首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous fluorescence and photoacoustic measurements have been used to study the effects of metal ions (copper, lead, and mercury) during dark incubation of thylakoid membranes. The values of the chlorophyll fluorescence parameters Fo (initial fluorescence yield with the reaction centers in the open state), Fm (maximal fluorescence yield), Ft (steady state fluorescence yield) and the calculated parameters, o (maximal quantum yield of Photosystem II photochemistry) and t (actual quantum yield of Photosystem II photochemistry), strongly decreased in the presence of the metal ions coinciding with an increase in the non-photochemical deexcitation rate constant k(N). It was observed that photosynthetic energy storage measured by photoacoustic spectroscopy also decreased but a large portion of energy storage remained unaffected even at the highest metal ion concentrations used. A maximal inhibition of photosyntheti c energy storage of 80% and 50% was obtained with Hg2+ and Cu2+-treated thylakoids, respectively, while energy storage was insensitive to Pb2+. The results are consistent with the known predominant inhibition of the donor side of Photosystem II by the metal ions. The insensitive portion of energy storage is attributed to the possible recurrence of cyclic electron transport around Photosystem II that would depend on the extent of inhibition produced on the acceptor side by the metal ion used.  相似文献   

2.
Photoinhibition of the light-induced Photosystem I (PS I) electron transfer activity from the reduced dichlorophenol indophenol to methyl viologen was studied. PS I preparations with Chl/P700 ratios of about 180 (PS I-180), 100 (PS I-100) and 40 (PS I(HA)-40) were isolated from spinach thylakoid membranes by the treatments with Triton X-100, followed by sucrose density gradient centrifugation and hydroxylapatite column chromatography. White light irradiation (1.1 × 104E m–2 s–1) of PS I-180 for 2 hours bleached 50% of the chlorophyll and caused a 58% decrease in the electron transfer activity with virtually no loss of the primary donor, P700. The flash-induced absorbance change showed the decay phase with a half time of about 10 s that was attributed to the P700 triplet, suggesting that the photoinhibitory light treatment caused the destruction of the PS I acceptor(s), Fx and possibly A1. PS I-100 was similarly photobleached by the irradiation and the electron transfer activity decreased. There was, however, no apparent photoinhibition of the electron transport activity in PS I(HA)-40. Photoinhibition similar to that seen in PS I-180 also occurred in membrane fragments that were isolated without any detergent from a PS II-deficient mutant strain of the cyanobacterium Synechocystis sp. PCC 6803. PS I-180 was not photoinhibited under anaerobic conditions. The production of superoxide and fatty acid hydroperoxide during white light irradiation was significantly greater in PS I-180 than in PS I(HA)-40. The mechanism of photoinhibition in PS I preparations is discussed in relation to the formation of toxic oxygen molecules.Abbreviations A0,A1 primary and secondary electron acceptors of PS I - CD circular dichroism - DCPIP 2,6-dichlorophenol indophenol - FA, FB, FX iron-sulfur centers A, B, X - HA hydroxylapatite - LHCI lightharvesting complex of PS I - MDA malondialdehyde - MV methyl viologen - Na-Asc sodium L-ascorbate - P700 primary electron donor of PS I - PFD photon flux density - PS I-A and PS I-B psaA and psaB gene products - TBA thiobarbituric acid  相似文献   

3.
Triton-solubilized Photosystem I particles from spinach chloroplasts exhibit largely reversible P-700 absorption changes over the temperature range from 4.2 K to room temperature. For anaerobic samples treated with dithionite and neutral red at pH 10 and illuminated during cooling, a brief (1 μs) saturating flash produces absorption changes in the long wavelength region that decay in 0.95 ± 0.2 ms from 4.2 to 50 K. Above 80 K a faster (100 ± 30 μs) component dominates in the decay process, but this disappears again above about 180 K. The major decay at temperatures above 200 K occurs in about 1 ms. The difference spectrum of these absorption changes between 500 and 900 nm closely resembles that of P-700. Using ascorbate and 2,6-dichlorophenolindophenol as the reducing system with a sample of Photosystem I particles cooled in darkness to 4.2 K, a fully reversible signal is seen upon both the first and subsequent flashes. The decay time in this case is 0.9 ± 0.3 ms.  相似文献   

