首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During development of ovarian follicles in mammals, cumulus cells and the oocyte form a mucoelastic mass that detaches itself from peripheral granulosa cell layers upon an ovulatory surge. The integrity of this cumulus-oocyte complex (COC) relies on the cohesiveness of a hyaluronan (HA)-enriched extracellular matrix (ECM). We previously identified a serum glycoprotein, inter-alpha-inhibitor (IalphaI), that is critical in organizing and stabilizing this matrix. Following an ovulatory stimulus, IalphaI diffuses into the follicular fluid and becomes integrated in the ECM through its association with HA. TSG-6 (the secreted product of the tumor necrosis factor-stimulated gene 6), another HA binding protein, forms a complex with IalphaI in synovial fluid. The purpose of this study was to investigate whether TSG-6 is involved in the ECM organization of COCs. Immunolocalization of TSG-6 and IalphaI in mouse COCs at different ovulatory stages was analyzed by immunofluorescence and laser confocal microscopy. IalphaI, TSG-6, and HA colocolized in the cumulus ECM. Western blot analyses were consistent with the presence of both TSG-6 and TSG-6/IalphaI complexes in ovulated COCs. These results suggest that TSG-6 has a structural role in COC matrix formation possibly mediating cross-linking of separate HA molecules through its binding to IalphaI.  相似文献   

2.
The high molecular mass glycosaminoglycan hyaluronan (HA) can become modified by the covalent attachment of heavy chains (HCs) derived from the serum protein inter-alpha-inhibitor (IalphaI), which is composed of three subunits (HC1, HC2 and bikunin) linked together via a chondroitin sulfate moiety. The formation of HC.HA is likely to play an important role in the stabilization of HA-rich extracellular matrices in the context of inflammatory disease (e.g. arthritis) and ovulation. Here, we have characterized the complexes formed in vitro between purified human IalphaI and recombinant human TSG-6 (an inflammation-associated protein implicated previously in this process) and show that these complexes (i.e. TSG-6 x HC1 and TSG-6 x HC2) act as intermediates in the formation of HC x HA. This is likely to involve two transesterification reactions in which an ester bond linking an HC to chondroitin sulfate in intact IalphaI is transferred first onto TSG-6 and then onto HA. The formation of TSG-6 x HC1 and TSG-6 x C2 complexes was accompanied by the production of bikunin x HC2 and bikunin x HC1 by-products, respectively, which were observed to break down, releasing free bikunin and HCs. Both TSG-6 x HC formation and the subsequent HC transfer are metal ion-dependent processes; these reactions have a requirement for either Mg2+ or Mn2+ and are inhibited by Co2+. TSG-6, which is released upon the transfer of HCs from TSG-6 onto HA, was shown to combine with IalphaI to form new TSG-6 x HC complexes and thus be recycled. The finding that TSG-6 acts as cofactor and catalyst in the production of HC x HA complexes has important implications for our understanding of inflammatory and inflammation-like processes.  相似文献   

3.
TSG-6 protein (the secreted product of the tumor necrosis factor-stimulated gene-6), a hyaluronan-binding protein comprised mainly of a Link and CUB module arranged in a contiguous fashion, has been shown previously to be a potent inhibitor of neutrophil migration in an in vivo model of acute inflammation (Wisniewski, H. G., Hua, J. C., Poppers, D. M., Naime, D., Vilcek, J., and Cronstein, B. N. (1996) J. Immunol. 156, 1609-1615). It was hypothesized that this activity of TSG-6 was likely to be mediated by its potentiation of inter-alpha-inhibitor anti-plasmin activity (causing a down-regulation of the protease network), which was reliant on these proteins forming a stable, probably covalent approximately 120-kDa complex. Here we have shown that the recombinant Link module from human TSG-6 (Link_TSG6; expressed in Escherichia coli) has an inhibitory effect on neutrophil influx into zymosan A-stimulated murine air pouches, equivalent to that of full-length protein (which we produced in a Drosophila expression system). The active dose of 1 microg of Link_TSG6 per mouse (administered intravenously) also resulted in a significant reduction in the concentrations of various inflammatory mediators (i.e. tumor necrosis factor-alpha, KC, and prostaglandin E(2)) in air pouch exudates. Link_TSG6, although unable to form a stable complex with inter-alpha-inhibitor (under conditions that promote maximum complex formation with the full-length protein), could potentiate its anti-plasmin activity. This demonstrates that formation of an approximately 120-kDa TSG-6.inter-alpha-inhibitor complex is not required for TSG-6 to enhance the serine protease inhibitory activity of inter-alpha-inhibitor. Six single-site Link_TSG6 mutants (with wild-type folds) were compared for their abilities to inhibit neutrophil migration in vivo, bind hyaluronan, and potentiate inter-alpha-inhibitor. These experiments indicate that all of the inhibitory activity of TSG-6 resides within the Link module domain, and that this anti-inflammatory property is not related to either its hyaluronan binding function or its potentiation of the anti-plasmin activity of inter-alpha-inhibitor.  相似文献   

