首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased efferent renal sympathetic nerve activity could facilitate the development of hypertension by shifting the arterial pressure-renal sodium excretion curve to the right. Accordingly, interruption of the renal nerves should prevent the development of hypertension in animal models in which increased sympathetic nervous system activity has been implicated. Renal denervation delays the development of hypertension and results in greater sodium excretion in the Okamoto and New Zealand spontaneously hypertensive rat and in the deoxycorticosterone acetate-salt-treated rat, which suggests that these responses result from, at least in part, loss of efferent renal nerve activity. Similar sympathetically mediated renal vasoconstriction has been implicated in the pathogenesis of early essential hypertension in humans. The efferent renal sympathetic nerves play a diminishing role once hypertension is established in these models. Renal denervation in established one-kidney, one-clip and two-kidney, one-clip Goldblatt hypertension in the rat and chronic coarctation in the dog results in an attenuation of the hypertension. The depressor effect of renal denervation in these models is not caused by changes in renin activity or sodium excretion but is associated with decreased sympathoadrenal activity. These findings suggest that the afferent renal nerves contribute to the pathogenesis of renovascular hypertension by enhancing the activity of the sympathetic nervous system. Interruption of afferent renal fibers also appears to be the mechanism by which renal denervation prevents or reverses the normal increase in arterial pressure seen after aortic baroreceptor deafferentation in the rat.  相似文献   

2.
The renal nerves contribute to hypertension in experimental models of the disease, and appear to play a role in human hypertension. Several lines of evidence indicate that both in spontaneously hypertensive rats and in deoxycorticosterone acetate--NaCl rats, the full development of hypertension is dependent on renal efferent nerves and their induction of excess sodium retention. Renal sensory (afferent nerve) feedback to the central nervous system does not contribute to either of these forms of hypertension. In contrast, renovascular hypertension in rats and aortic coarctation hypertension in dogs are mediated, at least in part, by overactivity of renal afferent nerves and a resultant increase in systemic sympathetic nervous system activity. These forms of hypertension are not associated with sodium retention, and selective sensory denervation of renal afferent nerves by dorsal rhizotomy and total renal denervation result in similar reductions in hypertension. Surprisingly, the renal nerves do not contribute to dietary NaCl exacerbated hypertension in the spontaneously hypertensive rat, dietary NaCl-induced hypertension in the Dahl NaCl-sensitive rat, or the chronic hypertensive and nephrotoxic effects of cyclosporine A therapy in the rat, despite the finding that in all three forms of hypertension, overactivity of the sympathetic nervous system is prominent. Clinical studies indicate that the renal afferent and efferent nerves contribute to hypertension of different etiologies. Together these data point to the complex role that the renal nerves likely play in human essential hypertension.  相似文献   

3.
生理情况下,心脏和肾脏在血流动力学和神经激素等调节中相互作用,对于循环系统的稳态维持起重要作用。但在充血性心力衰竭的病理情况下,心脏和肾脏之间存在明显的调节紊乱。首先,急性失代偿性心力衰竭的患者住院治疗的研究结果证明其有一定程度的肾脏失调。其次,慢性充血性心力衰竭时肾脏交感神经系统也起到重要作用:肾脏交感纤维活性增强可导致肾素的释放、钠水潴留、肾血流的降低、血管阻力增加、左心室重塑、左心功能失调等。众所周知,肾脏交感神经切除术可以减低血压和改善心脏功能,但是由于有创的手术方式限制了其应用。过去两年间,随着新的导管消融肾脏去神经化技术的日益完善,其有望成为治疗高血压病和心力衰竭的手段。在此,本文综述了心力衰竭时肾脏交感传入神经和传出神经的发病机理,对目前进行的经导管肾脏去神经化治疗慢性心力衰竭的基础及临床试验进行安全性及有效性评价。提示我们经导管肾脏去神经化有望成为心力衰竭治疗的新靶点。  相似文献   

