin. However, maximal VO 2 consumption as an response to noradrenaline and non-shivering thermogenesis capacity were higher in A. mystacinus, even though A. hermonensis is half the size of A. mystacinus. The body temperature rhythm in A. hermonensis has a clear daily pattern, while A. mystacinus can be considered arhythmic. The results suggest that A. hermonensis is adapted to its environment by an increase in resting metabolic rate but also depends on behavioural thermoregulation. A. mystacinus depends more on an increased non-shivering thermogenesis capacity.Abbreviations C thermal conductance - NA noradrenaline - NST non-shivering thermogenesis - OTC overall thermal conductance - RMR resting metabolic rate - STPD standard temperature and pressure dry - T a ambient temperature - T b body temperature - I b Min minimal T b , measured before NA iniection - T b NA maximal - T b as a response to NA injection - T lc lower critical point - TNP thermoneutral point - TNZ thermoneutral zone - VO2 O2 consumption - VO2 Min minimal VO2 measured before NA injection - VO2NA maximal VO2, as a response to NA injection  相似文献   

7.
Body temperature and oxygen consumption were measured in the eastern hedgehog,Erinaceus concolor Martin 1838, during summer at ambient temperatures (T a) between-6.0 and 35.6°C.E. concolor has a relatively low basal metabolic rate (0.422 ml O2·g-1·h-1), amounting to 80% of that predicted from its body mass (822.7 g). Between 26.5 and 1.2°C, the resting metabolic rate increases with decreasing ambient temperature according to the equation: RMR=1.980-0.057T a. The minimal heat transfer coefficient (0.057 ml O2·g-1·h-1·°C-1) is higher than expected in other eutherian mammals, which may result from partial conversion of hair into spines. At lower ambient temperature (from-4.6 to-6.0° C) there is a drop in body temperature (from 35.2 to 31.4° C) and a decrease in oxygen consumption (1.530 ml O2·g-1·h-1) even though the potential thermoregulation capabilities of this species are significantly higher. This is evidenced by the high maximum noradrenaline-induced non-shivering thermogenesis (2.370 ml O2·g-1·h-1), amounting to 124% of the value predicted. The active metabolic rate at ambient temperatures between 31.0 and 14.5° C averages 1.064 ml O2·g-1·h-1; at ambient temperatures between 14.5 and 2.0° C AMR=3.228-0.140T a.Abbreviations AMR active metabolic rate - bm body mass - BMR basal metabolic rate - h heat transfer coefficient - NA noradrenaline - NST non-shivering thermogenesis - NSTmax maximum rate of NA-induced non-shivering thermogenesis - RMR resting metabolic rate - RQ respiratory quotient - STPD standard temperature and pressure (25°C, 1 ATM) - T a ambient temperature - T b body temperature  相似文献   

8.
Summary Body temperature (T b) of socially hibernating alpine marmots, a pair and two family groups, was monitored continuously from October to March with implanted temperature-sensitive radiotransmitters. At the same time, the animals' behaviour was observed. The recurrent entrances into and arousals from hibernation were highly synchronised within groups. Group members always lay huddled together when euthermic and also when torpid with a few exceptions at higher ambient temperatures (T a). Body contact with euthermic nestmates warmed torpid marmots passively. TheT b of animals reentering hibernation did not fall to values close toT a as long as euthermic group members were present. Although animals presumably save energy through social thermoregulation, especially when euthermic, these benefits are not necessarily mutual among group members. Differences in thermoregulatory behaviour of individuals described in this study could be responsible for differential weight losses during winter as found in the natural habitat (Arnold 1986).  相似文献   

9.
Endotherms allocate large amounts of energy and water to the regulation of a precise body temperature (Tb), but can potentially reduce thermoregulatory costs by allowing Tb to deviate from normothermic levels. Many data on heterothermy at low air temperatures (Ta) exist for caprimulgids, whereas data on thermoregulation at high Ta are largely absent, despite members of this taxon frequently roosting and nesting in sites exposed to high operative temperatures. We investigated thermoregulation in free‐ranging rufous‐cheeked nightjars Caprimulgus rufigena and freckled nightjars Caprimulgus tristigma in the southern African arid zone. Individuals of both species showed labile Tb fluctuating around a single modal Tb (Tb‐mod). Average Tb‐mod was 39.7°C for rufous‐cheeked nightjars and 39.0°C for freckled nightjars. In both species, diurnal Tb increased with increasing Ta. At Ta ≥ 38°C, rufous‐cheeked nightjar mean Tb increased to 42°C, equivalent to 2.3°C above Tb‐mod. Under similar conditions, freckled nightjar Tb was on average only 1.1°C above Tb‐mod, with a mean Tb of 40.0°C. Freckled nightjars are one of the most heterothermic caprimulgids investigated to date, but our data suggest that during hot conditions this species maintains Tb within a narrow range above Tb‐mod, possibly reflecting an evolutionary tradeoff between decreased thermal sensitivity to lower Tb but increased sensitivity to high Tb. These findings reveal how general thermoregulatory patterns at similar Ta can vary even among closely related species.  相似文献   

