首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Proteins which recognize specific sequences of DNA play a fundamental role in the regulation of protein synthesis in all organisms. A particular helix of the bacterial protein lac repressor recognizes the bases in the major groove of the lac operator. We show that the first two residues of this recognition helix interact independently with two base pairs. This allows us in many cases to predict repression as an indicator of strength of the repressor-operator complex. Rules of recognition can be derived for 16 symmetric operators. They also apply to the gal repressor and possibly to other bacterial repressors.  相似文献   

2.
Several lac repressor mutants have been isolated which repress beta-galactosidase synthesis in Escherichia coli up to 200-fold. They do so by binding specifically to particular symmetrical lac Oc operator variants. The mutations in the lac repressor are localized in two separate parts of the recognition helix comprising (i) residues 1 and 2 which interact with base pairs 4 and 5 of lac operator and (ii) residue 6 which recognizes operator base pair 6. Mutations of residues 1 and 2 may be combined with a mutation of residue 6. The resulting mutant protein binds specifically to an operator variant with three symmetric exchanges in base pairs 4, 5 and 6.  相似文献   

3.
We constructed expression libraries for Lac repressor mutants with amino acid exchanges in positions 1, 2, 5 and 9 of the recognition helix. We then analysed the interactions of residues 5 and 9 with operator variants bearing single or multiple symmetric base-pair exchanges in positions 3, 4 and 5 of the ideal fully symmetric lac operator. We isolated 37 independent Lac repressor mutants with five different amino acids in position 5 of the recognition helix that exhibit a strong preference for particular residues in position 2 and, to a lesser extent, in position 1 of the recognition helix. Our results suggest that residue 5 of the recognition helix (serine 21) contributes to the specific recognition of base-pair 4 of the lac operator. They further suggest that residue 9 of the recognition helix (asparagine 25) interacts non-specifically with a phosphate of the DNA backbone, possibly between base-pairs 2 and 3.  相似文献   

4.
Comparison of both the DNA and protein sequences of catabolite gene activator protein (CAP) with the sequences of lac and gal repressors shows significant homologies between a sequence that forms a two alpha-helix motif in CAP and sequences near the amino terminus of both repressors. This two-helix motif is thought to be involved in specific DNA sequence recognition by CAP. The region in lac repressor to which CAP is homologous contains many i-d mutations that are defective in DNA binding. Less significant sequence homologies between CAP and phage repressors and activators are also shown. The amino acid residues that are critical to the formation of the two-helix motif are conserved, while those residues expected to interact with DNA are variable. These observations suggest the lac and gal repressors also have a two alpha-helix structural motif which is involved in DNA binding and that this two helix motif may be generally found in many bacterial and phage repressors. We conclude that one major mechanism by which proteins can recognize specific base sequences in double stranded DNA is via the amino acid side chains of alpha-helices fitting into the major groove of B-DNA.  相似文献   

5.
A model is proposed for lac repressor-lac operator binding which accounts for the tetrameric subunit structure of the lac repressor and for factors involved in the strength, specificity and regulation of repressor-operator interaction. The model employs a π-helix in the amino terminal 25 residues of the lac repressor whereby three tyrosine residues of each subunit intercalate between base pairs of the lac operator. For the outer palindromic sequences of the operator, base specificity is provided by amino acids adjacent to the carboxyl sides of the tyrosine residues of two of the subunits. The inner palindromic sequences which bind the other two subunits form stems of hairpin loops in the operator. Base specificity for these two subunits is provided by amino acids adjacent to the amino sides of the tyrosine residues. In addition to 12 intercalated tyrosine residues, the model provides for a total of at least eight electrostatic interactions and ten sequence-specific hydrogen bonds.  相似文献   

6.
A model is suggested for the lac repressor binding to the lac operator in which the repressor polypeptide chain sequences from Gly 14 to Ala 32 and from Ala 53 to Leu 71 are involved in specific interaction with operator DNA. A correspondence between the protein and DNA sequences is found which explains specificity of the repressor binding to the lac operator. The model can be extended to describe specific binding of other regulatory proteins to DNA.  相似文献   