4.
Noradrenergic fibers innervate various parts of the nephron and can contribute to sodium and water homeostasis by influencing hemodynamic variables, tubular reabsorptive mechanisms, and renin release. As renal function is considered to be a primary determinant of arterial pressure, efferent renal nerves may be an important link between the central nervous system and the kidney in the development and maintenance of hypertension. Little is known about the relative importance of renal nerves and their interactions with other factors in influencing renal function chronically. There is disagreement about the evidence for enhanced noradrenergic drive to the kidney in hypertensive rats, as the renal nerve firing rate, neurotransmitter release and metabolism, and receptor properties are generally not studied in association with measurements of renal function. However, chronic renal denervation has been shown to significantly affect arterial pressure in diverse forms of experimental hypertension in rats, including genetic models, as well as renovascular, mineralocorticoid, neurogenic, and angiotensin II hypertension. The actual mechanisms responsible for this effect of renal denervation are not clear, but presumably reflect changes in the arterial pressure-urinary sodium output relationship. On the whole, there is reasonable correlation between neurophysiological, biochemical, and renal denervation studies in the spontaneously hypertensive rat, suggesting that renal nerves do play a role in the onset of hypertension in these animals. The effect of renal denervation in other models of hypertension seems less clear, with recent reports showing that renal denervation does not alter the hypertensive process in renovascular, mineralocorticoid, and salt-related hypertension.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In rats, stimulation of renal mechanoreceptors by increasing ureteral pressure results in a contralateral inhibitory renorenal reflex response consisting of increases in ipsilateral afferent renal nerve activity, decreases in contralateral efferent renal nerve activity, and increases in contralateral urine flow rate and urinary sodium excretion. Mean arterial pressure is unchanged. To study possible functional central interaction among the afferent renal nerves and the aortic and carotid sinus nerves, the responses to renal mechanoreceptor stimulation were compared in sinoaortic denervated rats and sham-denervated rats before and after vagotomy. In contrast to sham-denervated rats, there was an increase in mean arterial pressure in response to renal mechanoreceptor stimulation in sinoaortic-denervated rats. However, there were no differences in the renorenal reflex responses among the groups. Thus, our data failed to support a functional central interaction among the renal, carotid sinus, and aortic afferent nerves in the renorenal reflex response to renal mechanoreceptor stimulation. Studies to examine peripheral interaction between efferent and afferent renal nerves showed that marked reduction in efferent renal nerve activity produced by spinal cord section at T6, ganglionic blockade, volume expansion, or stretch of the junction of superior vena cava and right atrium abolished the responses in afferent renal nerve activity and contralateral renal function to renal mechanoreceptor stimulation. Conversely, increases in efferent renal nerve activity caused by thermal cutaneous stimulation increased basal afferent renal nerve activity and its responses to renal mechanoreceptor stimulation. These data suggest a facilitatory role of efferent renal nerves on renal sensory receptors.  相似文献   

6.
The effects of stressful environmental stimuli on urinary sodium excretion in conscious dogs, rats, and humans are reviewed. Environmental stress can increase sympathetic neural outflow and decrease sodium excretion. The antinatriuretic response to environmental stress is accompanied by an unchanged renal blood flow and glomerular filtration rate, which indicates mediation via an increased renal tubular sodium reabsorption. The antinatriuresis resulting from environmental stress is associated with increased renal sympathetic nerve activity, and is abolished by surgical renal denervation. In the central nervous system, but not in the kidney, beta adrenoceptors mediate the increased renal sympathetic nerve activity and antinatriuretic responses to environmental stress. The increased renal sympathetic nerve activity and antinatriuretic responses to environmental stress are greater in spontaneously hypertensive rats (SHR) than in normotensive Wistar-Kyoto (WKY) rats. In SHR, but not WKY rats, the increased renal sympathetic nerve activity and antinatriuretic responses are enhanced by a high-sodium diet. Similarly, stressful competition in human young adult males results in an antinatriuresis only if a positive family history of hypertension is present. Thus, environmental stress can increase renal tubular sodium reabsorption via a central beta-adrenoceptor mechanism with activation of the renal sympathetic nerves in both conscious dogs and SHR. The antinatriuretic response to environmental stress is greater in rats and humans with a genetic predisposition to develop hypertension.  相似文献   

