首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Long Y  Chen J  Zhang Z  Yao S 《Journal of biotechnology》2003,105(1-2):105-116
Real-time investigation of the interaction between primaquine phosphate and bovine serum albumin by the piezoelectric quartz crystal impedance (PQCI) analysis was carried out for the first time. Three kinds of electrodes were investigated. Compared with bare gold (Au) electrode, the gold electrode self-assembled of nanogold colloids exhibits maintained biocompatibility, increased capacity and more bioactivity. Additionally, on the basis of the multi-dimensional information provided by the PQCI analysis, the real-time interaction information and the kinetics of the binding process was investigated and a response model was deduced. At 37 degrees C, the binding rate (k1), dissociation rate (k(-1)) and equilibrium constants (Ka) were 4.19x10(2) (mol l(-1))(-1) s(-1), 1.01x10(-3) s(-1) and 4.15x10(5) (mol l(-1))(-1) for the electrode modified by nanogold particles; 3.83x10(2) (mol l(-1))(-1) s(-1), 9.70x10(-4) s(-1) and 3.95x10(5) (mol l(-1))(-1) for the bare gold electrode, respectively.  相似文献   

2.
A novel method for real-time investigating the binding interaction between human serum albumin (HSA) and salicylic acid with capacitive sensing technique was successfully proposed. HSA was immobilized on the surface of a gold electrode modified with an insulating poly (o-phenylenediamine) (o-PD) film and colloid Au nanoparticles layers. The bioactivity of HSA was remained and major binding sites were available because of the excellent biocompatibility of gold nanoparticles. The capacitance and interfacial electron resistance of the sensor were altered, owing to the binding of HSA to salicylic acid. The time courses of the capacitance change were acquired with capacitive sensing technique during the binding process. Based on the capacitance response curves with time, the response model for the binding was derived in theory and the corresponding regression parameters were determined by fitting the real-time experimental data to the model. The binding and the dissociation rate constants (k1 and k 1) were estimated to be 54.8 (mol l 1) 1 s 1 and 2.9 × 10 3 s 1, respectively. And the binding equilibrium constant (Ka) was calculated to be 1.89 × 104 (mol l 1) 1.  相似文献   

3.
Mao Y  Wei W  He D  Nie L  Yao S 《Analytical biochemistry》2002,306(1):23-30
A new method for monitoring, in real time, the drug-binding process to protein with piezoelectric quartz crystal impedance (PQCI) is proposed. The method was used to monitor the binding process of berberine hydrochloride to bovine serum albumin (BSA). BSA was immobilized on the silver electrode surface of a piezoelectric quartz crystal and the optimized experimental conditions were established. The BSA-coated piezoelectric sensor was in contact with berberine solution. The time courses of the resonant frequency and equivalent circuit parameters of the sensor during the protein-drug binding were simultaneously obtained. On the basis of the analysis of the multidimensional information provided by PQCI, it was concluded that the observed frequency decrease was mainly ascribed to the mass increase of the sensor surface resulting from the binding. According to the frequency decrease with time, the kinetics of the binding process were quantitatively studied. A piezoelectric response model for the binding was theoretically derived. Fitting the experimental data to the model, the kinetic parameters, such as the binding and dissociation rate constants (k(1) and k(-1)) and the binding equilibrium constant (K(a)), were determined. The k(1), k(-1), and K(a) values obtained at 25 degrees C were 67.5 (+/-0.1) (mol liter(-1))(-1) s(-1), 1.7 (+/- 0.1) x 10(-3) s(-1), and 3.97 (+/- 0.06) x10(4) (mol liter(-1))(-1), respectively.  相似文献   