4.
IalphaI and TSG-6 interact to form a covalent bond between the C-terminal Asp alpha-carbon of an IalphaI heavy chain (HC) and an unknown component of TSG-6. This event disrupts the protein-glycosaminoglycan-protein (PGP) cross-link and dissociates IalphaI. In simple terms the interaction involves 5 components: (i) the IalphaI HCs, (ii) bikunin, (iii) chondroitin sulfate chain, (iv) TSG-6, and (v) divalent cations. To understand the molecular mechanism of complex formation, the effect of these were separately examined. The data show that although the mature covalent cross-link between the HCs and TSG-6 only involves the C-terminal Asp residue, the native fold of both IalphaI and TSG-6 was essential for the reaction to occur. Similarly, complex formation was prevented if the chondroitin sulfate chain was cleaved, releasing bikunin but maintaining the HC1 and HC2 PGP cross-links. In contrast, releasing the majority of the bikunin protein moiety by limited proteolysis did not prevent complex formation. An analysis of the divalent-cation requirements revealed two distinct interactions between IalphaI and TSG-6: (i) a noncovalent manganese, magnesium, or calcium-independent interaction between TSG-6 and the chondroitin sulfate chain (Kd 180 nM) and (ii) a covalent manganese, magnesium, or calcium-dependent interaction generating HC1 x TSG-6, HC2 x TSG-6, and high molecular weight (HMW) IalphaI. Significantly, both free TSG-6 and HC x TSG-6 complexes were able to bind the chondroitin sulfate chain suggesting that the sites on TSG-6 were distinct. On the basis of these findings, we propose a two-step reaction mechanism involving two putative binding sites. Initially, a cation-independent interaction between TSG-6 and the chondroitin sulfate chain is formed at site 1. Subsequently, a cation-dependent transesterification occurs, generating the covalent HC x TSG-6 cross-link at another site, site 2.  相似文献   

5.
BACKGROUND: The interactions of hyaluronan (HA) with proteins are important in extracellular matrix integrity and leukocyte migration and are usually mediated by a domain termed a Link module. Although the tertiary structure of a Link module has been determined, the molecular basis of HA-protein interactions remains poorly understood. RESULTS: Isothermal titration calorimetry was used to characterize the interaction of the Link module from human TSG-6 (Link_TSG6) with HA oligosaccharides of defined length (HA(4)-HA(16)). All oligomers bound (except HA(4)) with K(d) values ranging from 0.2-0.5 microM at 25 degrees C. The reaction is exothermic with a favourable entropy and the thermodynamic profile is similar to those of other glycosaminoglycan-protein interactions. The HA(8) recognition site on Link_TSG6 was localized by comparing nuclear magnetic resonance (NMR) spectra from a 1:1 complex with free protein. Residues perturbed on HA binding include both amino acids that are likely to be directly involved in the interaction (i.e., Lys11, Tyr59, Asn67, Phe70, Lys72 and Tyr78) and those affected by a ligand-induced conformational change in the beta4/beta5 loop. The sidechain of Asn67 becomes more rigid in the complex suggesting that it is in close proximity to the binding site. CONCLUSIONS: In TSG-6 a single Link module is sufficient for a high-affinity interaction with HA. The HA-binding surface on Link_TSG6 is found in a similar position to that suggested previously for CD44, indicating that its location might be conserved across the Link module superfamily. Here we find no evidence for the involvement of linear sequence motifs in HA binding.  相似文献   

