首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of Paenibacillus popilliae rRNA operons   总被引:1,自引:0,他引:1  
The terminal 39 nucleotides on the 3' end of the 16S rRNA gene, along with the complete DNA sequences of the 5S rRNA, 23S rRNA, tRNA(Ile), and tRNA(Ala) genes were determined for Paenibacillus popilliae using strains NRRL B-2309 and Dutky 1. Southern hybridization analysis with a 16S rDNA hybridization probe and restriction-digested genomic DNA demonstrated 8 copies of the 16S rRNA gene in P. popilliae strains KLN 3 and Dutky 1. Additionally, the 23S rRNA gene in P. popilliae strains NRRL B-2309, KLN 3, and Dutky 1 was shown by I-CeuI digestion and pulsed-field gel electrophoresis of genomic DNA to occur as 8 copies. It was concluded that these 3 P. popilliae strains contained 8 rrn operons. The 8 operon copies were preferentially located on approximately one-half of the chromosome and were organized into 3 different patterns of genes, as follows: 16S-23S-5S, 16S-ala-23S-5S, and 16S-5S-ile-ala-23S-5S. This is the first report to identify a 5S rRNA gene between the 16S and 23S rRNA genes of a bacterial rrn operon. Comparative analysis of the nucleotides on the 3' end of the 16S rRNA gene suggests that translation of P. popilliae mRNA may occur in Bacillus subtilis and Escherichia coli.  相似文献   

2.
Paenibacillus larvae is the causative agent of American foulbrood in honey bee (Apis mellifera) larvae. PCR amplification of the 16S-23S ribosomal DNA (rDNA) intergenic transcribed spacer (ITS) regions, and agarose gel electrophoresis of the amplified DNA, was performed using genomic DNA collected from 134 P. larvae strains isolated in Connecticut, six Northern Regional Research Laboratory stock strains, four strains isolated in Argentina, and one strain isolated in Chile. Following electrophoresis of amplified DNA, all isolates exhibited a common migratory profile (i.e., ITS-PCR fingerprint pattern) of six DNA bands. This profile represented a unique ITS-PCR DNA fingerprint that was useful as a fast, simple, and accurate procedure for identification of P. larvae. Digestion of ITS-PCR amplified DNA, using mung bean nuclease prior to electrophoresis, characterized only three of the six electrophoresis bands as homoduplex DNA and indicating three true ITS regions. These three ITS regions, DNA migratory band sizes of 915, 1010, and 1474 bp, signify a minimum of three types of rrn operons within P. larvae. DNA sequence analysis of ITS region DNA, using P. larvae NRRL B-3553, identified the 3' terminal nucleotides of the 16S rRNA gene, 5' terminal nucleotides of the 23S rRNA gene, and the complete DNA sequences of the 5S rRNA, tRNA(ala), and tRNA(ile) genes. Gene organization within the three rrn operon types was 16S-23S, 16S-tRNA(ala)-23S, and l6S-5S-tRNA(ile)-tRNA(ala)-23S and these operons were named rrnA, rrnF, and rrnG, respectively. The 23S rRNA gene was shown by I-CeuI digestion and pulsed-field gel electrophoresis of genomic DNA to be present as seven copies. This was suggestive of seven rrn operon copies within the P. larvae genome. Investigation of the 16S-23S rDNA regions of this bacterium has aided the development of a diagnostic procedure and has helped genomic mapping investigations via characterization of the ITS regions.  相似文献   

3.
Two Paenibacillus macerans strains, JCM 2500T and MCRI 12, exhibited two types of 16S rDNA copies in their genomes, accompanied by a length difference of 12 bp at positions 203 to 214 (Escherichia coli numbering). The long-type sequences were newly identified for P. macerans 16S rDNA, and the copy numbers were different between the two strains. Both types of 16S rRNA were expressed in each strain, and it was predicted that the polymorphism at this position is located in helix H10, based on a comparison with the E. coli 16S rRNA secondary structure model.  相似文献   