10.
We evaluated biotic and abiotic predictors of rest-phase hypothermia in wintering blue tits (Cyanistes caeruleus) and also assessed how food availability influences nightly thermoregulation. On any given night, captive blue tits (with unrestricted access to food) remained largely homeothermic, whereas free-ranging birds decreased their body temperature (T b) by about 5°C. This was not an effect of increased stress in the aviary as we found no difference in circulating corticosterone between groups. Nocturnal T b in free-ranging birds varied with ambient temperature, date and time. Conversely, T b in captive birds could not be explained by climatic or temporal factors, but differed slightly between the sexes. We argue that the degree of hypothermia is controlled predominantly by birds’ ability to obtain sufficient energy reserves during the day. However, environmental factors became increasingly important for thermoregulation when resources were limited. Moreover, as birds did not enter hypothermia in captivity when food was abundant, we suggest that this strategy has associated costs and hence is avoided whenever resource levels permit.  相似文献   

11.
Many avian species reduce their body temperature (T b) to conserve energy during periods of inactivity, and we recently characterized how ambient temperature (T a) and nutritional stress interact with one another to influence physiologically controlled hypothermic responses in Japanese quail (Coturnix japonica). In the present study, we examined how the fatty acid (FA) composition of the diet influences the FA composition of phospholipids in major organs and how these affect controlled hypothermic responses and metabolic rates in fasted birds. For 5 weeks prior to fasting, quail were fed a standard diet and gavaged each morning with 0.7 ml of water (control), or a vegetable oil comprising saturated fatty acids (SFA; coconut oil), or unsaturated fatty acids (UFA; canola oil). Birds were then fasted for 4 days at a T a of 15°C. We found that, while fasting, both photophase and scotophase T b decreased significantly more in the SFA treatment group than in the control group; apparently the former down-regulated their T b set point. This deeper hypothermic response was correlated with changes in the phospholipid composition of the skeletal muscle and liver, which contained significantly more oleic acid (18:1) and less arachidonic acid (20:4), respectively. Our data imply that these two FAs may be associated with thermoregulation.  相似文献   

12.
  • 1.1. Experimental evidence is presented that short-term thermoregulatory adjustments occurring not far from thermoneutrality, involve temperature changes that are opposite in sign in different body regions. In man, exposure to hot ambient temperature (Ta), induced a decrease in esophageal and rectal temperatures. In rabbit, exposure to cold Ta induced an increase in hypothalamic temperature.
  • 2.2.|Similar results could be obtained by simulation on a mathematical model of man's thermoregulatory system.
  • 3.3.|The above results, as well as analogues results described in the literature, can be accounted for by a scheme of interpretation standing on current concepts of thermoregulation. If the gain of the thermoregulatory system is high, thermal stimulation of a region of the body will induce opposite temperature changes in other regions of the body.
  相似文献   

13.
Seasonal cold temperatures require mammals to use morphological, behavioural, or physiological traits to survive periods of extreme cold and food shortage. Torpor is a physiological state that minimizes energy requirements by decreasing resting metabolic rate (MR) and body temperature (Tb). Many rodent species are capable of torpor, however, evidence in northern and southern flying squirrels (Glaucomys sabrinus and Glaucomys volans, respectively) has remained anecdotal. We experimentally attempted to induce torpor in wild-caught flying squirrels by lowering ambient temperature (Ta) and measuring MR using open-flow respirometry. We also studied seasonal differences in MR and Tb at various Ta. Both MR and Tb provided evidence for torpor in flying squirrels, but only infrequent, shallow torpor. MR decreased infrequently and any decreases were rarely sustained for longer than one hour. We found a significant positive relationship between Ta and Tb only in G. volans, which suggests that G. volans is more susceptible to low Ta compared with G. sabrinus, possibly due to their small body size. We observed no substantive seasonal or interspecific differences in the relation between MR and Ta, with the exception that northern flying squirrels expended more energy at cold Ta during warm season trials than other species-season combinations. The infrequency of torpor use in our experiments suggests that other energy-saving strategies, such as social thermoregulation, may limit the reliance on torpor in this lineage.  相似文献   