4.
Binding of the bioactive component jatrorrhizine to human serum albumin   总被引:2,自引:0,他引:2  
The interaction between Jatrorrhizine with human serum albumin (HSA) were studied by fluorescence quenching technique, circular dichroism (CD) spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy. Fluorescence data revealed the presence of a single class of binding site on HSA and its binding constants (K) are 7.278 x 10(4), 6.526 x 10(4), and 5.965 x 10(4) L.mol(-1) at 296, 303, and 310 K, respectively. The CD spectra and FT-IR spectra have proved that the protein secondary structure changed in the presence of Jatrorrhizine in aqueous solution. The effect of common ions on the binding constants was also investigated. In addition, the thermodynamic functions standard enthalpy (DeltaH(0)) and standard entropy (DeltaS(0)) for the reaction were calculated to be -10.891 kJ.mol(-1) and 56.267 J.mol(-1) K(-1), according to the van't Hoff equation. These data indicated that hydrophobic and electrostatic interactions played a major role in the binding of Jatrorrhizine to HSA. Furthermore, the displacement experiments indicated that Jatrorrhizine could bind to the site I of HSA, which was also in agreement with the result of the molecular modeling study.  相似文献   

5.
The capacitive sensing method has been applied to study the binding of DNA with chloroquine phosphate. DNA was immobilized on a gold electrode surface, self-assembled with thioglycolic acid. The results of a quartz crystal impedance (QCI) study indicate that the reaction of double-strand DNA (dsDNA) with chloroquine includes a fast electrostatic attraction and a slow intercalation of chloroquine into double-strand helix. The real-time experimental data obtained by capacitive sensing also revealed two distinctive kinetics stages during binding of dsDNA with chloroquine, while only one stage exists during reaction of single-strand DNA (ssDNA) with chloroquine. The kinetic parameters were obtained by fitting the real-time experimental data using a two stage reaction model. The rate constants of electrostatic attraction for dsDNA and ssDNA are estimated as 0.014 and 0.018 s(-1), respectively. The rate constant of the second stage of dsDNA is 0.0011 s(-1).  相似文献   

6.
Human serum albumin (HSA) is known to exist as N (pH approximately 7), B (pH approximately 9), and F (pH approximately 3.5) isomeric forms and an equilibrium intermediate state (I) accumulate in the urea induced unfolding pathway of HSA around 4.8-5.2 M urea concentrations. These states displayed characteristic structure and functions. To elucidate the ciprofloxacin (CFX) binding behavior of HSA, the binding of ciprofloxacin with these conformational states of human serum albumin (HSA) has been investigated by fluorescence spectroscopy. The binding constant (K) for N, B, F, and I conformation of HSA were 6.92 x 10(5), 3.87 x 10(5), 4.06 x 10(5), and 2.7 x 10(5) M(-1) and the number of binding sites (n) were 1.26,1.21, 1.16, and 1.19, respectively. The standard free energy changes (DeltaGbinding(0)) of interaction were found to be -33.3 (N isomer), -31.8 (B isomer), -32 (F isomer), and -30.0 kJ mol(-1) respectively. By using unfolding pathway of HSA, domain II of HSA has been assigned to possess binding site of ciprofloxacin. Plausible correlation between stability of CFX-N and CFX-B complexes and drug distribution have been discussed. At plasma concentration of HSA fraction of free CFX, which contributes potential to its rate of transport across cell membrane, was found to be approximately 80% more for B isomers compared to N isomers of HSA. The conformational changes in two physiologically important isomers of HSA (N and B isomers) upon ciprofloxacin binding were evaluated by measuring far, near-UV CD, and fluorescence properties of the CFX-HSA complex.  相似文献   