4.
5.
AIMS: A real-time PCR-based method was developed to evaluate the Bifidobacterium rRNA operon copy number. As a result of their repetitive nature, rRNA operons are very suitable targets for chromosomal integration of heterologous genes. METHODS AND RESULTS: The rrn operon multiplicity per chromosome was determined by real-time PCR quantification of the 16S rRNA amplicons obtained from genomic DNA. The values obtained in several bifidobacterial strains of human origin ranged from 1 to 5. The reliability of the method developed was confirmed by Southern hybridization technique. CONCLUSIONS: In the Bifidobacterium genus the rrn operon copies showed variability at species and strain level. The identification of Bifidobacterium strains with high rRNA multiplicity allowed the selection of potential hosts for chromosomal integration. SIGNIFICANCE AND IMPACT OF THE STUDY: The methodology here proposed represents a rapid, reliable and sensitive new tool for the quantification of rrn operon copy number in bacteria.  相似文献   

6.
Lyme disease is the most common vector-borne disease in the United States. The causative agent is the spirochete Borrelia burgdorferi. The copy number and organization of the genes encoding the rRNAs of this organism were determined. There is a single gene for 16S rRNA and two copies each of the 23S rRNA and 5S rRNA genes. All of the genes are located within a chromosomal fragment of approximately 9.5 to 10.0 kb. The 23S and 5S rRNA genes are tandemly duplicated in the order 23S-5S-23S-5S and are apparently not linked to the 16S rRNA gene, which is situated over 2 kb upstream from the 23S-5S duplication. The individual copies of the 23S-5S duplication are separated by a 182-bp spacer. Within each 23S-5S unit, an identical 22-bp spacer separates the 23S and 5S rRNA sequences from each other. The genome organization of the 23S-5S gene cluster in a number of different B. burgdorferi isolates obtained at a number of different geographical locations, as well as in several other species of Borrelia, was investigated. All isolates of B. burgdorferi tested displayed the tandem duplication, whereas the closely related species B. hermsii, B. anserina, and B. turicatae all contained a single copy of each of the genes. In addition, different geographical isolates of B. burgdorferi can be differentiated on the basis of a restriction fragment length polymorphism associated with the 23S-5S gene cluster. This polymorphism can be a useful tool for the determination of genetic relatedness between different isolates of B. burgdorferi.  相似文献   

7.
16S rRNA gene ( rrn ) copy number in bacterial genomes is indicative of ecological strategies of bacteria and is critical for quantification of bacterial abundance in mixed populations using rrn- based approaches. For accurate assessment of rrn copies, a novel technical strategy by means of pulsed-field gel electrophoresis and polymerase chain reaction amplification analysis was introduced. Experimental and in silico analysis on a test bacterial culture Caulobacter crescentus proved it to be simple, effective, accurate and a good alternative to traditional time-consuming methods.

PRATICAL APPLICATIONS


This method can be used for routine determination of gene copy number in most bacteria whose full genome sequences are not available. Moreover, the pulsed-field gel electrophoresis bands containing a target gene fragment can be determined and therefore constructing an expected fragments oriented genomic library is possible.  相似文献   

8.
In the finishing phase of the Chromobacterium violaceum genome project, the shotgun sequences were assembled into 57 contigs that were then organized into 19 scaffolds, using the information from shotgun and cosmid clones. Among the 38 ends resulting from the 19 scaffolds, 10 ended with sequences corresponding to rRNA genes (seven ended with the 5S rRNA gene and three ended with the 16S rRNA gene). The 28 non-ribosomal ends were extended using the PCR-assisted contig extension (PACE) methodology, which immediately closed 15 real gaps. We then applied PACE to the 16S rRNA gene containing ends, resulting in eight different sequences that were correctly assembled within the C. violaceum genome by combinatory PCR strategy, with primers derived from the non-repetitive genomic region flanking the 16S and 5S rRNA gene. An oriented combinatory PCR was used to correctly position the two versions (copy A and copy B, which differ by the presence or absence of a 100-bp insert); it revealed six copies corresponding to copy A, and two to copy B. We estimate that the use of PACE, followed by combinatory PCR, accelerated the finishing phase of the C. violaceum genome project by at least 40%.  相似文献   