4.
The protective role of co-solutes (glycinebetaine and sucrose) against photodamage in isolated Photosystem (PS) I submembrane particles illuminated (2000 μE m−2 s−1) for various time periods at 4 °C was studied. The photochemical activity of PS I in terms of electron transport measured as oxygen uptake and P700 photooxidation was significantly protected. A photoinduced enhancement of oxygen uptake observed during the first hours of strong light illumination attributed to denaturation or dissociation of membrane-bound superoxide dismutase [Rajagopal et al. (2003) Photochem. Photobiol 77: 284–291] was also retarded by glycinebetaine and sucrose. Chlorophyll photobleaching resulting in a decrease of absorbance and a blue-shift of the absorbance maximum in the red was greatly delayed in the presence of co-solutes. This phenomenon was also observed in the chlorophyll-protein (CP) complexes of PS I particles exposed to strong illumination separated on non-denaturing poly-acrylamide gels. In this case, a decrease in the absorbance of the CP1b band coinciding with an increase of CP1a during the course of illumination and ascribed to oxidative cross-linking (Rajagopal et al. 2003) was also retarded. Our results, thus, clearly demonstrated for the first time that co-solutes could minimize the alteration of photochemical activity and chlorophyll-protein complexes against photodamage of PS I submembranes particles. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
By recording leaf transmittance at 820 nm and quantifying the photon flux density of far red light (FRL) absorbed by long-wavelength chlorophylls of Photosystem I (PS I), the oxidation kinetics of electron carriers on the PS I donor side was mathematically analyzed in sunflower (Helianthus annuus L.), tobacco (Nicotiana tabacum L.) and birch (Betula pendula Roth.) leaves. PS I donor side carriers were first oxidized under FRL, electrons were then allowed to accumulate on the PS I donor side during dark intervals of increasing length. After each dark interval the electrons were removed (titrated) by FRL. The kinetics of the 820 nm signal during the oxidation of the PS I donor side was modeled assuming redox equilibrium among the PS I donor pigment (P700), plastocyanin (PC), and cytochrome f plus Rieske FeS (Cyt f + FeS) pools, considering that the 820 nm signal originates from P700+ and PC+. The analysis yielded the pool sizes of P700, PC and (Cyt f + FeS) and associated redox equilibrium constants. PS I density varied between 0.6 and 1.4 μmol m−2. PS II density (measured as O2 evolution from a saturating single-turnover flash) ranged from 0.64 to 2.14 μmol m−2. The average electron storage capacity was 1.96 (range 1.25 to 2.4) and 1.16 (range 0.6 to 1.7) for PC and (Cyt f + FeS), respectively, per P700. The best-fit electrochemical midpoint potential differences were 80 mV for the P700/PC and 25 mV for the PC/Cyt f equilibria at 22 °C. An algorithm relating the measured 820 nm signal to the redox states of individual PS I donor side electron carriers in leaves is presented. Applying this algorithm to the analysis of steady-state light response curves of net CO2 fixation rate and 820 nm signal shows that the quantum yield of PS I decreases by about half due to acceptor side reduction at limiting light intensities before the donor side becomes oxidized at saturating intensities. Footnote: This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The light-response curves of P700 oxidation and time-resolved kinetics of P700+ dark re-reduction were studied in barley leaves using absorbance changes at 820 nm. Leaves were exposed to 45 °C and treated with either diuron or diuron plus methyl viologen (MV) to prevent linear electron flow from PS II to PSI and ferredoxin-dependent cyclic electron flow around PSI. Under those conditions, P700+ could accept electrons solely from soluble stromal reductants. P700 was oxidized under weak far-red light in leaves treated with diuron plus MV, while identical illumination was nearly ineffective in diuron-treated leaves in the absence of MV. When heat-exposed leaves were briefly illuminated with strong far-red light, which completely oxidized P700, the kinetics of P700+ dark reduction was fitted by a single exponential term with half-time of about 40 ms. However, two first-order kinetic components of electron flow to P700+ (fast and slow) were found after prolonged leaf irradiation. The light-induced modulation of the kinetics of P700+ dark reduction was reversed following dark adaptation. The fast component (half time of 80–90 ms) was 1.5 larger than the slow one (half time of about 1 s). No kinetic competition occurred between two pathways of electron donation to P700+ from stromal reductants. This suggests the presence of two different populations of PSI. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