7.
Exaggerated natriuresis in experimental hypertension   总被引:1,自引:0,他引:1  
The exaggerated natriuretic response to intravenous isotonic saline volume expansion in conscious spontaneous hypertensive rats (SHR), compared to normotensive Wistar-Kyoto rats (WKY), is associated with an exaggerated inhibition of renal nerve activity. Following bilateral renal denervation, the natriuresis was significantly attenuated in SHR but unaffected in WKY. Thus, the exaggerated natriuretic response to intravenous isotonic saline in SHR is dependent on their enhanced inhibition of renal nerve activity. Conscious Dahl salt-sensitive rats, on either low or high salt diet, did not exhibit an exaggerated natriuretic response to intravenous isotonic saline volume expansion which may be explained by their known impairment of cardiopulmonary baroreceptor reflex mediated suppression of efferent sympathetic nerve activity during intravenous volume expansion. Conscious hypertensive DOCA-NaCl rats exhibited an exaggerated natriuretic response to oral but not to intravenous isotonic saline volume expansion, suggesting differences in gastrointestinal absorption of isotonic saline. It is concluded that enhanced inhibition of efferent renal sympathetic nerve activity via cardiopulmonary baroreceptor reflex activation contributes to the exaggerated natriuretic response to intravenous isotonic saline volume expansion in certain models of experimental hypertension.  相似文献   

8.
The mechanism by which blood pressure rises in the SHR strain remains to be elucidated. Since the long-term changes in renal sodium tubule handling associated with genetic hypertension have not been examined in detail, we hypothesized that SHR hypertension development may result from sustained renal sympathetic nerve overactivity and consequently decreased urinary sodium excretion. To test this hypothesis, we assessed renal sodium handling and cumulative sodium balance for 10 consecutive weeks in unanesthetized renal-denervated SHR, performed prior to the start of the entire 10-week metabolic studies, and their age-matched normotensive and hypertensive controls. The present investigation shows that SHR excreted less sodium than Wistar-Kyoto (WKy) rats during the initial 3-week observation period (p <0.05). This tendency was reversed when SHR were 10-wk old. Fractional urinary sodium excretion (FENa+) was significantly lower in 3 and 6-wk-old SHR when compared with the WKy age-matched group, as follows: SHR3-wk-old: 0.33 +/- 0.09% and WKy3-wk-old: 0.75 +/- 0.1% (P <0.05); SHR(6-wk-old): 0.52 +/- 0.12% and WKy6-wk-old: 0.83 +/- 0.11%. The decreased FENa+ in young SHR was accompanied by a significant increase in proximal sodium reabsorption (FEPNa+) compared with the normotensive age-matched control group (P <0.01). This increase occurred despite unchanged creatinine clearance (CCr) and fractional post-proximal sodium excretion (FEPPNa+)in all groups studied. The decreased urinary sodium excretion response in SHR up to the age of 6 weeks was significantly eradicated by bilateral renal denervation of SHR3-wk-old: 0.33 +/- 0.09% and SHR6-wk-old: 0.52 +/- 0.12% to DxSHR 3-wk-old: 1.02 +/- 0.2% and DxSHR 6-wk-old: 0.94 +/- 0.2% (P <0.01), in renal denervated rats. The current data suggest that neural pathways may play an instrumental role on renal sodium reabsorption as result of sustained sympathetic nervous system overexcitability.  相似文献   

9.
Female spontaneously hypertensive rats (SHR) have lower blood pressures than males. The renin-angiotensin system plays an important role in the sexual dimorphism of blood pressure in SHR. The sympathetic nervous system can stimulate renin release, and, therefore, the present study was performed to determine whether the renal sympathetic nerves play a role in the sexual dimorphism of blood pressure in SHR. Male and female SHR underwent bilateral kidney denervation or sham surgery, and, 2 wk later, mean arterial pressure (MAP) and pulse interval were recorded, and baroreflex sensitivity (BRS) was measured by the sequence technique. Left ventricle index (LVI) was also calculated. MAP was higher in sham-operated males than females (182 +/- 5 vs. 169 +/- 4 mmHg; P < 0.01), but, despite the higher MAP in males, LVI was significantly greater in female rats. BRS was not different between sham-operated male and female SHR. Following bilateral renal denervation, MAP was decreased by a similar percentage (8-10%) in males (169 +/- 2 mmHg) and females (152 +/- 3 mmHg), whereas LVI was reduced only in female SHR. BRS was not altered by renal denervation in either sex. These data indicate that renal nerves play a role in the control of blood pressure in SHR independent of sex, but do not play a role in mediating the sex differences in blood pressure.  相似文献   