7.
Two-dimensional nuclear Overhauser enhancement spectra are presented of the complex of lac repressor headpiece with a 14 base-pair lac operator fragment. Analysis of nuclear Overhauser enhancements observed between protein and DNA shows that the second helix of the headpiece ("the recognition helix") binds in the major groove of DNA as has been suggested, but that the orientation of this helix is approximately 180 degrees different from the proposed models.  相似文献   

8.
Few proteins have had such a strong impact on a field as the lac repressor has had in Molecular Biology. Over 40 years ago, Jacob and Monod [Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol. 3 (1961) 318] proposed a model for gene regulation, which survives essentially unchanged in contemporary textbooks. It is a cogent depiction of how a set of 'structural' genes may be coordinately transcribed in response to environmental conditions and regulates metabolic events in the cell. In bacteria, the genes required for lactose utilization are negatively regulated when a repressor molecule binds to an upstream cis activated operator. The repressor and its operator together form a genetic switch, the lac operon. The switch functions when inducer molecules alter the conformation of the repressor in a specific manner. In the presence of a particular metabolite, the repressor undergoes a conformational change that reduces its affinity for the operator. The structures of the lac repressor and its complexes with operator DNA and effector molecules have provided a physical platform for visualizing at the molecular level the different conformations the repressor and the molecular basis for the switch. The structures of lac repressor, bound to its operator and inducer, have also been invaluable for interpreting a plethora of biochemical and genetic data.  相似文献   

9.
Escherichia coli lac repressor is a tetrameric protein composed of 360 amino acid subunits. Considerable attention has focused on its N-terminal region which is isolated by cleavage with proteases yielding N-terminal fragments of 51 to 59 amino acid residues. Because these short peptide fragments bind operator DNA, they have been extensively examined in nuclear magnetic resonance structural studies. Longer N-terminal peptide fragments that bind DNA cannot be obtained enzymatically. To extend structural studies and simultaneously verify proper folding in vivo, the DNA sequence encoding longer N-terminal fragments were cloned into a vector system with the coliphage T7 RNA polymerase/promoter. In addition to the wild-type lacI gene sequence, single amino acid substitutions were generated at positions 3 (Pro3----Tyr) and 61 (Ser61----Leu) as well as the double substitution in a 64 amino acid N-terminal fragment. These mutations were chosen because they increase the DNA binding affinity of the intact lac repressor by a factor of 10(2) to 10(4). The expression of these lac repressor fragments in the cell was verified by radioimmunoassays. Both wild-type and mutant lac repressor N termini bound operator DNA as judged by reduced beta-galactosidase synthesis and methylation protection in vivo. These observations also resolve a contradiction in the literature as to the location of the operator-specific, inducer-dependent DNA binding domain.  相似文献   

10.
The lac repressor-operator system is a model system for understanding protein-DNA interactions and allosteric mechanisms in gene regulation. Despite the wealth of biochemical data provided by extensive mutations of both repressor and operator, the specific recognition mechanism of the natural lac operators by lac repressor has remained elusive. Here we present the first high-resolution structure of a dimer of the DNA-binding domain of lac repressor bound to its natural operator 01. The global positioning of the dimer on the operator is dramatically asymmetric, which results in a different pattern of specific contacts between the two sites. Specific recognition is accomplished by a combination of elongation and twist by 48 degrees of the right lac subunit relative to the left one, significant rearrangement of many side chains as well as sequence-dependent deformability of the DNA. The set of recognition mechanisms involved in the lac repressor-operator system is unique among other protein-DNA complexes and presents a nice example of the adaptability that both proteins and DNA exhibit in the context of their mutual interaction.  相似文献   