7.
Interaction of isofraxidin with human serum albumin   总被引:8,自引:0,他引:8  
This study was designed to examine the interaction of isofraxidin with human serum albumin (HSA) under physiological conditions with drug concentrations in the range of 3.3 x 10(-6) mol L(-1)-3.0x10(-5) mol L(-1) and HSA concentration at 1.5 x 10(-6) mol L(-1). Fluorescence quenching methods in combination with Fourier transform infrared (FT-IR) spectroscopy and circular dichroism (CD) spectroscopy were used to determine the drug-binding mode, the binding constant and the protein structure changes in the presence of isofraxidin in aqueous solution. Spectroscopic evidence showed that the interaction results in one type of isofraxidin-HSA complex with binding constants of 4.1266 x 10(5) L mol(-1), 3.8612 x 10(5) L mol(-1), 3.5063 x 10(5) L mol(-1), 3.1241 x 10(5) L mol(-1) at 296 K, 303 K, 310 K, 318 K, respectively. The thermodynamic parameters, enthalpy change (DeltaH) and entropy change (DeltaS) were calculated to be -10.08 kJ mol(-1) and 73.57 J mol(-1) K(-1) according to van't Hoff equation, which indicated that hydrophobic interaction played a main role in the binding of isofraxidin to HSA. The experiment results are nearly in accordance with the calculation results obtained by Silicon Graphics Ocatane2 workstation.  相似文献   

8.
Catalytic reaction pathway for the mitogen-activated protein kinase ERK2   总被引:2,自引:0,他引:2  
Prowse CN  Hagopian JC  Cobb MH  Ahn NG  Lew J 《Biochemistry》2000,39(20):6258-6266
The structural, functional, and regulatory properties of the mitogen-activated protein kinases (MAP kinases) have long attracted considerable attention owing to the critical role that these enzymes play in signal transduction. While several MAP kinase X-ray crystal structures currently exist, there is by comparison little mechanistic information available to correlate the structural data with the known biochemical properties of these molecules. We have employed steady-state kinetic and solvent viscosometric techniques to characterize the catalytic reaction pathway of the MAP kinase ERK2 with respect to the phosphorylation of a protein substrate, myelin basic protein (MBP), and a synthetic peptide substrate, ERKtide. A minor viscosity effect on k(cat) with respect to the phosphorylation of MBP was observed (k(cat) = 10 +/- 2 s(-1), k(cat)(eta) = 0.18 +/- 0.05), indicating that substrate processing occurs via slow phosphoryl group transfer (12 +/- 4 s(-1)) followed by the faster release of products (56 +/- 4 s(-1)). At an MBP concentration extrapolated to infinity, no significant viscosity effect on k(cat)/K(m(ATP)) was observed (k(cat)/K(m(ATP)) = 0.2 +/- 0.1 microM(-1) s(-1), k(cat)/K(m(ATP))(eta) = -0.08 +/- 0.04), consistent with rapid-equilibrium binding of the nucleotide. In contrast, at saturating ATP, a full viscosity effect on k(cat)/K(m) for MBP was apparent (k(cat)/K(m(MBP)) = 2.4 +/- 1 microM(-1) s(-1), k(cat)/K(m(MBP))(eta) = 1.0 +/- 0.1), while no viscosity effect was observed on k(cat)/K(m) for the phosphorylation of ERKtide (k(cat)/K(m(ERKtide)) = (4 +/- 2) x 10(-3) microM(-1) s(-1), k(cat)/K(m(ERKtide))(eta) = -0.02 +/- 0.02). This is consistent with the diffusion-limited binding of MBP, in contrast to the rapid-equilibrium binding of ERKtide, to form the ternary Michaelis complex. Calculated values for binding constants show that the estimated value for K(d(MBP)) (/= 1.5 mM). The dramatically higher catalytic efficiency of MBP in comparison to that of ERKtide ( approximately 600-fold difference) is largely attributable to the slow dissociation rate of MBP (/=56 s(-1)), from the ERK2 active site.  相似文献   