9.
The internal 16S/23S rDNA (rrs/rrl) internal spacer region 1 (ITS1) of 54 Ochrobactrum strains and close relatives was analysed. Separation of ITS1 containing PCR products by gel-electrophoresis, DGGE, cloning and sequencing revealed ITS1 length and sequence heterogeneity. We found up to 5 different allelic ITS1 stretches within a single strain (Ochrobactrum intermedium LMG 3301T), and 2-3 different ITS1 alleles in O. tritici. Within ITS1, ITS1c, being part of the conserved double-stranded rrn processing stem dsPS1, produced the most reliable segment tree. The overall ITS1, ITS1c and rrs phylogenetic tree topologies were generally consistent, but there was evidence for horizontal rrn (segment) transfer in O. tritici LMG 2134 (formerly O. anthropi). Good correlations were found between ITS1, ITS1c and rrs sequence similarity and DNA-DNA hybridization values indicating that phylogenetic analysis of ITS1 and ITS1c both can be used to preliminarily deduce the phylogenetic affiliation if HGT was excluded. Strains sharing > 96.19% ITS1c (> 95.11% ITS1) similarity fell within a species, and < or = 68.42% ITS1c (< or = 70.33% ITS1) similarity outside a genus. Both ITS1 and ITS1c analysis resolved microdiversity more profoundly than rrs analysis and revealed clades (genomovars) within O. anthropi that were also produced in rep cluster analysis. There was no evidence for habitat-specific ITS1 genomovars within Ochrobactrum species. Diversity of Ochrobactrum was higher in soil than at the rhizoplane below and at the species level. Isolates from soil contained only 1 rrn type whereas isolates from human clinical, animal and rhizoplane specimens could contain more.  相似文献   

10.
B R Campell  Y Song  T E Posch  C A Cullis  C D Town 《Gene》1992,112(2):225-228
We have isolated a genomic clone containing Arabidopsis thaliana 5S ribosomal RNA (rRNA)-encoding genes (rDNA) by screening an A. thaliana library with a 5S rDNA probe from flax. The clone isolated contains seven repeat units of 497 bp, plus 11 kb of flanking genomic sequence at one border. Sequencing of individual subcloned repeat units shows that the sequence of the 5S rRNA coding region is very similar to that reported for other flowering plants. Four A. thaliana ecotypes were found to contain approx. 1000 copies of 5S rDNA per haploid genome. Southern-blot analysis of genomic DNA indicates that 5S rDNA occurs in long tandem arrays, and shows the presence of numerous restriction-site polymorphisms among the six ecotypes studied.  相似文献   

11.
Contemporary microbial community analysis frequently involves PCR-amplified sequences of the 16S rRNA gene (rDNA). However, this technology carries the inherent problem of heterogeneity between copies of the 16S rDNA in many species. As an alternative to 16S rDNA sequences in community analysis, we employed the gene for the RNA polymerase beta subunit (rpoB), which appears to exist in one copy only in bacteria. In the present study, the frequency of 16S rDNA heterogeneity in bacteria isolated from the marine environment was assessed using bacterial isolates from the red alga Delisea pulchra and from the surface of a marine rock. Ten strains commonly used in our laboratory were also assessed for the degree of heterogeneity between the copies of 16S rDNA and were used to illustrate the effect of this heterogeneity on microbial community pattern analysis. The rock isolates and the laboratory strains were also used to confirm nonheterogeneity of rpoB, as well as to investigate the versatility of the primers. In addition, a comparison between 16S rDNA and rpoB PCR-DGGE (denaturing gradient gel electrophoresis)-based community analyses was performed using a DNA mixture of nine isolates from D. pulchra. Eight out of 14 isolates from D. pulchra, all rock isolates, and 6 of 10 laboratory strains displayed multiple bands for 16S rDNA when analyzed by DGGE. There was no indication of heterogeneity for either the rock isolates or the laboratory strains when rpoB was used for PCR-DGGE analysis. Microbial community pattern analysis using 16S rDNA PCR-DGGE showed an overestimation of the number of laboratory strains in the sample, while some strains were not represented. Therefore, the 16S rDNA PCR-DGGE-based community analysis was proven to be severely limited by 16S rDNA heterogeneity. The mixture of isolates from D. pulchra proved to be more accurately described using rpoB, compared to the 16S rDNA-based PCR-DGGE.  相似文献   