10.
The innervation of the dorsal aorta and renal vasculature in the toad (Bufo marinus) has been studied with both fluorescence and ultrastructural histochemistry. The innervation consists primarily of a dense plexus of adrenergic nerves associated with all levels of the preglomerular vasculature. Non-adrenergic nerves are occasionally found in the renal artery, and even more rarely near the afferent arterioles. Many of the adrenergic nerve profiles in the dorsal aorta and renal vasculature are distinguished by high proportions of chromaffin-negative, large, filled vesicles. Close neuromuscular contacts are common in both the renal arteries and afferent arterioles. Possibly every smooth muscle cell in the afferent arterioles is multiply innervated. The glomerular capillaries and peritubular vessels are not innervated, and only 3-5% of efferent arterioles are accompanied by single adrenergic nerve fibres. Thus, nervous control of glomerular blood flow must be exerted primarily by adrenergic nerves acting on the preglomerular vasculature. The adrenergic innervation of the renal portal veins and efferent renal veins may play a role in regulating peritubular blood flow. In addition, glomerular and postglomerular control of renal blood flow could be achieved by circulating agents acting via contractile elements in the glomerular mesangial cells, and in the endothelial cells and pericytes of the efferent arterioles. Some adrenergic nerve profiles near afferent arterioles are as close as 70 nm to distal tubule cells, indicating that tubular function may be directly controlled by adrenergic nerves.  相似文献   

11.
The influence of renal nerves on the effects of concurrent NO synthase inhibition (10 mg kg(-1) b.w. i.v. L-NAME) and ET(A)/ET(B) receptor inhibition (10 mg kg(-1) b.w. i.v. bosentan) on renal excretory function and blood pressure in conscious spontaneously hypertensive rats (SHR) was investigated. L-NAME increased blood pressure, urine flow rate, fractional excretion of sodium, chloride and phosphate in both normotensive Wistar rats and SHR with intact renal nerves (p<0.01). GFR or RBF did not change in any of the groups investigated. The effects of L-NAME on renal excretory function were markedly reduced by bosentan and the values returned to control level in the normotensive rats, while in SHR the values were reduced by bosentan, but they remained significantly elevated as compared to control level (p<0.05). The hypertensive response induced by L-NAME in SHR is partially due to activation of endogenous endothelins, but it does not depend on renal nerves. Chronic bilateral renal denervation abolished the effect of L-NAME on sodium and chloride excretion in normotensive rats, whereas it did not alter this effect in SHR. The participation of endogenous endothelins in changes of renal excretory function following NO synthase inhibition is diminished in SHR as compared to Wistar rats.  相似文献   

12.
The kidney has both afferent (sensory) and efferent (sympathetic) nerves that can influence renal function. Renal innervation has been shown to play a role in the pathogenesis of many forms of hypertension. Hypertension and flank pain are common clinical manifestations of autosomal dominant (AD) polycystic kidney disease (PKD). We hypothesize that renal innervation contributes to the hypertension and progression of cystic change in rodent PKD. In the present study, the contribution of renal innervation to hypertension and progression of renal histopathology and dysfunction was assessed in male Han:SPRD-Cy/+ rats with ADPKD. At 4 weeks of age, male offspring from crosses of heterozygotes (Cy/+) were randomized into either 1) bilateral surgical renal denervation, 2) surgical sham denervation control, or 3) nonoperated control groups. A midline laparotomy was performed to allow the renal denervation (i.e., physical stripping of the nerves and painting the artery with phenol/alcohol). Blood pressure (tail cuff method), renal function (BUN) and histology were assessed at 8 weeks of age. Bilateral renal denervation reduced the cystic kidney size, cyst volume density, systolic blood pressure, and improved renal function (BUN) as compared with nonoperated controls. Operated control cystic rats had kidney weights, cyst volume densities, systolic blood pressures, and plasma BUN levels that were intermediate between those in the denervated animals and the nonoperated controls. The denervated group had a reduced systolic blood pressure compared with the operated control animals, indicating that the renal innervations was a major contributor to the hypertension in this model of ADPKD. Renal denervation was efficacious in reducing some pathology, including hypertension, renal enlargement, and cystic pathology. However, sham operation also affected the cystic disease but to a lesser extent. We hypothesize that the amelioration of hypertension in Cy/+ rats was due to the effects of renal denervation on the renin angiotensin system.  相似文献   