6.
Tumor necrosis factor-stimulated gene-6 (TSG-6) is a hyaluronan (HA)-binding protein that plays important roles in inflammation and ovulation. TSG-6-mediated cross-linking of HA has been proposed as a functional mechanism (e.g. for regulating leukocyte adhesion), but direct evidence for cross-linking is lacking, and we know very little about its impact on HA ultrastructure. Here we used films of polymeric and oligomeric HA chains, end-grafted to a solid support, and a combination of surface-sensitive biophysical techniques to quantify the binding of TSG-6 into HA films and to correlate binding to morphological changes. We find that full-length TSG-6 binds with pronounced positive cooperativity and demonstrate that it can cross-link HA at physiologically relevant concentrations. Our data indicate that cooperative binding of full-length TSG-6 arises from HA-induced protein oligomerization and that the TSG-6 oligomers act as cross-linkers. In contrast, the HA-binding domain of TSG-6 (the Link module) alone binds without positive cooperativity and weaker than the full-length protein. Both the Link module and full-length TSG-6 condensed and rigidified HA films, and the degree of condensation scaled with the affinity between the TSG-6 constructs and HA. We propose that condensation is the result of protein-mediated HA cross-linking. Our findings firmly establish that TSG-6 is a potent HA cross-linking agent and might hence have important implications for the mechanistic understanding of the biological function of TSG-6 (e.g. in inflammation).  相似文献   

7.
We recently found that leukocytes from thrombospondin-1 (TSP1)-deficient mice exhibit significant reductions in cell surface CD44 relative to those from wild type mice. Because TSG-6 modulates CD44-mediated cellular interactions with hyaluronan, we examined the possibility that TSP1 interacts with TSG-6. We showed that recombinant full-length human TSG-6 (TSG-6Q) and the Link module of TSG-6 (Link_TSG6) bind 125I-TSP1 with comparable affinities. Trimeric recombinant constructs containing the N-modules of TSP1 or TSP2 inhibit binding of TSP1 to TSG-6Q and Link_TSG6, but other recombinant regions of TSP1 do not. Therefore, the N-modules of both TSP1 and TSP2 specifically recognize the Link module of TSG-6. Heparin, which binds to these domains of both proteins, strongly inhibits binding of TSP1 to Link_TSG6 and TSG-6Q, but hyaluronan does not. Inhibition by heparin results from its binding to TSP1, because heparin also inhibits TSP1 binding to Link_TSG6 mutants deficient in heparin binding. Removal of bound Ca2+ from TSP1 reduces its binding to full-length TSG-6. Binding of TSP1 to Link_TSG6, however, is enhanced by chelating divalent cations. In contrast, divalent cations do not influence binding of the N-terminal region of TSP1 to TSG-6Q. This implies that divalent cation dependence is due to conformational effects of calcium-binding to the C-terminal domains of TSP1. TSP1 enhances covalent modification of the inter-alpha-trypsin inhibitor by TSG-6 and transfer of its heavy chains to hyaluronan, suggesting a physiological function of TSP1 binding to TSG-6 in regulation of hyaluronan metabolism at sites of inflammation.  相似文献   