The light-induced chlorophyll (Chl) fluorescence decline at 77 K was investigated in segments of leaves, isolated thylakoids or Photosystem (PS) II particles. The intensity of chlorophyll fluorescence declines by about 40% upon 16 min of irradiation with 1000 μmol m−2 s−1 of white light. The decline follows biphasic kinetics, which can be fitted by two exponentials with amplitudes of approximately 20 and 22% and decay times of 0.42 and 4.6 min, respectively. The decline is stable at 77 K, however, it is reversed by warming of samples up to 270 K. This proves that the decline is caused by quenching of fluorescence and not by pigment photodegradation. The quantum yield for the induction of the fluorescence decline is by four to five orders lower than the quantum yield of QA reduction. Fluorescence quenching is only slightly affected by addition of ferricyanide or dithionite which are known to prevent or stimulate the light-induced accumulation of reduced pheophytin (Pheo). The normalised spectrum of the fluorescence quenching has two maxima at 685 and 695 nm for PS II emission and a plateau for PS I emission showing that the major quenching occurs within PS II. ‘Light-minus-dark’ difference absorbance spectra in the blue spectral region show an electrochromic shift for all samples. No absorbance change indicating Chl oxidation or Pheo reduction is observed in the blue (410–600 nm) and near infrared (730–900 nm) spectral regions. Absorbance change in the red spectral region shows a broad-band decrease at approximately 680 nm for thylakoids or two narrow bands at 677 and 670–672 nm for PS II particles, likely resulting also from electrochromism. These absorbance changes follow the slow component of the fluorescence decline. No absorbance changes corresponding to the fast component are found between 410 and 900 nm. This proves that the two components of the fluorescence decline reflect the formation of two different quenchers. The slow component of the light-induced fluorescence decline at 77 K is related to charge accumulation on a non-pigment molecule of the PS II complex. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
An improved method is introduced for the determination of the quantum yield of photosystem I. The new method employs saturating light pulses with steep rise characteristics to distinguish, in a given physiological state, centers with an open acceptor side from centers with a reduced acceptor side. The latter do not contribute to PSI quantum yield (I). Oxidation of P700 is measured by a rapid modulation technique using the absorbance change around 830 nm. The quantum yield I is calculated from the amplitude of the rapid phase of absorbance change (A; 830 nm) upon application of a saturation pulse in a given state, divided by the maximal A (830 nm) which is induced by a saturation pulse with far-red background illumination. Using this technique, I can be determined even under conditions of acceptor-side limitation, as for example in the course of a dark-light induction period or after elimination of CO2 from the gas stream. Thus determined I values display a close-to-linear relationship with those for the quantum yield of PSII (II) calculated from chlorophyll fluorescence parameters. It is concluded that the proposed method may provide new information on the activity of the PSI acceptor side and thus help to separate the effects of acceptorside limitation from those of cyclic PSI, whenever a non-linear relationship between II and the P700-reduction level is observed.Abbreviations and Symbols A absorbance change - I quantum yield of photosystem I - II quantum yield of photosystem II - PAR photosynthetically active radiation This work was supported by the Deutsche Forschungsgemeinschaft (SFB 176 Molekulare Grundlagen der Signalübertragung und des Stofftransportes in Membranen and SFB 251 Ökologie, Physiologie und Biochemie pflanzlicher Leistung unter Streß).  相似文献   