13.
In previous experiments we have demonstrated that the renal nerves play a significant role in all genetic and (or) induced models of hypertension that we have studied. The current experiments extended this research by investigating the contribution of the renal nerves to hypertension in the Dahl NaCl-sensitive rat. This was investigated by assessing the effect of bilateral phenol renal denervation carried out prior to initiation of a high NaCl (8% NaCl) diet. In two separate studies, renal denervation did not affect systolic blood pressure in either Dahl NaCl-sensitive rats or their normotensive counterparts, Dahl NaCl-resistant rats. Further, denervation did not increase absolute urinary sodium excretion, percent urinary sodium excretion, urinary volume output, or food or water intake; nor did it differentially alter creatinine clearance or body weight. Denervation was verified at the termination of each study by a greater than 80% depletion of renal noradrenaline stores. These results indicate that the renal nerves do not provide a major contribution to hypertension in the Dahl NaCl-sensitive rat.  相似文献   

14.
刺激家兔肾内感受器和肾传入神经的血流动力学效应   总被引:2,自引:1,他引:1  
马戈  何瑞荣 《生理学报》1990,42(3):262-268
在39只麻醉家兔观察刺激肾脏机械和化学感受器以及电刺激肾传入神经的血流动力学效应。增加输尿管压8—22mmHg 及经输尿管向肾盂内逆向灌注 NaCl(1.0 mol/L)及 KCl(0.15mol/L)溶液时,引起平均动脉压(MAP)和心率(HR)下降;切断双侧缓冲神经后,MAP 降低更为显著。电刺激肾传入神经时,HR 减慢,MAP、肠系膜动脉和后肢动脉灌流压降低,左心室收缩压及其微分值下降,心输出量(CO)和总外周阻力(TPR)减小;切断双侧窦神经和减压神经后,除 HK、CO 和 TPR 外,其余各血流动力学指标的减弱更为显著。由此提示,动脉压力感受器反射对肾传入神经激活的心血管效应有缓冲作用。  相似文献   

15.
To explore the role of arterial chemoreceptors, the effect of hypobaric hypoxia on urinary sodium excretion and systolic blood pressure was investigated in conscious spontaneously hypertensive rats (SHR) with carotid body denervation (CBD) or after sham-operation (SO). Denervation of the carotid bodies was performed by section of the carotid sinus nerves. Exposure to hypobaric hypoxia equivalent to high altitude of 4000 m led to a more pronounced decrease in systolic blood pressure in CBD-rats than in SO-rats. The pattern of urinary sodium excretion observed on the first two days of hypoxia in both groups was not affected by the chemodenervation. It is being suggested that arterial chemoreceptors do not play a critical role in blood pressure and natriuretic responses to hypobaric hypoxia in conscious SHR.  相似文献   

16.
在46只麻醉兔,记录了经冠脉内注射尼古丁诱发Bezold-Jarisch反射时不同区域交感神经传出放电的变化。肾神经、心脏神经、脾神经、星状神经节-颈神经交通支和颈前神经节的颈外动脉支五个部位的交感性传出放电,在冠脉内注射尼古丁后均减少,其中以肾神经、心脏神经和脾神经的减少更为显著。此结果表明,交感神经传出放电减少所致的总外周阻力降低,在Bezold-Jarisch反射诱发的低血压中起着重要作用。  相似文献   

17.
Chen RF  Wang J  Jiao XY  Liu HR  Zhao RR  Zhi JM 《生理学报》2006,58(1):90-94
本实验采用不同的方法复制两肾-夹(two-kidney one-cliprenal hypertensive,2K1C)、神经性、DOCA-盐高血压和自发性高血压大鼠模型,观察AT1A受体自身抗体(AT1A-receptorautoantibodies,AT1A-AAs)在不同高血压发病的变化规律,同时对自身抗体生物活性进行分析。实验结果表明,在高血压发病过程中AT1A-AAs的阳性率和滴度均明显增加,在四种模型中,自发性高血压组最明显,2K1C和神经性组次之。AT1A-AAs的生物活性显示,可增加培养的新生鼠心肌细胞跳动频率和血管收缩张力。结果提示,自身免疫机制参与了高血压的形成,AT1A-AAs可能与心肌肥厚有关。  相似文献   