14.
Summary Intra-abdominal temperature-sensitive radio transmitters were used to collect more than 350 sets of body temperature (T b ) data from 23 captive adult hedgehogs over a 3-year period. Each data set comprised measurements made every 1/2 h for 24-h periods. Between 20 and 60 such data sets were recorded every calendar month, and a total of 17400 measurements of T b were collected. The hedgehogs were exposed to natural environmental conditions at 57°N in NE Scotland. Hedgehogs showed seasonal changes in mean daily euthermic T b ,with a July maximum of 35.9±0.2°C, a September minimum of 34.7±0.9°C, and a marked circadian T b cycle that correlates closely with photoperiod. Maximal T b occurred within 2 h of midnight and this pattern of nocturnal maximum and diurnal minimum T b was most marked between April and September. The circadian T b cycle was least correlated with photoperiod during winter. Hibernal T b during winter correlated with ambient temperature (T a ),it was maximal in September (17.7±1.0°C) and minimal in December (5.2±0.9°C). Apart from the tracking of T a and T b during hibernal bouts, with a time-lag of 4–6 h, circadian rhythmicity of hibernal T b was not evident. However, the T b of hibernating hedgehogs rose significantly when T a fell below — 5°C, although the animals did not neccessarily arouse. Although hibernal bouts occurred between September and April, 89.5% of such bouts were recorded between November and February. The mean time of entry into hibernation was 01:45±5.1 h GMT while the mean time of the start of spontaneous arousal from hibernation was 11:53±4.8 h GMT. Therefore, during hibernation hedgehogs were either fully aroused at night, when euthermic hedgehogs have maximalT b ,or in deep hibernation around midday, when euthermic hedgehogs have minimal T b .Since wild hedgehogs will feed during spontaneous arousal from hibernation, these timings are probably adaptive, and suggest that entry into, and arousal from, hibernation may be extensions of circadian cyclicity. Spontaneous bouts of transient shallow torpor (TST) were recorded throughout the year, with nearly 80% of observations occurring during August and September, at the start of the hibernal period. TST bouts lasted for 4.9±2.9 h, with T b falling to 25.8±3.1 °C. Only 20% of TST bouts immediately preceded hibernation and their duration did not correlate with T a or body mass. TST bouts started at 06:51±4.7 h GMT, significantly later than entry into hibernation, and ended at 13:04±5.4 h GMT. The function of TST bouts is unclear, but they may be preparation for the hibernation season or a further energy conservation strategy. When arousing from hibernation hedgehogs warmed at a rate of 1.9±0.4°C·h-1, and when entering hibernation cooled at 7.9±1.9°C·h-1. Warming rates were slightly higher during mid-winter when T b and body mass were minimal, but cooling rates were 44% higher at the end of the hibernal period compared to the start. Cooling and warming rates were strikingly similar to those measured in hedgehogs at 31°N. These results demonstrate that thermoregulation in the hedgehog is closely regulated and changes on a seasonal basis, in meeting with requirements of surviving food shortages and low temperature during winter.Abbreviations T a ambient temperature - T b body temperature - CSD circular standard deviation - SWS slow wave sleep - TST transient shallow torpor  相似文献   

15.
The use of hypothermia as a means to save energy is well documented in birds. This energy‐saving strategy is widely considered to occur exclusively at night in diurnally active species. However, recent studies suggest that facultative hypothermia may also occur during the day. Here, we document the use of daytime hypothermia in foraging Black‐capped Chickadees Poecile atricapillus wintering in eastern Canada. We measured the body temperature (Tb) of 126 individuals (plus 48 repeated measures) during a single winter and related values to ambient temperature (Ta) at the time of capture. We also tested whether daytime hypothermia was correlated with the size of body reserves (residuals of mass on structural size and fat score) and levels of metabolic performance (basal metabolic rate and maximum thermogenic capacity). We found that Tb of individual birds was lower when captured at low Ta, reaching values as low as 35.5 °C in actively foraging individuals. Tb was unrelated to metabolic performance or measures of body reserves. Therefore, daytime hypothermia does not result from individuals being unable to maintain Tb during cold spells or to a lack of body reserves. Our data also demonstrated a high level of individual variation in the depth of hypothermia, the causes of which remain to be explored.  相似文献   