9.
Photoacoustic spectroscopy was used to study the thermal deactivation processes in a Photosystem I submembrane fraction isolated from spinach. A large part of the thermal dissipation was variable. The yield of this variable thermal emission depended on the redox state of the Photosystem. It increased with the measuring modulated light intensity coinciding with the gradual closure of the reaction centers. Thermal deactivation was maximal when the reaction centers were closed by a saturating illumination. Extrapolation of the data at zero light intensity indicated that the yield of non-variable thermal emission represented about 37% of the maximal emission. The presence of methylviologen as artificial electron acceptor decreased the yield of variable thermal emission whereas inhibition following heat stress treatments increased it. The significance of the variable and non-variable components of thermal dissipation is discussed and the measured energy storage is suggested to originate from the reduction of the plastoquinone pool during cyclic electron transport around Photosystem I.Abbreviations Chl chlorophyll - DCIP 2,6-dichlorophenolindophenol - MV methylviologen - Pheo pheophytin - PA photoacoustic - PS I Photosystem I - PS II Photosystem II - Tes [N-tris (hydroxymethyl)] methyl-2-aminoethanesulfonic acid  相似文献   

10.
Abstract The use of the light-induced absorbance change at 820 nm (ΔA 820) to monitor the oxidation and reduction of P-700 in irradiated leaves is examined. Results obtained from leaves irradiated with a range of wavelengths of light, poisoned with DCMU, or lacking PS I, are consistent with the proposition that the light-induced ΔA 820 can be used to monitor P-700 oxidation in leaves.  相似文献   

11.
The variation of the rate of cyclic electron transport around Photosystem I (PS I) during photosynthetic induction was investigated by illuminating dark-adapted spinach leaf discs with red + far-red actinic light for a varied duration, followed by abruptly turning off the light. The post-illumination re-reduction kinetics of P700+, the oxidized form of the photoactive chlorophyll of the reaction centre of PS I (normalized to the total P700 content), was well described by the sum of three negative exponential terms. The analysis gave a light-induced total electron flux from which the linear electron flux through PS II and PS I could be subtracted, yielding a cyclic electron flux. Our results show that the cyclic electron flux was small in the very early phase of photosynthetic induction, rose to a maximum at about 30 s of illumination, and declined subsequently to <10% of the total electron flux in the steady state. Further, this cyclic electron flow, largely responsible for the fast and intermediate exponential decays, was sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethyl urea, suggesting an important role of redox poising of the cyclic components for optimal function. Significantly, our results demonstrate that analysis of the post-illumination re-reduction kinetics of P700+ allows the quantification of the cyclic electron flux in intact leaves by a relatively straightforward method.  相似文献   

12.
Incubation of spinach thylakoids with HgCl2 selectively destroys Fe–S center B (FB). The function of electron acceptors in FB-less PS I particles was studied by following the decay kinetics of P700+ at room temperature after multiple flash excitation in the absence of a terminal electron acceptor. In untreated particles, the decay kinetics of the signal after the first and the second flashes were very similar (t 1/22.5 ms), and were principally determined by the concentration of the artificial electron donor added. The decay after the third flash was fast (t 1/20.25 ms). In FB-less particles, although the decay after the first flash was slow, fast decay was observed already after the second flash. We conclude that in FB-less particles, electron transfer can proceed normally at room temperature from FX to FA and that the charge recombination between P700+ and FX -/A1 - predominated after the second excitation. The rate of this recombination process is not significantly affected by the destruction of FB. Even in the presence of 60% glycerol, FB-less particles can transfer electrons to FA at room temperature as efficiently as untreated particles.Abbreviations DCIP 2, 6-dichlorophenol indophenol - FA, FB, FX iron-sulfur center A, B and X, respectively - PMS phenazine methosulfate  相似文献   

13.
The linear dichroism of Photosystem I particles containing 10 chlorophylls per P700 has been investigated at 10 K. The particles were oriented by uniaxial squeezing of polyacrylamide gels. The oxidation state of P700 was altered either by incubation of the gels with redox mediators or by low temperature illumination. The QY transitions of the primary electron donor P700, of the remaining unoxidized chlorophyll in P700+ and of a chlorophyll molecule absorbing at 686 nm, which presumably corresponds to the primary electron acceptor A0, are all preferentially oriented perpendicular to the gel squeezing direction. The QY transition of the chlorophyll forms absorbing at 670 and 675 nm appear tilted at 40 ± 5° from this orientation axis. This orientation of the various chlorophylls is compared to that previously reported for more native Photosystem I particles.Abbreviations PSI Photosystem I - P700 primary electron donor of PSI - A0 primary electron acceptor of PSI  相似文献   

14.
This work reports on the regulation of synthesis of the P700 chlorophyll-a apoprotein of photosystem I in barley. The mRNA for the P700 apoprotein is almost exclusively confined to the plastid membrane-bound polysomes. However, the mRNA for the 32-kDa herbicide-binding protein of photosystem II is found in both the soluble and membrane-bound polysomes.The mRNA for the P700 apoprotein is found in similar amounts in dark-grown and light-grown wild-type as well as mutant xantha-l81 barley. The latter mutant is deficient in chlorophyll biosynthesis. However, while wild-type leaves accumulate the P700 chlorophyll-a protein only in the light, mutant leaves never accumulate the P700 apoprotein.A more sensitive approach was taken using isolated plastids to study P700 apoprotein synthesis. Etioplasts did not synthesize detectable P700 apoprotein even when the etioplasts were exposed to light. However, only a 1-min exposure of leaves to light was necessary to induce P700 apoprotein synthesis by isolated plastids.Phytochrome involvement in controlling P700 apoprotein synthesis was tested by using red/farred light treatment of leaves. These treatments showed no far-red reversibility of red-induced P700-apoprotein synthesis in isolated plastids even after 3 h of darkness after the light treatments. From these data we conclude that the accumulation of P700 apopootein is not under the control of phytochrome and that the light induction of P700 apoprotein is most likely mediated through the protochlorophyllide/chlorophyllide system. This control, however, may also involve cytoplasmic signals as the synthesis of the P700 apoprotein is not turned on in illuminated etioplasts.  相似文献   