12.
Summary The organisation of the rRNA genes in the chloroplast genomes of two strains of Euglena gracilis were analyzed and compared. It was previously shown that the bacillaris strain contains three complete rrn (rRNA) operons (7) and that the Z-S strain contains one operon (21). Using heteroduplex analysis it was found that the bacillaris strain contains, apart from the three complete rrn operons, an extra 16S rRNA gene, an extra partial 23S rRNA gene sequence and an inverted duplication of a stretch within the 5S–16S spacer. In addition a short (<100 bp) inverted repeat sequence (13) which forms a stem/loop structure in single-stranded cpDNA was located between the 3-end of the extra 16S rRNA gene and the partial 23 S rRNA sequence.The Z-S strain differs from the bacillaris strain by a deletion of two units of the complete rrn operons. The region upstream of the single complete rrn operon, including the inverted repeats, the partial 23S and the extra 16S rRNA sequences is identical with the bacillaris strain.The only non-homology found in heteroduplexes between the SalI fragments of B of the two strains is the deletion-insertion loop which represents the two rrn operons. A small deletion loop was found occasionally in hetero-and in homoduplexes of both strands in the region of variable size. Apart from the deletion/insertion of two rrn operons the two genomes appear to be colinear as can be seen from partial denaturation mapping. The organisation of the rRNA genes of the two strains is compared with those of the Z strain and the bacillaris-ATCC strain.  相似文献   

13.
Clostridium difficile is a major spore-forming environmental pathogen that causes serious health problems in patients undergoing antibiotic therapy. Consequently, reliable and sensitive methods for typing individual strains are required for epidemiological and environmental studies. Ribotyping is generally considered the best method, but it fails to account for sequence diversity which might exist in intergenic 16S-23S rRNA spacer regions (ISRs) within and among strains of this organism. Therefore, this study was undertaken to compare the sequence of each individual ISR in five strains of C. difficile to explore the extent of this diversity and see whether such information might provide the basis for more sensitive and discriminatory strain typing methods. After targeted PCR amplification, cloning, and sequencing, the diversity of the ISRs was used as a measure of rRNA operon copy number. In C. difficile strains 630, ATCC 43593, A, and B, 11, 11, 7, and 8 ISR length variants, respectively, were found (containing different combinations of sequence groups [i to xiii]), suggesting 11, 11, 7, and 8 rrn copies in the respective strains. Many ISRs of the same length differed markedly in their sequences, and some of these were restricted in occurrence to a single strain. Most of these ISRs did not contain any tRNA genes, and only single copies of the tRNA(Ala) gene were found in those that did. The presence of ISR sequence groups (i to xiii) varied between strains, with some found in one, two, three, four, or all five strains. We conclude that the intergenic 16S-23S rRNA spacer regions showed a high degree of diversity, not only among the rrn operons in different strains and different rrn copies in a single strain but also among ISRs of the same length. It appears that C. difficile ISRs vary more at the inter- and intragenic levels than those of other species as determined by empirical comparison of sequences. The precise characterization of these sequences has demonstrated a high level of mosaic sequence block rearrangements that are present or absent in multiple strain-variable rrn copies within and between five different strains of C. difficile.  相似文献   