11.
J L Betz  M Z Fall 《Gene》1988,67(2):147-158
The specific binding of dominant-negative (I-d) lactose (lac) repressors to wild-type (wt) as well as mutant (Oc) lac operators has been examined to explore the sequence-specific interaction of the lac repressor with its target. Mutant lacI genes encoding substitutions in the N-terminal 60 amino acids (aa) were cloned in a derivative of plasmid pBR322. Twelve of these lacI-d missense mutations were transferred from F'lac episomes using general genetic recombination and molecular cloning, and nine lacI missense mutations were recloned from M13-lacI phages [Mott et al., Nucl. Acids Res. 12 (1984) 4139-4152]. The mutant repressors were examined for polypeptide size and stability, for binding the inducer isopropyl-beta-D-thiogalactoside (IPTG), as well as binding to wt operator. The mutant repressors' affinities for wt operator ranged from undetectable to about 1% that of wt repressor, and the mutant repressors varied in transdominance against repressor expressed from a chromosomal lacIq gene. Six of the I-d repressors were partially degraded in vivo. All repressors bound IPTG with approximately the affinity of wt repressor. Repressors having significant affinity for wt operator or with substitutions in the presumed operator recognition helix (aa 17-25) were examined in vivo for their affinities for a series of single site Oc operators. Whereas the Gly-18-, Ser-18- and Leu-18-substituted repressors showed altered specificity for position 7 of the operator [Ebright, Proc. Natl. Acad. Sci. USA 83 (1986) 303-307], the His-18 repressor did not affect specificity. This result may be related to the greater side-chain length of histidine compared to the other amino acid substitutions.  相似文献   

12.
Lac repressor headpiece (HP) and intact lac repressor have been studied using the photo-CIDNP method. At neutral pH histidine 29, tyrosines 7, 12 and 17 and methionine 1 are polarised. His-29 polarizations are weaker and broader in HP59 than in HP51 indicating that the C-terminal octapeptide in HP59 adopts a conformation that allows an interaction with His-29. The photo-CIDNP spectra of intact lac repressor and HP51 are very similar, showing that the same residues are accessible to the photo-excited flavin. An equimolar mixture of HP51 and a 14 base pair lac operator fragment strongly suppresses the photo-CIDNP effect of tyrosines 7 and 17 and abolishes the His-29 polarizations. The results are compared with earlier photo-CIDNP measurements on a complex of headpiece with poly[d(AT)] and with a model derived from a 2D NMR study on a lac headpiece-operator complex.  相似文献   

13.
We have shown previously that lac repressor binds specifically and quantitatively to lac operator restriction fragments which have been complexed with histones to form artificial nucleosomes (203 base pair restriction fragment) or core particles (144 base pair restriction fragment. We describe here a quantitative method for determining the equilibrium binding affinities of repressor for these lac reconstitutes. Quantitative analysis shows that the operator-histone reconstitutes may be grouped into two affinity classes: those with an affinity for repressor close to that of naked DNA and those with an affinity 2 or more orders of magnitude less than that of naked DNA. All particles in the lac nucleosome preparations bind repressor with high affinity, but the lac core particle preparations contain particles of both high and low affinities for repressor. Formaldehyde cross-linking causes all high-affinity species to suffer a 100-fold decrease in binding affinity. In contrast, there is no effect of cross-linking on species of low affinity. Therefore, the ability of a particle to be bound tightly by repressor depends on a property of the particle which is eliminated by cross-linking. Control experiments have shown that chemical damage to the operator does not accompany cross-linking. Therefore, the property sensitive to cross-linking must be the ability of the particle to change conformation. We infer that the particles of low native affinity, like cross-linked particles, are of low affinity because of an inability to facilitate repressor binding by means of this conformational change. Dimethyl suberimidate cross-linking experiments show that histone-histone cross-linking is sufficient to preclude high-affinity binding. Thus, the necessary conformational change involves a nucleosome histone core event. We find that the ability of a particle to undergo a repressor-induced facilitating conformational change appears to depend on the position of the operator along the DNA binding path of the nucleosome core. We present a general model which proposes that nucleosomes are divided into domains which function differentially to initiate conformational changes in response to physiological stimuli.  相似文献   