9.
Genistein and daidzein, the major isoflavones present in soybeans, possess a wide spectrum of physiological and pharmacological functions. The binding of genistein to human serum albumin (HSA) has been investigated by equilibrium dialysis, fluorescence measurements, CD and molecular visualization. One mole of genistein is bound per mole of HSA with a binding constant of 1.5 +/- 0.2 x 10(5) m(-1). Binding of genistein to HSA precludes the attachment of daidzein. The ability of HSA to bind genistein is found to be lost when the tryptophan residue of albumin is modified with N-bromosuccinimide. At 27 degrees C (pH 7.4), van't Hoff's enthalpy, entropy and free energy changes that accompany the binding are found to be -13.16 kcal x mol(-1), -21 cal x mol(-1) K(-1) and -6.86 kcal x mol(-1), respectively. Temperature and ionic strength dependence and competitive binding measurements of genistein with HSA in the presence of fatty acids and 8-anilino-1-naphthalene sulfonic acid have suggested the involvement of both hydrophobic and ionic interactions in the genistein-HSA binding. Binding measurements of genistein with BSA and HSA, and those in the presence of warfarin and 2,3,5-tri-iodobenzoic acid and F?rster energy transfer measurements have been used for deducing the binding pocket on HSA. Fluorescence anisotropy measurements of daidzein bound and then displaced with warfarin, 2,3,5-tri-iodobenzoic acid or diazepam confirm the binding of daidzein and genistein to subdomain IIA of HSA. The ability of HSA to form ternery complexes with other neutral molecules such as warfarin, which also binds within the subdomain IIA pocket, increases our understanding of the binding dynamics of exogenous drugs to HSA.  相似文献   

10.
As one of the natural polyphenols, resveratrol possesses hydroxyl substituted trans-stilbene structure and exerts impact on health by inhibiting multiple human enzymes, such as cyclooxygenase, F1 ATPase, and tyrosinase. Resveratrol has to be bound by human serum albumin (HSA) to keep a high concentration in serum, since its solubility is low in water. To improve water solubility and bioavailability, two resveratrol aliphatic acids and their esters have been designed and synthesized. The solubilities of the resveratrol and its derivatives have been measured using a standard procedure. The two aliphatic acids showed better solubilities in pure water and phosphate buffer (pH 7). The binding affinities of resveratrol derivatives for HSA were also measured, and the drug-protein interaction mechanism was investigated using fluorescence, UV-vis, and NMR spectroscopies. Interestingly, resveratrol hexanoic acid (5) was found to be a much better ligand (K(a)=(6.70+/-0.10)x10(6) M(-1)) for HSA than resveratrol (K(a)=(1.64+/-0.07)x10(5) M(-1)), and there was 41-fold improvement for the binding affinity. It was the first time that the increase of fluorescence of resveratrol moiety was observed during the binding to HSA, suggesting that 5 should be bound tightly by HSA. The UV-vis absorption spectroscopy revealed a maximum absorption shift from 318 to 311 nm with decreasing intensity by 20% upon complexation, suggesting that the pi-pi conjugation of the stilbene structure was impaired during the binding. Although HSA was reported to have only one binding site for resveratrol, the Job's and molar ratio plots suggested that HSA should bind two molecules of 5. NMR study suggested that phenyl group (B ring) in the center of the molecule of 5 should be involved in the pi-pi stacking interactions with HSA aromatic amino acid residues. Molecular geometry calculation of 5 with Spartan software showed that the stilbene structure had two conformers, orthogonal and planar ones. The former (E=-1.432 KJ/mol) was more stable than the latter (E=-0.128 KJ/mol), suggesting that the former should be the conformer of 5 in the complexation with HSA.  相似文献   

11.
Interaction of formononetin with a model transport protein, human serum albumin (HSA), has been studied using fluorescence anisotropy, FT-IR spectroscopy, and molecular modeling methods. Upon binding with HSA, the fluorescence spectrum of formononetin exhibits appreciable hypsochromic shift along with an enhancement in the fluorescence intensity. Gradual addition of HSA led to a marked increase in fluorescence anisotropy (r). From the value of fluorescence anisotropy, it is argued that the drug is located in a restricted environment of protein. The binding constant (K approximately 1.6 x 10(5) M(-1)) and the standard free energy change (DeltaG(0) approximately -29.9 kJ/mol) of formononetin-HSA interaction have been calculated according to the relevant fluorescence data. Fourier transform infrared measurements have shown that the secondary structures of the protein have been changed by the interaction of formononetin with HSA. Computational mapping of the possible binding sites of formononetin revealed the molecule to be bound in the large hydrophobic cavity of subdomain IIA.  相似文献   