8.
Tumour necrosis factor-stimulated gene-6 (TSG-6) is a glycosaminoglycan-binding protein expressed during inflammatory and inflammation-like processes. Previously NMR structures were calculated for the Link module of TSG-6 (Link_TSG6) in its free state and when bound to an octasaccharide of hyaluronan (HA(8)). Heparin was found to compete for HA binding even though it interacts at a site that is distinct from the HA-binding surface. Here we present crystallography data on the free protein, and (15)N NMR relaxation data for the uncomplexed and HA(8)-bound forms of Link_TSG6. Although the Link module is comparatively rigid overall, the free protein shows a high degree of mobility in the beta4/beta5 loop and at the Cys47-Cys68 disulfide bond, both of which are regions involved in HA binding. When bound to HA(8), this dynamic behaviour is dampened, but not eliminated, suggesting a degree of dynamic matching between the protein and sugar that may decrease the entropic penalty of complex formation. A further highly dynamic residue is Lys54, which is distant from the HA-binding site, but was previously shown to be involved in heparin binding. When HA is bound, Lys54 becomes less mobile, providing evidence for an allosteric effect linking the HA and heparin-binding sites. A mechanism is suggested involving the beta2-strand and alpha2-helix. The crystal structure of free Link_TSG6 contains five molecules in the asymmetric unit that are highly similar to the NMR structure and support the dynamic behaviour seen near the HA-binding site: they show little or no electron density for the beta4/beta5 loop and display multiple conformations for the Cys47-Cys68 disulfide bond. The crystal structures were used in docking calculations with heparin. An extended interface between a Link_TSG6 dimer and heparin 11-mer was identified that is in excellent agreement with previous mutagenesis and calorimetric data, providing the basis for further investigation of this interaction.  相似文献   

9.
The matrix polysaccharide hyaluronan (HA) has a critical role in the expansion of the cumulus cell-oocyte complex (COC), a process that is necessary for ovulation and fertilization in most mammals. Hyaluronan is organized into a cross-linked network by the cooperative action of three proteins, inter-α-inhibitor (IαI), pentraxin-3, and TNF-stimulated gene-6 (TSG-6), driving the expansion of the COC and providing the cumulus matrix with its required viscoelastic properties. Although it is known that matrix stabilization involves the TSG-6-mediated transfer of IαI heavy chains (HCs) onto hyaluronan (to form covalent HC·HA complexes that are cross-linked by pentraxin-3) and that this occurs via the formation of covalent HC·TSG-6 intermediates, the underlying molecular mechanisms are not well understood. Here, we have determined the tertiary structure of the CUB module from human TSG-6, identifying a calcium ion-binding site and chelating glutamic acid residue that mediate the formation of HC·TSG-6. This occurs via an initial metal ion-dependent, non-covalent, interaction between TSG-6 and HCs that also requires the presence of an HC-associated magnesium ion. In addition, we have found that the well characterized hyaluronan-binding site in the TSG-6 Link module is not used for recognition during transfer of HCs onto HA. Analysis of TSG-6 mutants (with impaired transferase and/or hyaluronan-binding functions) revealed that although the TSG-6-mediated formation of HC·HA complexes is essential for the expansion of mouse COCs in vitro, the hyaluronan-binding function of TSG-6 does not play a major role in the stabilization of the murine cumulus matrix.  相似文献   

10.
Link modules are hyaluronan-binding domains found in extracellular proteins involved in matrix assembly, development, and immune cell migration. Previously we have expressed the Link module from the inflammation-associated protein tumor necrosis factor-stimulated gene-6 (TSG-6) and determined its tertiary structure in solution. Here we generated 21 Link module mutants, and these were analyzed by nuclear magnetic resonance spectroscopy and a hyaluronan-binding assay. The individual mutation of five amino acids, which form a cluster on one face of the Link module, caused large reductions in functional activity but did not affect the Link module fold. This ligand-binding site in TSG-6 is similar to that determined previously for the hyaluronan receptor, CD44, suggesting that the location of the interaction surfaces may also be conserved in other Link module-containing proteins. Analysis of the sequences of TSG-6 and CD44 indicates that the molecular details of their association with hyaluronan are likely to be significantly different. This comparison identifies key sequence positions that may be important in mediating hyaluronan binding, across the Link module superfamily. The use of multiple sequence alignment and molecular modeling allowed the prediction of functional residues in link protein, and this approach can be extended to all members of the superfamily.  相似文献   