14.
Contemporary microbial community analysis frequently involves PCR-amplified sequences of the 16S rRNA gene (rDNA). However, this technology carries the inherent problem of heterogeneity between copies of the 16S rDNA in many species. As an alternative to 16S rDNA sequences in community analysis, we employed the gene for the RNA polymerase beta subunit (rpoB), which appears to exist in one copy only in bacteria. In the present study, the frequency of 16S rDNA heterogeneity in bacteria isolated from the marine environment was assessed using bacterial isolates from the red alga Delisea pulchra and from the surface of a marine rock. Ten strains commonly used in our laboratory were also assessed for the degree of heterogeneity between the copies of 16S rDNA and were used to illustrate the effect of this heterogeneity on microbial community pattern analysis. The rock isolates and the laboratory strains were also used to confirm nonheterogeneity of rpoB, as well as to investigate the versatility of the primers. In addition, a comparison between 16S rDNA and rpoB PCR-DGGE (denaturing gradient gel electrophoresis)-based community analyses was performed using a DNA mixture of nine isolates from D. pulchra. Eight out of 14 isolates from D. pulchra, all rock isolates, and 6 of 10 laboratory strains displayed multiple bands for 16S rDNA when analyzed by DGGE. There was no indication of heterogeneity for either the rock isolates or the laboratory strains when rpoB was used for PCR-DGGE analysis. Microbial community pattern analysis using 16S rDNA PCR-DGGE showed an overestimation of the number of laboratory strains in the sample, while some strains were not represented. Therefore, the 16S rDNA PCR-DGGE-based community analysis was proven to be severely limited by 16S rDNA heterogeneity. The mixture of isolates from D. pulchra proved to be more accurately described using rpoB, compared to the 16S rDNA-based PCR-DGGE.  相似文献   

15.
High-temperature (>/=60 degrees C) synthetic food waste compost was examined by cultivation-dependent and -independent methods to determine predominant microbial populations. Fluorescent direct counts totaled 6.4 (+/-2.5)x10(10) cells gdw(-1) in a freeze-dried 74 degrees C compost sample, while plate counts for thermophilic heterotrophic aerobes averaged 2.6 (+/-1.0)x10(8) CFU gdw(-1). A pre-lysis cell fractionation method was developed to obtain community DNA and a suite of 16S and 18S rDNA-targeted PCR primers was used to examine the presence of Bacteria, Archaea and fungi. Bacterial 16S rDNA, including a domain-specific 1500-bp fragment and a 300-bp fragment specific for Actinobacteria, was amplified by PCR from all compost samples tested. Archaeal rDNA was not amplified in any sample. Fungal 18S rDNA was only amplified from a separate dairy manure compost that reached a peak temperature of 50 degrees C. Amplified rDNA restriction analysis (ARDRA) was used to screen isolated thermophilic bacteria and a clone library of full-length rDNA fragments. ARDRA screening revealed 14 unique patterns among 63 isolates, with one pattern accounting for 31 of the isolates. In the clone library, 52 unique patterns were detected among 70 clones, indicating high diversity of uncultivated bacteria in hot compost. Phylogenetic analysis revealed that the two most abundant isolates belonged in the genera Aneurinibacillus and Brevibacillus, which are not commonly associated with hot compost. With the exception of one Lactobacillus-type sequence, the clone library contained only sequences that clustered within the genus Bacillus. None of the isolates or cloned sequences could be assigned to the group of obligate thermophilic Bacillus spp. represented by B. stearothermophilus, commonly believed to dominate high-temperature compost. Amplified partial fragments from Actinobacteria, spanning the V3 variable region (Neefs et al. (1990) Nucleic Acids Res. 18, 2237-2242), included sequences related to the genera Saccharomonospora, Gordonia, Rhodococcus and Corynebacterium, although none of these organisms were detected among the isolates or full-length cloned rDNA sequences. All of the thermophilic isolates and sequenced rDNA fragments examined in this study were from Gram-positive organisms.  相似文献   

16.
The nucleotide sequences of the rRNA genes and the 5 flanking region were determined for R. salmoninarum ATCC 33209T from overlapping products generated by PCR amplification from the genomic DNA. Comparison of the sequences with rRNA genes from a variety of bacteria demonstrated the close relatedness between R. salmoninarum and the high G+C group of the actinobacteria, in particular, Arthrobacter species. A regulatory element within the 5 leader of the rRNA operon was identical to an element, CL2, described for mycobacteria. PCR, DNA sequence analysis, and DNA hybridisation were performed to examine variation between isolates from diverse sources which represented the four 16S–23S rRNA intergenic spacer sequevars previously described for R. salmoninarum. Two 23S–5S rRNA intergenic spacer sequevars of identical length were found. DNA hybridisation using probes complementary to 23S rDNA and 16S rDNA identified two rRNA operons which were identical or nearly identical amongst 40 isolates sourced from a variety of countries.  相似文献   