12.
Hong Y  Tang Y  Zeng S 《Chirality》2009,21(7):692-698
The interaction of propafenone (PPF) enantiomers with human plasma, human serum albumin (HSA), alpha(1)-acid glycoprotein (AGP), as well as with plasma from rat, rabbit, and cow was investigated using indirect chiral high performance liquid chromatography (HPLC) and ultrafiltration techniques. The stronger binding of the S-PPF found in human plasma was due to AGP. Two classes of binding sites in AGP were identified: one with high-affinity and small binding capacity (K(1(S)) = 7.65 x 10(6) M(-1), n(1(S)) = 0.50; K(1(R)) = 2.81 x 10(6) M(-1), n(1(R)) = 0.46), which revealed stereoselectivity; the other with low-affinity and high-binding capacity (n(2(S)) K(2(S)) = 9.95 x 10(3) M(-1); n(2(R)) K(2(R)) = 9.74 x 10(3) M(-1)). The binding to HSA was found to be weak and not enantioselective (nK(S) = 2.08 x 10(3) M(-1), nK(R) = 2.05 x 10(3) M(-1)). The interaction between enantiomers observed in human plasma was confirmed as a competitive type interacting at the high-affinity site in AGP. The binding mode of both enantiomers with AGP was mainly hydrophobic bond. PPF enantiomers had higher-binding affinity for the F-S variant of human AGP. Drug-drug binding interaction studies showed that verapamil, diazepam, nifedipine, furosemide, nitrendipine, and nimodipine did not affect the binding of PPF enantiomers except quinidine and aprindine at the therapeutic concentration. Comparative studies indicated considerable species-dependent binding stereoselectivity between plasma of the four species investigated.  相似文献   

13.
A real-time capacitive sensor based on a potentiostatic step method was developed. It can display in real-time the evoked current waveform, capacitance and the electrical resistance of elements serially connected to the insulation layer on the electrode as a function of time as well as the ohmic resistance of the insulation layer. These features enable the user to observe the association and dissociation of the affinity binding pairs and to evaluate the insulating property of the electrode surface during measurement. The system allows the setting of potential pulse height, pulse interval, gain, filter, and sampling frequency, enabling the system to be more flexible. The performance of the system was firstly evaluated with equivalent circuits. Under suitable parameter settings it provided good accuracy of both the capacitance and resistance. Using the affinity binding pair of human serum albumin (HSA) and anti human serum albumin (anti-HSA) the measured capacitance change was used for the direct detection of HSA. The developed system provided the same sensitivity as the commercially available potentiostat (P>0.05). The proposed system was then applied to analyse HSA in real urine samples and the results agreed well with the immunoturbidimetric assay (P>0.05). The proposed system can be applied for capacitance measurement to directly detect other target analytes using different affinity binding pairs. Other applications such as kinetics analysis of the interaction between affinity bindings, thickness analysis, and the study of the insulation property of the modified layer are also promising.  相似文献   

14.
It is well known that the periodic cycle {x(n)} of a periodically forced nonlinear difference equation is attenuant (resonant) if av(x(n)) < av(K(n))(av(x(n)) > av(K(n))),where {K ( n )} is the carrying capacity of the environment and av(t(n)) = (1/p)∑(p?1) (i=0) ti (arithmetic mean of the p-periodic cycle {t ( n )}). In this article, we extend the concept of attenuance and resonance of periodic cycles using the geometric mean for the average of a periodic cycle. We study the properties of the periodically forced nonautonomous delay Beverton-Holt model x(n+1) = r(n)x(n)/1 + (r(n?l) ? 1)x(n?k)/K(n?k), n= 0, 1, . . . , where {K ( n )} and {r ( n )} are positive p-periodic sequences; (K ( n )>0, r ( n )>1) as well as k and l are nonnegative integers. We will show that for all positive solutions {x ( n )} of the previous equation lim sup (n→∞) (∏(n?1)(i=0)xi)(1/n) ≤ ((∏(p?1)(i=0)ri)(1/p) ? 1)(∏(p?1)(i=0)(ri ? 1))(?1/p)(∏(p?1)(i=0)Ki)(1/p). In particular, in the case where {x(n)} is a p-periodic solution of the above equation (assuming that such solution exists) and r ( n )=r>1, the periodic cycle is g-attenuant, that is (∏(p?1)(i=0)x(i))(1/p)<(∏(p?1)(i=0)K(i))(p?1) Surprisingly, the obtained results show that the delays k and l do not play any role.  相似文献   