11.
Human plasma fibronectin binds with high affinity to the inflammation-induced secreted protein TSG-6. Fibronectin binds to the CUB_C domain of TSG-6 but not to its Link module. TSG-6 can thus act as a bridging molecule to facilitate fibronectin association with the TSG-6 Link module ligand thrombospondin-1. Fibronectin binding to TSG-6 is divalent cation-independent and is conserved in cellular fibronectins. Based on competition binding studies using recombinant and proteolytic fragments of fibronectin, TSG-6 binding localizes to type III repeats 9-14 of fibronectin. This region of fibronectin contains the Arg-Gly-Asp sequence recognized by alpha5beta1 integrin, but deletion of that sequence does not prevent TSG-6 binding, and TSG-6 does not inhibit cell adhesion on fibronectin substrates mediated by this integrin. This region of fibronectin is also involved in fibronectin matrix assembly, and addition of TSG-6 enhances exogenous and endogenous fibronectin matrix assembly by human fibroblasts. Therefore, TSG-6 is a high affinity ligand that can mediate fibronectin interactions with other matrix components and modulate some interactions of fibronectin with cells.  相似文献   

12.
The physiological functions of hyaluronan (HA) in the extracellular matrix of vertebrate tissues involve a range of specific protein interactions. In this study, the interaction of HA with the Link module from TSG-6 (Link_TSG6) and G1 domain of aggrecan (G1), were investigated by a biophysical analysis of translational diffusion in dilute solution using confocal fluorescence recovery after photobleaching (confocal FRAP). Both Link_TSG6 and G1 were shown to bind to polymeric HA and these interactions could be competed with HA(8) and HA(10) oligosaccharides, respectively. Equilibrium experiments showed that the binding affinity of Link_TSG6 to HA was maximal at pH 6.0, and reduced dramatically above and below this pH. In contrast, G1 had maximum binding at pH 7.0-8.0 and moderate to strong binding affinity over a much broader pH range (5.5-8.0). The K(D) determined for Link_TSG6 binding to HA showed a 100-fold increase in binding affinity between pH 7.4 and 6.0, whereas G1 showed a 75-fold decrease in binding affinity over the same pH range. The sharp difference observed in their pH binding suggests that pH controls the physiological function of TSG-6, with a low affinity for HA at neutral pH, but with increased affinity as the pH falls below pH 7. TSG-6 and aggrecan interact with HA through structurally homologous domains and the difference in pH-dependent binding can be understood in terms of differences in the presence and topographical distribution of key regulatory amino acids in Link_TSG6 and in the related tandem Link domains in aggrecan G1.  相似文献   

13.
Tumor necrosis factor-stimulated gene-6 (TSG-6) is an inflammation-associated hyaluronan (HA)-binding protein that contributes to remodeling of HA-rich extracellular matrices during inflammatory processes and ovulation. The HA-binding domain of TSG-6 consists solely of a Link module, making it a prototypical member of the superfamily of proteins that interacts with this high molecular weight polysaccharide composed of repeating disaccharides of d-glucuronic acid and N-acetyl-d-glucosamine (GlcNAc). Previously we modeled a complex of the TSG-6 Link module in association with an HA octasaccharide based on the structure of the domain in its HA-bound conformation. Here we have generated a refined model for a HA/Link module complex using novel restraints identified from NMR spectroscopy of the protein in the presence of 10 distinct HA oligosaccharides (from 4- to 8-mers); the model was then tested using unique sugar reagents, i.e. chondroitin/HA hybrid oligomers and an octasaccharide in which a single sugar ring was 13C-labeled. The HA chain was found to make more extensive contacts with the TSG-6 surface than thought previously, such that a d-glucuronic acid ring makes stacking and ionic interactions with a histidine and lysine, respectively. Importantly, this causes the HA to bend around two faces of the Link module (resembling the way that HA binds to CD44), potentially providing a mechanism for how TSG-6 can reorganize HA during inflammation. However, the HA-binding site defined here may not play a role in TSG-6-mediated transfer of heavy chains from inter-α-inhibitor onto HA, a process known to be essential for ovulation.  相似文献   