15.
The photochemical oxidation and reduction of P-700 were studied in digitonin- and in sodium dodecyl sulphate (SDS)-Photosystem I (PS I) particles in the presence of ascorbate. In digitonin-PS I particles, reduction of P-700+ occurs by the bound iron-sulphur protein (P-430) and by ascorbate. The relative contribution of these back reactions depends on the length of the exposure to light and on the temperature and pH of the reaction medium. Experiments performed under anaerobic conditions demonstrate that some endogenous component may serve as the electron acceptor of P-430?. The rate of the latter reaction is also dependent upon the temperature and pH of the sample. At pH 9 and lower temperatures the rate of this reaction is so much reduced that the reduction of P-700+ by ascorbate, which increases rapidly at high pH, can be observed even during illumination. The effects of secondary electron acceptors and of the presence of SDS on the absorption changes due to P-700 are also reported. Low concentrations of SDS are shown to retard the back reaction of P-700+ with P-430?. Studies with SDS-PS I particles (CPI) confirm the absence of the iron-sulphur centres in this preparation. Three larger P-700-chlorophylla-protein complexes prepared by mild electrophoresis in the presence of SDS plus Triton X-100, however, still contain P-430.  相似文献   

16.
Bundle sheath chloroplasts of NADP-malic enzyme (NADP-ME) type C4 species have a high demand for ATP, while being deficient in linear electron flow and oxidation of water by photosystem II (PSII). To evaluate electron donors to photosystem I (PSI) and possible pathways of cyclic electron flow (CEF1) in isolated bundle sheath strands of maize (Zea mays L.), an NADP-ME species, light-induced redox kinetics of the reaction center chlorophyll of PSI (P700) were followed under aerobic conditions. Donors of electrons to CEF1 are needed to compensate for electrons lost from the cycle. When stromal electron donors to CEF1 are generated during pre-illumination with actinic light (AL), they retard the subsequent rate of oxidation of P700 by far-red light. Ascorbate was more effective than malate in generating stromal electron donors by AL. The generation of stromal donors by ascorbate was inhibited by DCMU, showing ascorbate donates electrons to the oxidizing side of PSII. The inhibitors of NADPH dehydrogenase (NDH), amytal and rotenone, accelerated the oxidation rate of P700 by far-red light after AL, indicating donation of electrons to the intersystem from stromal donors via NDH. These inhibitors, however, did not affect the steady-state level of P700+ under AL, which represents a balance of input and output of electrons in P700. In contrast, antimycin A, the inhibitor of the ferredoxin-plastoquinone reductase-dependent CEF1, substantially lowered the level of P700+ under AL. Thus, the primary pathway of ATP generation by CEF1 may be through ferredoxin-plastoquinone, while function of CEF1 via NDH may be restricted by low levels of ferredoxin-NADP reductase. NDH may contribute to redox poising of CEF1, or function to generate ATP in linear electron flow to O2 via PSI, utilizing NADPH generated from malate by chloroplastic NADP-ME.  相似文献   

17.
Cytochrome c6, the product of the petJ gene, is a photosynthetic electron carrier in cyanobacteria, which transfers electrons to photosystem I and which is synthesised under conditions of copper deficiency to functionally replace plastocyanin. The photosystem I photochemical activity (energy storage, photoinduced P700 redox changes) was examined in a petJ-null mutant of Synechocystis PCC 6803. Surprisingly, photosystem I activity in the petJ-null mutant grown in the absence of copper was not much affected. However, in a medium with a low inorganic carbon concentration and with NH4+ ion as nitrogen source, the mutant displayed growth inhibition. Analysis showed that, especially in the latter, the isiAB operon, encoding flavodoxin and CP43', an additional chlorophyll a antenna, was strongly expressed in the mutant. These proteins are involved in photosystem I function and organisation and are proposed to assist in prevention of overoxidation of photosystem I at its lumenal side and overreduction at its stromal side.  相似文献   