17.
The free, linear macronuclear ribosomal RNA genes (rDNA) of Tetrahymena are derived from a unique copy of micronuclear rDNA during development. We have injected cloned copies of the micronuclear rDNA that have been altered in vitro into developing macronuclei and obtained transformants that express the paromomycin-resistant phenotype specified by the injected rDNA. In most cases, these transformants contain almost exclusively the injected rDNA which has been accurately processed into macronuclear rDNA. Mutants with a 119 bp insertion at three points in the transcribed spacers and at two points in the 26S rRNA coding region were tested. Cells containing these spacer mutant rDNAs are viable, although one of them grows slowly. This slow-growing line contains the insertion between the 5.8S and 26S rRNA coding regions and accumulates more rRNA processing intermediates than control lines. One of the 26S rRNA mutants failed to generate transformants, but the other did. These transformants grew normally, and produced 26S rRNA containing the inserted sequence. A longer insertion (2.3 kb) at the same four points either abolished transformation or generated transformants that retained at least some wild-type rDNA. This study reveals that some rRNA sequences can be altered without significantly affecting cell growth.  相似文献   

18.
Ribosomal RNAs (rRNAs) (16S, 23S, 5S) encoded by the rrn operons and ribosomal proteins play a very important role in the formation of ribosomes and in the control of translation. Five copies of the rrn operon were reported by hybridization studies in Brevibacterium (Corynebacterium) lactofermentum but the genome sequence of Corynebacterium glutamicum provided evidence for six rrn copies. All six copies of the C. glutamicum 16S rRNA have a size of 1523 bp and each of the six copies of the 5S contain 120 bp whereas size differences are found between the six copies of the 23S rRNA. The anti-Shine-Dalgarno sequence at the 3'-end of the 16S rRNA was 5'-CCUCCUUUC-3'. Each rrn operon is transcribed as a large precursor rRNA (pre-rRNA) that is processed by RNaseIII and other RNases at specific cleavage boxes that have been identified in the C. glutamicum pre-rRNA. A secondary structure of the C. glutamicum 16S rRNA is proposed. The 16S rRNA sequence has been used as a molecular evolution clock allowing the deduction of a phylogenetic tree of all Corynebacterium species. In C. glutamicum, there are 11 ribosomal protein gene clusters encoding 42 ribosomal proteins. The organization of some of the ribosomal protein gene cluster is identical to that of Escherichia coli whereas in other clusters the organization of the genes is rather different. Some specific ribosomal protein genes are located in a different cluster in C. glutamicum when compared with E. coli, indicating that the control of expression of these genes is different in E. coli and C. glutamicum.  相似文献   

19.
20.
We examined ribosomal RNA concerted evolution in an Epichlo? endophyte interspecific hybrid (Lp1) and its progenitors (Lp5 and E8). We show that the 5S rrn genes are organized as dispersed copies. Cloned 5S gene sequences revealed two subfamilies exhibiting 12% sequence divergence, with substitutions forming coevolving pairs that maintain secondary structure and presumably function. Observed sequence patterns are not fully consistent with either concerted or classical evolution. The 5S rrn genes are syntenic with the tandemly arranged rDNA genes, despite residing outside the rDNA arrays. We also examined rDNA concerted evolution. Lp1 has rDNA sequence from only one progenitor and contains multiple rDNA arrays. Using 5S rrn genes as chromosomal markers, we propose that interlocus homogenization has replaced all Lp5 rDNA sequence with E8 sequence in the hybrid. This interlocus homogenization appears to have been rapid and efficient and is the first demonstration of hybrid interlocus homogenization in the Fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号