14.
TSG-6 is an inflammation-associated hyaluronan (HA)-binding protein that has anti-inflammatory and protective functions in arthritis and asthma as well as a critical role in mammalian ovulation. The interaction between TSG-6 and HA is pH-dependent, with a marked reduction in affinity on increasing the pH from 6.0 to 8.0. Here we have investigated the mechanism underlying this pH dependence using a combined approach of site-directed mutagenesis, NMR, isothermal titration calorimetry and microtiter plate assays. Analysis of single-site mutants of the TSG-6 Link module indicated that the loss in affinity above pH 6.0 is mediated by the change in ionization state of a histidine residue (His(4)) that is not within the HA-binding site. To understand this in molecular terms, the pH-dependent folding profile and the pK(a) values of charged residues within the Link module were determined using NMR. These data indicated that His(4) makes a salt bridge to one side-chain oxygen atom of a buried aspartate residue (Asp(89)), whereas the other oxygen is simultaneously hydrogen-bonded to a key HA-binding residue (Tyr(12)). This molecular network transmits the change in ionization state of His(4) to the HA-binding site, which explains the loss of affinity at high pH. In contrast, simulations of the pH affinity curves indicate that another histidine residue, His(45), is largely responsible for the gain in affinity for HA between pH 3.5 and 6.0. The pH-dependent interaction of TSG-6 with HA (and other ligands) provides a means of differentially regulating the functional activity of this protein in different tissue microenvironments.  相似文献   

15.
The CD44 molecule is a widely distributed cell surface receptor for the extracellular matrix glycosaminoglycan hyaluronan. The ligand-binding site which is located in the membrane distal portion of the molecule encompasses a region of approximately 100 amino acids termed the Link domain, a structural unit that is conserved among members of the Hyaladherin superfamily which includes cartilage link protein, aggrecan, and tumor necrosis factor-stimulated gene-6 (TSG-6). In contrast to these other Hyaladherins, however, the ligand-binding domain of CD44 appears to extend beyond the Link domain to involve additional basic residues located toward the membrane proximal region. Furthermore, recent molecular modeling studies indicate that within the CD44 Link domain itself, the spatial arrangement of critical residues involved in HA binding is likely to differ significantly from the prototypic TSG-6 Link module. In order to obtain material to solve the CD44 solution structure we have developed an optimized method for the expression and purification of functionally active CD44 ectodomains encompassing both the Link module and the additional downstream HA-binding residues inEscherichia coli.Here we describe the details of the method which involves solubilization of recombinant CD44 from inclusion bodies in 8 M urea, followed by refolding and purification of intact monomers using size-exclusion and reverse-phase chromatography. We show the method yields CD44 molecules that (1) retain reactivity with a panel of conformation-sensitive antibodies, (2) possess similar hyaluronan-binding characteristics to authentically folded CD44 molecules expressed in eukaryotic cells, and (3) display one-dimensional NMR spectra that indicate the presence of a single conformational species. This method should enable sufficient amounts of functional CD44 Link module to be produced for comprehensive structural analyses by multidimensional NMR spectroscopy.  相似文献   

16.
CD44, a cell-surface receptor for the extracellular matrix glycosaminoglycan hyaluronan, can mediate leukocyte rolling on hyaluronan substrates and has been implicated in leukocyte migration to sites of inflammation. CD44-mediated binding to hyaluronan is of low affinity, and effective cell/matrix interaction depends on multiple interactions with the multivalent ligand. We replaced the Link module of CD44 with the homologous region of TSG-6, a hyaluronan-binding protein secreted in response to inflammation whose Link module has a higher affinity for ligand. Monoclonal antibodies raised against the CD44/TSG-6 chimera recognized recombinant human TSG-6 and native mouse TSG-6 and blocked hyaluronan binding to these proteins. Cells expressing the CD44/TSG-6 molecule bound hyaluronan with higher avidity than cells expressing CD44. This resulted in changes in the hyaluronan binding properties characteristic of cells expressing CD44 such as requirements for threshold levels of receptor expression and for hyaluronan of high molecular mass. In parallel plate flow assays used to model leukocyte rolling, cells expressing CD44/TSG-6 failed to roll on hyaluronan. Instead, they stuck and remained "tethered" to the substrate under fluid flow. This result argues that the low affinity of CD44 for its ligand is important for rolling, an early phase of leukocyte extravasation from the blood.  相似文献   