15.
The interactions of the unpaired thiol residue (Cys34) of human serum albumin (HSA) with low-molecular-weight thiols and an Au(I)-based antiarthritic drug have been examined using electrospray ionization mass spectrometry. Early measurements of the amount of HSA containing Cys34 as the free thiol suggested that up to 30% of circulating HSA bound cysteine as a mixed disulfide. It has also been suggested that reaction of HSA with cysteine, occurs only on handling and storage of plasma. In our experiments, there were three components of HSA in freshly collected plasma from normal volunteers, HSA, HSA+cysteine, and HSA+glucose in the ratio approximately 50:25:25. We addressed this controversy by using iodoacetamide to block the free thiol of HSA in fresh plasma, preventing its reaction with plasma cysteine. When iodoacetamide was injected into a vacutaner tube as blood was collected, the HSA was modified by iodoacetamide, with 20-30% present as the mixed disulfide with cysteine (HSA+cys). These data provide strong evidence that 20-30% of HSA in normal plasma contains one bound cysteine. Reaction of HSA with [Au(S(2)O(3))(2)](3-) resulted in formation of the adducts HSA+Au(S(2)O(3)) and HSA+Au. Reaction of HSA with iodoacetamide prior to treatment with [Au(S(2)O(3))(2)](3-) blocked the formation of gold adducts.  相似文献   

16.
Wu ZS  Li JS  Deng T  Luo MH  Shen GL  Yu RQ 《Analytical biochemistry》2005,337(2):308-315
Fabrication of a capacitive immunosensor based on electropolymerized polytyramine (Pty) film for the direct detection of human serum albumin (HSA) without any labeling is described. The capacitance change of the heterostructures, Pty films/covalently bonded antibodies/buffered medium, is utilized for monitoring the specific antibody-antigen interaction. The Pty films are ultrathin and the HSA assay is nearly specific. Experimental parameters affecting antibody immobilization and the sensing of HSA are investigated in detail and optimized. This capacitive sensor prepared with the present method can provide high sensitivity. Under the optimized experimental conditions, a linear calibration curve in the concentration range 1.84-368.6 ng/ml when plotted vs the logarithm of the antigen concentration is obtained and the detection limit (S/N=3) is 1.60 ng/ml. After an acidic washing the present system can be used again. The applicability and reliability of the sensor are also demonstrated.  相似文献   

17.
Cyclic voltammetry (CV) was used to investigate the interactions of Cytochrome c (Cyt c) with deoxyribonucleic acid (DNA) at glassy carbon (GC) electrodes. The results indicate that there are strong interactions between Cyt c and DNA. The binding constant (k(A)) and binding free energy (Delta(r)G) of Cyt c with dsDNA are (1.69+/-0.38) x 10(5) L.mol(-1) and -(29.76+/-0.56) kJ.mol(-1), respectively; and those of Cyt c with ssDNA are (3.35+/-0.50) x 10(5) L.mol(-1) and -(31.49+/-0.37) kJ.mol(-1), respectively. The binding sites are achieved to be 3.3 bp per Cyt c molecule with dsDNA and 4.0 nucleotides (ssDNA) binding one Cyt c molecule. This experiment affords a valid method for investigating the interactions between DNA and proteins by electrochemical techniques.  相似文献   