16.
Sexual size dimorphism (SSD) is a common phenomenon in animals. In many species females are substantially larger than males. Because body size plays a central role in modulating the body temperature (T b) of ectotherms, intersexual differences in body size may lead to important intersexual differences in thermoregulation. In addition, because SSD is realized by differences in growth rate and because growth rate is strongly temperature dependent in ectotherms, a conflict between male reproductive behaviour and thermoregulation may affect the expression of SSD. In this study, we investigated the thermal implications of SSD in a reptile exhibiting spectacular female-biased SSD: the northern map turtle (Graptemys geographica). Over three seasons, we collected >150,000 measurements of T b in free-ranging adult and juvenile northern map turtles using surgically implanted miniature temperature loggers. Northern map turtles exhibited seasonal patterns of thermoregulation typical of reptiles in northern latitudes, but we found that large adult females experienced a lower daily maximum T b and a narrower daily range of T b than adult males and small juvenile females. In addition, despite more time spent basking, large adult females were not able to thermoregulate as accurately as small turtles. Our findings strongly suggest that body size limits the ability to thermoregulate accurately in large females. By comparing thermoregulatory patterns between adult males and juvenile females of similar body size, we found no evidence that male reproductive behaviours are an impediment to thermoregulation. We also quantified the thermal significance of basking behaviour. We found, contrary to previous findings, that aerial basking allows northern map turtles to raise their T b substantially above water temperature, indicating that basking behaviour likely plays an important role in thermoregulation.  相似文献   

17.
Microcebus murinus, a small nocturnal Malagasy primate, exhibits adaptive energy-saving strategies such as daily hypothermia and gregarious patterns during diurnal rest. To determine whether ambient temperature (Ta), food restriction and nest sharing can modify the daily body temperature (Tb) rhythm, Tb was recorded by telemetry during winter in six males exposed to different ambient temperatures (Ta=25, 20, 15°C) and/or to a total food restriction for 3 days depending on social condition (isolated versus pair-grouped). At 25°C, the daily rhythm of Tb was characterized by high Tb values during the night and lower values during the day. Exposure to cold significantly decreased minimal Tb values and lengthened the daily hypothermia. Under food restriction, minimal Tb values were also markedly lowered. The combination of food restriction and cold induced further increases in duration and depth of torpor bouts, minimal Tb reaching a level just above Ta. Although it influenced daily hypothermia less than environmental factors, nest sharing modified effects of cold and food restriction previously observed by lengthening duration of torpor but without increasing its depth. In response to external conditions, mouse lemurs may thus adjust their energy expenditures through daily modifications of both the duration and the depth of torpor.  相似文献   

18.
Body temperature, oxygen consumption, respiratory and cardiac activity and body mass loss were measured in six females and four males of the subterranean Zambian mole rat Cryptomys sp. (karyotype 2 n=68), at ambient temperatures between 10 and 35°C. Mean body temperature ranged between 36.1 and 33.2°C at ambient temperatures of 32.5–10°C and was lower in females (32.7°C) than in males (33.9°C) at ambient temperatures of 10°C but dit not differ at thermoneutrality (32.5°C). Except for body temperature, mean values of all other parameters were lowest at thermoneutrality. Mean basal oxygen consumption of 0.76 ml O2·g-1· h-1 was significantly lower than expected according to allometric equations and was different in the two sexes (females: 0.82 ml O2·g-1·h-1, males: 0.68 ml O2·g1·h-1) but was not correlated with body mass within the sexes. Basal respiratory rate of 74·min-1 (females: 66·min1, males: 87·min-1) and basal heart rate of 200·min-1 (females: 190·min-1, males: 216·min-1) were almost 30% lower than predicted, and the calculated thermal conductance of 0.144 ml O2·g-1·h1·°C-1 (females; 0.153 ml O2·g-1·h-1·°C-1, males: 0.131 ml O2·g-1·h-1·°C-1) was significantly higher than expected. The body mass loss in resting mole rats of 8.6–14.1%·day-1 was high and in percentages higher in females than in males. Oxygen consumption and body mass loss as well as respiratory and cardiac activity increased at higher and lower than thermoneutral temperatures. The regulatory increase in O2 demand below thermoneutrality was mainly saturated by increasing tidal volume but at ambient temperatures <15°C, the additional oxygen consumption was regulated by increasing frequency with slightly decreasing tidal volume. Likewise, the additional blood transport capacity was mainly effected by an increasing stroke volume while there was only a slight increase of heart frequency. In an additional field study, temperatures and humidity in different burrow systems have been determined and compared to environmental conditions above ground. Constant temperatures in the nest area 70 cm below ground between 26 and 28°C facilitate low resting metabolic rates, and high relative humidity minimizes evaporative water loss but both cause thermoregulatory problems such as overheating while digging. In 13–16 cm deep foraging tunnels, temperature fluctuations were higher following the above ground fluctuations with a time lag. Dominant breeding females had remarkably low body temperatures of 31.5–32.3°C at ambient temperatures of 20°C and appeared to be torpid. This reversible hypothermy and particular social structure involving division of labour are discussed as a strategy reducing energy expenditure in these eusocial subterranean animals with high foraging costs.Abbreviations BMR basal metabolic rate - br breath - C thermal conductance - HR neart rate - LD light/dark - M b body mass - MR metabolic rate - OP oxygen pulse - PCO2 partial pressure of carbon dioxide - PO2 partial pressure of oxygen - RMR resting metabolic rate - RR respiratory rate - T a ambient temperature - T b body temperature - TNZ thermal neural zone - O2 oxygen consumption  相似文献   

