首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In mammals, the catabolic pathway of phenylalanine and tyrosine is found in liver (hepatocytes) and kidney (proximal tubular cells). There are well-described human diseases associated with deficiencies of all enzymes in this pathway except for maleylacetoacetate isomerase (MAAI), which converts maleylacetoacetate (MAA) to fumarylacetoacetate (FAA). MAAI is also known as glutathione transferase zeta (GSTZ1). Here, we describe the phenotype of mice with a targeted deletion of the MAAI (GSTZ1) gene. MAAI-deficient mice accumulated FAA and succinylacetone in urine but appeared otherwise healthy. This observation suggested that either accumulating MAA is not toxic or an alternate pathway for MAA metabolism exists. A complete redundancy of MAAI could be ruled out because substrate overload of the tyrosine catabolic pathway (administration of homogentisic acid, phenylalanine, or tyrosine) resulted in renal and hepatic damage. However, evidence for a partial bypass of MAAI activity was also found. Mice doubly mutant for MAAI and fumarylacetoacetate hydrolase (FAH) died rapidly on a normal diet, indicating that MAA could be isomerized to FAA in the absence of MAAI. Double mutants showed predominant renal injury, indicating that this organ is the primary target for the accumulated compound(s) resulting from MAAI deficiency. A glutathione-mediated isomerization of MAA to FAA independent of MAAI enzyme was demonstrated in vitro. This nonenzymatic bypass is likely responsible for the lack of a phenotype in nonstressed MAAI mutant mice.  相似文献   

2.
GSTZs [Zeta class GSTs (glutathione transferases)] are multifunctional enzymes that belong to a highly conserved subfamily of soluble GSTs found in species ranging from fungi and plants to animals. GSTZs are known to function as MAAIs [MAA (maleylacetoacetate) isomerases], which play a role in tyrosine catabolism by catalysing the isomerization of MAA to FAA (fumarylacetoacetate). As tyrosine metabolism in plants differs from animals, the significance of GSTZ/MAAI is unclear. In rice (Oryza sativa L.), a major QTL (quantitative trait locus) for seedling cold tolerance has been fine mapped to a region containing the genes OsGSTZ1 and OsGSTZ2. Sequencing of tolerant (ssp. japonica cv. M-202) and sensitive (ssp. indica cv. IR50) cultivars revealed two SNPs (single nucleotide polymorphisms) in OsGSTZ2 that result in amino acid differences (I99V and N184I). Recombinant OsGSTZ2 containing the Val99 residue found in IR50 had significantly reduced activity on MAA and DCA (dichloroacetic acid), but the Ile184 residue had no effect. The distribution of the SNP (c.295A>G) among various rice accessions indicates a significant association with chilling sensitivity in rice seedlings. The results of the present study show that naturally occurring OsGSTZ2 isoforms differ in their enzymatic properties, which may contribute to the differential response to chilling stress generally exhibited by the two major rice subspecies.  相似文献   

3.
Tetrachlorohydroquinone dehalogenase catalyzes the replacement of chlorine atoms on tetrachlorohydroquinone and trichlorohydroquinone with hydrogen atoms during the biodegradation of pentachlorophenol by Sphingomonas chlorophenolica. The sequence of the active site region of tetrachlorohydroquinone dehalogenase is very similar to those of the corresponding regions of maleylacetoacetate isomerases, enzymes that catalyze the glutathione-dependent isomerization of a cis double bond in maleylacetoacetate to the trans configuration during the catabolism of phenylalanine and tyrosine. Furthermore, tetrachlorohydroquinone dehalogenase catalyzes the isomerization of maleylacetone (an analogue of maleylacetoacetate) at a rate nearly comparable to that of a bona fide bacterial maleylacetoacetate isomerase. Since maleylacetoacetate isomerase is involved in a common and presumably ancient pathway for catabolism of tyrosine, while tetrachlorohydroquinone dehalogenase catalyzes a more specialized reaction, it is likely that tetrachlorohydroquinone dehalogenase arose from a maleylacetoacetate isomerase. The substrates and overall transformations involved in the dehalogenation and isomerization reactions are strikingly different. This enzyme provides a remarkable example of Nature's ability to recruit an enzyme with a useful structural scaffold and elaborate upon its basic catalytic capabilities to generate a catalyst for a newly needed reaction.  相似文献   