18.
Excess 6β-OH-corticosterone production by family 3A cytochromes P-450 may play a role in genesis of hypertension in the spontaneously hypertensive rat (SHR), by producing a renal defect in Na+ excretion. Renal cytochromes P-450 may be a causal factor in this genetic model. Since family 3A P-450 is present in rat kidney (collecting duct), the renal family 3A catalytic (6β-OHase) and immunoreactive activities were compared in SHR and normotensive control (Wistar-Kyoto; WKY) rats. Corticosterone 6β-hydroxulation is markedly higher in SHR than in WKY renal microsomal preparations. Western blot analysis with antibodies to rat and rabbit liver family 3A isoforms demonstrated related proteins. Densitometry revealed greater relative intensity of staining in SHR compared to WKY with both antibodies. Both antibodies inhibited corticosterone 6β-hydroxylation by SHR renal microsomes. Increased renal 6β-OH-corticosterone production by increased renal family 3A cytochromes P-450 may play a role in the blood pressure elevation in SHR.  相似文献   

19.
Recent findings in chronically instrumented animals challenge the classic concept that baroreflexes do not play a role in the chronic regulation of arterial pressure. As alterations in renal excretory function are of paramount importance in the chronic regulation of arterial pressure, several of these recent studies have focused on the long-term interactions between the baroreflex and the kidneys during chronic perturbations in arterial pressure and body fluid volumes. An emerging body of evidence indicates that the baroreflex is chronically activated in several experimental models of hypertension, but in most cases, the duration of these studies has not exceeded 2 wk. Although these studies suggest that the baroreflex may play a compensatory role in attenuating the severity of the hypertension, possibly even in primary hypertension with uncertain causes of sympathetic activation, there has been only limited assessment of the quantitative importance of this interaction in the regulation of arterial pressure. In experimental models of secondary hypertension, baroreflex suppression of renal sympathetic nerve activity is sustained and chronically promotes sodium excretion. This raises the possibility that the renal nerves may be the critical efferent link for baroreceptor-induced suppression of central sympathetic output through which long-term compensatory reductions in arterial pressure are produced. This contention is supported by strong theoretical evidence but must be corroborated by experimental studies. Finally, although it is now clear that pressure-induced increases in baroreflex activity persist for longer periods of time than previously suggested, studies using new tools and novel approaches and extending beyond 2 wk of hypertension are needed to elucidate the true role of the baroreflex in the pathogenesis of clinical hypertension.  相似文献   

20.
Guadagnini D  Gontijo JA 《Life sciences》2006,79(17):1666-1673
The mechanism by which blood pressure rises in the SHR strain remains to be elucidated. Also, there is a surprising lack of experimental data on the natriuretic mechanisms induced by intracerebroventricular (ICV) injection of hyperosmotic saline (HoS) in SHR. In normotensive animals ICV injection of HoS causes coordinated responses including natriuresis and inhibition of renal sympathetic nerve activity. In the present study, we hypothesized that presumable blunting of the sympathoinhibitory response to centrally injected HoS may contribute to a lack of suppression of efferent renal nerve outflow in SHR. To test this hypothesis, the present study evaluates the influence of renal denervation after central HoS injection at increasing concentration on urinary sodium handling in SHR compared with age-matched normotensive WKy rats. The study confirmed previous data showing pronounced natriuretic response to centrally HoS stimuli but also demonstrated that the creatinine clearance (C(Cr)) and fractional sodium excretion responses diminished as graded NaCl concentrations were increased in WKy rats but not in SHR. In SHR, increased FE(Na) obtained by central administration of 0.90 M NaCl was produced by increases in proximal (FEP(Na)) and post-proximal fractional urinary sodium rejection without changes in C(Cr), indicating a direct tubular effect. Renal denervation caused significant antinatriuresis by decreased C(Cr) and increased FEP(Na) reabsorption in WKy but not in SHR. This study suggests that natriuresis observed only after higher centrally HoS stimuli with a rightward shift of dose-response curve provides evidence of a down-regulation of target organ responsiveness of periventricular areas of genetic hypertensive rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号