18.
Pierre Stif  Paul Mathis  Tore Vnngrd 《BBA》1984,767(3):404-414
Electron transport has been studied by flash absorption and EPR spectroscopies at 10–30 K in Photosystem I particles prepared with digitonin under different redox conditions. In the presence of ascorbate, an irreversible charge separation is progressively induced at 10 K between P-700 and iron-sulfur center A by successive laser flashes, up to a maximum which corresponds to about two-thirds of the reaction centers. In these centers, heterogeneity of the rate for center A reduction is also shown. In the other third of reaction centers, the charge separation is reversible and relaxes with a t1/2 ≈ 120 μs. When the iron-sulfur centers A and B are prereduced, the 120 μs relaxation becomes the dominant process (70–80% of the reaction centers), while a slow component (t1/2 = 50–400 ms) reflecting the recombination between P-700+ and center X occurs in a minority of reaction centers (10–15%). Flash absorption and EPR experiments show that the partner of P-700+ in the 120 μs recombination is neither X nor a chlorophyll but more probably the acceptor A1 as defined by Bonnerjea and Evans (Bonnerjea, J. and Evans, M.C.W. (1982) FEBS Lett. 148, 313–316). The role of center X in low-temperature electron flow is also discussed.  相似文献   

19.
Thermal emission and photochemical energy storage were examined in photosystem I reaction center/core antenna complexes (about 40 Chl a/P700) using photoacoustic spectroscopy. Satisfactory signals could only be obtained from samples bound to hydroxyapatite and all samples had a low signal-to-noise ratio compared to either PS I or PS II in thylakoid membranes. The energy storage signal was saturated at low intensity (half saturation at 1.5 W m-2) and predicted a photochemical quantum yield of >90%. Exogenous donors and acceptors had no effect on the signal amplitudes indicating that energy storage is the result of charge separation between endogenous components. Fe(CN)6 -3 oxidation of P700 and dithionite-induced reduction of acceptors FA-FB inhibited energy storage. These data are compatible with the hypothesis that energy storage in PS I arises from charge separation between P700 and Fe-S centers FA-FB that is stable on the time scale of the photoacoustic modulation. High intensity background light (160 W m-2) caused an irreversible loss of energy storage and correlated with a decrease in oxidizable P700; both are probably the result of high light-induced photoinhibition. By analogy to the low fluorescence yield of PS I, the low signal-to-noise ratio in these preparations is attributed to the short lifetime of Chl singlet excited states in PS I-40 and its indirect effect on the yield of thermal emission.Abbreviations FFT fast Föurier transform - HA hydroxyapatite - I50 half saturation intensity for energy storage - PA photoacoustic - PS photosystem - PS I-40 photosystem I reaction center/core antenna complex containing about 40 Chl a/P700 - 201-1 photoacoustic energy storage signal - S/N signal-to-noise  相似文献   

20.
The changes in electron transport within photosystem I (PSI) were studied in detached leaves of Cucumis sativus L. during the course of irradiation with moderate white light (300 mol photons m–2 s–1) at 4°C. When intact leaves were exposed to the combination of moderate light and low temperature, the amplitude of far-red light-induced P700 absorbance changes at 820 nm (A820), a relative measure of PSI, progressively decreased as the light treatment time increased. Almost no oxidation of P700 was noticeable after 5 h. Methyl viologen accelerated the oxidation of P700 to a steady-state level and also increased the magnitudes of A820 changes in photoinhibited leaves, reflecting the rapid removal of electrons from native carriers. Photoinhibition under moderate light and chilling temperature also accelerated the rate of P700+ reduction after far-red light excitation as the half-times of the two exponential components of P700+ decay curves decreased relative to the control ones. A detailed analysis of the kinetics of P700+ reduction using diuron alone or the combination of diuron and methyl viologen strongly favours an increased rate of electron donation from stromal reductants to PSI through the plastoquinone pool following photoinhibitory treatment. Importantly, the marked acceleration of P700+ re-reduction is the consequence of the irradiation of leaf segments at low temperature and not caused by chilling stress alone.Abbreviations A 0 and A 1 Primary acceptor chlorophyll and secondary electron acceptor phylloquinone - FR Far-red light - F X , F A , and F B Iron–sulfur centers - MT Multiple-turnover flash - MV Methyl viologen - Ndh NAD(P)H-dehydrogenase - PQ Plastoquinone - PS Photosystem - P700 Reaction-center chlorophyll of PSI - ST Single-turnover flash  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号