19.
Cicadas prevent body temperature from exceeding tolerable levels by a combination of behavioral responses and sweating. Sweating is activated when body temperature reaches a critical set-point temperature. We investigated control of sweating in the cicada, Tibicen dealbatus, by chemically manipulating biosynthesis of prostaglandins and other eicosanoids. Injecting prostaglandins in amounts equal to those that induce behavioral fever in scorpions and crustaceans resulted in only a small increase in set-point temperature. Blocking prostaglandin biosynthesis with cyclo-oxygenase inhibitors such as aspirin produced significant changes in set-point temperature, confirming that prostaglandins are involved in control of sweating. However, the effect of cyclo-oxygenase inhibitors was not the opposite of the effect of prostaglandins. Instead, the effect of cyclo-oxygenase inhibitors depended strongly on the value of setpoint temperature prior to treatment. Results of biochemical manipulations of other steps in eicosanoid biosynthetic pathways corroborated the results of cyclo-oxygenase inhibition and indicated that eicosanoids other than prostaglandins may be involved in control of body temperature in normothermic T. dealbatus. The effect of cyclo-oxygenase inhibitors on a given set-point temperature depended on the ambient temperature experienced by cicadas during the experiment. Surprisingly, cicadas exposed to ambient temperatures 40°C delayed activation of sweating until body temperature exceeded values normally recorded from T. dealbatus in the field. Control of body temperature in normothermic cicadas is thus complex, involving inputs from body temperature sensors, ambient temperature sensors, and at least two cyclo-oxygenase-dependent regulatory pathways.Abbreviations PUFA polyunsatured fatty acid(s) - T a ambient temperature - T b body temperature - T set set-point of body temperature for activation of sweating  相似文献   

20.
The energetic adaptations of non-breeding Tengmalm's owls (Aegolius funereus) to temperature and fasting were studied during the birds' autumnal irruptions in western Finland. Allometric analysis (including literature data and two larger owl species measured in this study) indicates that the basal metabolic rate of owls is below the mean level of non-passerine birds. However, the basal metabolic rate of the 130-g Tengmalm's owl (1.13 W) is higher than in other owls of similar size. This is probably related to its northern distribution and nomadic life history. Relative to its size, Tengmalm's owl has excellent cold resistance due to effective insulation (lower critical temperature +10°C, minimum conductance 0.19 mW·cm-2·°C-1). Radiotelemetric measurements of body temperature showed that the level of body temperature is lower than for birds in general (39.4°C at zero activity) and that the amplitude of the diurnal cycle is also low (0.2–0.6°C). In contrast to many other small birds, Tengmalm's owls do not enter hypothermia during a 5-day fast at thermoneutrality or in cold. Moreover, while the metabolic rate per bird shows the expected mass-dependent decrease, the mass-specific rate decreases only slightly during the fast. In line with this, there was no decrease in the plasma triiodothyronine concentration during the fast in the owl, whereas a dramtic drop was observed in the pigeon and Japanese quail that were used as a reference. Despite this, the owl has an excellent capacity for fasting because of its ability to accumulate extensive fat depots and its low overall metabolic rate. Fasting reduced evaporative water loss to 50% of that in the fed state. Calculations show that the oxygen consumption observed in fasting birds would involve a production of metabolic water barely sufficient to compensate for evaporative water loss. The threat of dehydration may thus set a limit to the decrease in metabolic rate in fasting owls (owls rely totally on water either ingested with food or produced metabolically). We conclude that the metabolic strategy in Tengmalm's owl is largely dictated by an evolutionary pressure for fasting endurance. With the restrictions set by small body size and water economy, this bird has apparently taken these adaptations to an extreme. The constraints that preclude hypothermia, which could increase the capacity for fasting even more, remain unknown.Abbreviations BM body mass - BMR basal metabolic rate - EWL vaporative water loss - MR metabolic rate - T3 triiodothyronine - T a ambient temperature - T b body temperature - VO2 oxygen consumption  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号