14.
Rapid repeated cloning of mutant lac repressor genes   总被引:14,自引:0,他引:14  
R M Schaaper  B N Danforth  B W Glickman 《Gene》1985,39(2-3):181-189
We have developed a procedure to efficiently recover lac repressor mutations (lacI-) from F'lac onto a single-stranded M13 phage vector. The recovery is based on homologous recombination between F'lac and an M13lac vector. This vector, mRS81, carries the entire Escherichia coli lacI gene as well as the adjacent alpha-complementation region of the lacZ gene, inserted in the AvaI site of the M13 ori region. It also carries a single point mutation in lacZ- alpha which abolishes its alpha-complementing ability. Recovery of lacI- genes from F is based on the conversion of this lacI+Z- alpha phage to lacI-Z+ alpha by recombination with F'lacI-Z+. This double exchange restores its alpha-complementing ability in the absence of any inducer of the lac operon. Detection requires a lacI- alpha-complementation host, which was also constructed in this study. The procedure was developed to obtain rapid nucleotide sequence information on large collections of lacI mutants for the purpose of studying mutational mechanisms and specificities.  相似文献   

15.
Plasmids were constructed which carry a synthetic lac operator at various distances from the lac promoter. They were tested in vivo for function in the presence and absence of lac repressor. We found significant repression when the lac operator is situated at the 3' end of the lac I gene or at the 5' end of the lac Z gene. When lac operators are inserted at both sites, we found a greater than 150-fold repression. The complex between lac repressor and DNA carrying these two lac operators is exceedingly stable in vitro suggesting that one tetrameric lac repressor may bind to both lac operators.  相似文献   

16.
Liu J  Zheng Q  Deng Y  Li Q  Kallenbach NR  Lu M 《Biochemistry》2007,46(51):14951-14959
Predictive understanding of how the folded, functional shape of a native protein is encoded in the linear sequence of its amino acid residues remains an unsolved challenge in modern structural biology. Antiparallel four-stranded coiled coils are relatively simple protein structures that embody a heptad sequence repeat and rich diversity for tertiary packing of alpha-helices. To explore specific sequence determinants of the lac repressor coiled-coil tetramerization domain, we have engineered a set of buried nonpolar side chains at the a-, d-, and e-positions into the hydrophobic interior of the dimeric GCN4 leucine zipper. Circular dichroism and equilibrium ultracentrifugation studies show that this core variant (GCN4-pAeLV) forms a stable tetrameric structure with a reversible and highly cooperative thermal unfolding transition. The X-ray crystal structure at 1.9 A reveals that GCN4-pAeLV is an antiparallel four-stranded coiled coil of the lac repressor type in which the a, d, and e side chains associate by means of combined knobs-against-knobs and knobs-into-holes packing with a characteristic interhelical offset of 0.25 heptad. Comparison of the side chain shape and packing in the antiparallel tetramers shows that the burial of alanine residues at the e positions between the neighboring helices of GCN4-pAeLV dictates both the antiparallel orientation and helix offset. This study fills in a gap in our knowledge of the determinants of structural specificity in antiparallel coiled coils and improves our understanding of how specific side chain packing forms the teritiary structure of a functional protein.  相似文献   

17.
The isolation and characterization of altered repressors of the lac operon which have an increased affinity for an operator should give useful clues about the molecular basis for the very tight and specific interaction between repressor and operator. A selection system has been devised which allows the isolation of such repressor mutants. This system selects for mutant repressors which can overcome lac operator-constitutive (Oc) mutations. By using in vivo assays, 24 candidates were obtained which, compared with wild type, have an increased trans effect of their repressor on one or several Oc operators. Three of these candidates have been investigated in vitro; the affinity of their repressor for inducer was unchanged, whereas the affinity for wild-type operator was increased 15-, 86-, and 262-fold, respectively.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号