17.
The Link module from human TSG-6, a hyaladherin with roles in ovulation and inflammation, has a hyaluronan (HA)-binding groove containing two adjacent tyrosine residues that are likely to form CH-pi stacking interactions with sequential rings in the sugar. We have used this observation to construct a model of a protein.HA complex, which was then tested against existing experimental information and by acquisition of new NMR data sets of [(13)C, (15)N]HA (8-mer) complexed with unlabeled protein. A major finding of this analysis was that acetamido side chains of two GlcNAc rings fit into hydrophobic pockets on either side of the adjacent tyrosines, providing a selectivity mechanism of HA over other polysaccharides. Furthermore, two basic residues have a separation that matches that of glucuronic acids in the sugar, consistent with the formation of salt bridges; NMR experiments at a range of pH values identified protein groups that titrate due to their proximity to a free carboxylate in HA. Sequence alignment and construction of homology models for all human Link modules in their HA-bound states revealed that many of these features are conserved across the superfamily, thus allowing the prediction of functionally important residues. In the case of cartilage link protein, its two Link modules were docked together (using bound HA as a guide), identifying hydrophobic residues likely to form an intra-Link module interface as well as amino acids that could be involved in supporting intermolecular interactions between link proteins and chondroitin sulfate proteoglycans. Here, we propose a mechanism for ternary complex formation that generates higher order helical structures, as may exist in cartilage aggregates.  相似文献   

18.
19.
Heparin and heparan sulfate binding sites on B-16 melanoma cells   总被引:2,自引:0,他引:2  
We have reported previously that the production of a tumor cell factor that stimulates synthesis of fibroblast collagenase is influenced by a fibroblast-deposited matrix component, possibly heparan sulfate-proteoglycan. In this study, binding sites for heparin and heparan sulfate on mouse B-16 melanoma cells have been demonstrated. Binding of 3H-heparin and 35S-heparan sulfate has been shown to occur to whole cells, isolated membranes, and to a component(s) of detergent extracts of the membranes. Scatchard analysis of binding of 3H-heparin yielded a Kd of 2-5 x 10(-8) M and a Bmax of 0.5 x 10(7) heparin molecules bound per cell. Binding of 35S-heparan sulfate was of at least an order of magnitude lower affinity than heparin, but the Bmax was similar to that for heparin. Competition studies showed that 35S-heparan sulfate binding was inhibited totally by heparin and heparan sulfate and partially by dermatan sulfate, but no inhibition was obtained with hyaluronate or chondroitin sulfate. Binding of 3H-heparin was inhibited totally by heparin but to different extents by preparations of heparan sulfate from different tissue sources. The heparin/heparan sulfate binding activity is a protein(s) because it is destroyed by treatment with trypsin. Binding of 3H-heparin to transblots of the detergent extract of the B-16 cell membranes indicated that at least part of the binding activity is a 14,000-dalton protein.  相似文献   

20.
Hyaluronan (HA) deposition is often correlated with mucosal inflammatory responses, where HA mediates both protective and pathological responses. By modifying the HA matrix, Tnfip6 (TNF-α-induced protein-6; also known as TSG-6 (TNF-stimulated gene-6)) is thought to potentiate anti-inflammatory and anti-plasmin effects that are inhibitory to leukocyte extravasation. In this study, we examined the role of endogenous TSG-6 in the pathophysiological responses associated with acute allergic pulmonary inflammation. Compared with wild-type littermate controls, TSG-6−/− mice exhibited attenuated inflammation marked by a significant decrease in pulmonary HA concentrations measured in the bronchoalveolar lavage and lung tissue. Interestingly, despite the equivalent induction of both humoral and cellular Th2 immunity and the comparable levels of cytokines and chemokines typically associated with eosinophilic pulmonary inflammation, airway eosinophilia was significantly decreased in TSG-6−/− mice. Most importantly, contrary to their counterpart wild-type littermates, TSG-6−/− mice were resistant to the induction of airway hyperresponsiveness and manifested improved lung mechanics in response to methacholine challenge. Our study demonstrates that endogenous TSG-6 is dispensable for the induction of Th2 immunity but is essential for the robust increase in pulmonary HA deposition, propagation of acute eosinophilic pulmonary inflammation, and development of airway hyperresponsiveness. Thus, TSG-6 is implicated in the experimental murine model of allergic pulmonary inflammation and is likely to contribute to the pathogenesis of asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号