18.
The interaction of DNA and human serum albumin (HSA) in the presence of anticancer drug carboplatin was studied with piezoelectric quartz crystal impedance (PQCI) and electrochemistry techniques. In the PQCI analysis, the correlative parameters including the frequency (f0), the motional resistance (R(m)), and the static capacitance (C0) in the experiment were obtained and discussed in detail. Additionally, the kinetics parameters of the cross-linking process were investigated and a response kinetics model was deduced. The values of association rate constant k1, dissociation rate constant k(-1) and the reaction equilibrium constant K were estimated to be 1.895 mg/ml(-1) s(-1), 4.7 x 10(-5) s(-1) and 4.03 x 10(4) (mg/ml)-1, respectively. Furthermore, cyclic voltammetry (CV) and electrochemical AC impedance techniques were employed to testify the cross-linking process.  相似文献   

19.
The primary objective of work was to characterize, optimize and model a chromatographic process based on ethylenediamine-N,N,N',N'-tetra(methylphosphonic) acid (EDTPA)-modified zirconia particles. Zirconia particles were produced by spray-drying colloidal zirconia. Zirconia spheres produced were further classified, calcined and modified with EDTPA to yield a solid-phase support for use in bio-chromatography (r_PEZ). Specifically, the ability of r_PEZ to selectively bind and enrich IgG, IgA, and IgM from biological fluids was evaluated and demonstrated. To better understand the force of interaction between the IgG and the r_PEZ, the equilibrium disassociation constant (K(d)) was determined by static binding isotherms, as a function of temperature and by frontal analysis at different linear velocities. The maximum static binding capacity (Q(max)) was found to be in the range 55-65 mg IgG per ml of beads, and unaffected by temperature. The maximum dynamic binding capacity (Q(x)) was found to be in the range 20-12 mg IgG per ml of beads. The adsorption rate constant (k(a)) was determined by a split-peak approach to be between 982 and 3242 l mol(-1) s(-1) depending on the linear velocity. The standard enthalpy and entropy values were estimated for this interaction of IgG with this novel support.  相似文献   

20.
The interaction between cyclophosphamide monohydrate with human serum albumin (HSA) and human serum transferrin (hTf) was studied with UV absorption, fluorescence and circular dichroism (CD) spectroscopies as well as molecular modeling. Based on the fluorescence quenching results, it was determined that HSA and hTf had two classes of apparent binding constants and binding sites at physiological conditions. The K(SV1), K(SV2), n(1) and n(2) values for HSA were found to be 8.6 x 10(8) Lmol(-1), 6.34 x 10(8) Lmol(-1), 0.7 and 0.8, respectively, and the corresponding results for hTf were 6.08 x 10(7) Lmol(-1), 4.65 x 10(7) Lmol(-1), 1.3 and 2.6, respectively. However, the binding affinity of cyclophosphamide monohydrate to HSA was more significant than to hTf. Circular dichroism results demonstrated that the binding of cyclophosphamide to HSA and hTf induced secondary changes in the structure and that the a-helix content became altered into b-sheet, turn and random coil forms. The participation of tyrosyl and tryptophan residues of proteins was also estimated in the drug-HSA and hTf complexes by synchronous fluorescence. The micro-environment of the HSA and hTf fluorophores was transferred to hydrophobic and hydrophilic conditions, respectively. The distance r between donor and acceptor was obtained by the Forster energy according to fluorescence resonance energy transfer (FRET) and found to be 1.84 nm and 1.73 nm for HSA and hTf, respectively. This confirmed the existence of static quenching for both proteins in the presence of cyclophosphamide monohydrate. Site marker competitive displacement experiments demonstrated that cyclophosphamide bound with high affinity to Site II, sub-domain IIIA of HSA, and for hTf, the C-lobe constituted the binding site. Furthermore, a study of molecular modeling showed that cyclophosphamide situated in domain II in HSA was bound through hydrogen bonding with Arg 257 and Ser 287, and that cyclophosphamide was situated in the C-lobe in hTf, presenting hydrogen bonding with Asp 625 and Arg 453. The modeling data thus confirmed the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号