4.
The gene for maleylacetoacetate isomerase (MAAI) (EC 5.2.1.2) was the last gene in the mammalian phenylalanine/tyrosine catabolic pathway to be cloned. We have isolated the human and murine genes and determined their genomic structure. The human gene spans a genomic region of approximately 10 kb, has 9 exons ranging from 50 to 528 bp in size, and was mapped to 14q24.3-14q31.1 using fluorescence in situ hybridization. The complete catabolic pathway of phenylalanine/tyrosine is normally restricted to liver and kidney, but the maleylacetoacetate isomerase gene is expressed ubiquitously. This suggests a possible second role for the MAAI protein different from phenylalanine/tyrosine catabolism. We have searched for mutations in the maleylacetoacetate isomerase gene in four cases of unexplained severe liver failure in infancy with clinical similarities to hereditary tyrosinemia type I (pseudotyrosinemia). Several amino acid changes were identified, but all were found to retain MAAI activity and thus represent protein polymorphisms. We conclude that MAAI deficiency is not a common cause of the pseudotyrosinemic phenotype.  相似文献   

5.
Hemolysate uroporphyrinogen (uro) I synthetase activity was found to be inhibited by lead chloride; whereas enzymatic activity in hepatic cytosol was unaffected. Dialysis of hepatic cytosol or purification of the enzyme rendered uro I synthetase activity sensitive to lead. Inhibition of uro I synthetase activity by lead was non-competitive and reversible for both hemolysate and hepatic cytosol. Using gel chromatography, a factor was separated from uro I synthetase activity in both hemolysate and hepatic cytosol that protected against lead inhibition of enzymatic activity. A higher concentration of factor was found in hepatic cytosol than in hemolysate, which provides an explanation for the differential inhibition of uro I synthetase activity by lead for these two tissues. This factor is heat stable, but is destroyed by acid, base, ashing or by preincubation with protease. No free sulfhydryl content was detected in purified factor preparations. Metallothionein, isolated from rat liver, was incapable of protecting against lead inhibition of uro I synthetase activity. These findings indicate that the factor is probably protein in nature, but that it is distinctly different from metallothionein.  相似文献   

6.
7.
We developed a sensitive method to quantitate the tyrosine metabolites maleylacetone (MA) and succinylacetone (SA) and the tyrosine metabolism inhibitor dichloroacetate (DCA) in biological specimens. Accumulation of these metabolites may be responsible for the toxicity observed when exposed to DCA. Detection limits of previous methods are 200 ng/mL (1.2 pmol/microL) (MA) and 2.6 microg/mL (16.5 pmol/microL) (SA) but the metabolites are likely present in lower levels in biological specimens. To increase sensitivity, analytes were extracted from liver, urine, plasma and cultured nerve cells before and after dosing with DCA, derivatized to their pentafluorobenzyl esters, and analyzed via GC-MS/MS.  相似文献   

8.
Regulation of hepatic tyrosine aminotransferase in genetically obese rats   总被引:1,自引:0,他引:1  
The activities of hepatic tyrosine aminotransferase, tryptophan oxygenase and serine dehydratase were increased in obese rats shortly after weaning. Immunotitration experiments showed that the increase in tyrosine aminotransferase activity resulted from an increase in enzyme protein in obese rats. No increase in hepatic tyrosine aminotransferase was observed in suckling pre-obese rats. The post-weaning increase in hepatic tyrosine aminotransferase of obese rats was only observed during the light phase of the diurnal cycle, but was prevented by pair-feeding and by starvation. Tryptophan increased hepatic tyrosine aminotransferase of lean rats to obese levels but had no effect in obese rats until tyrosine aminotransferase levels were reduced by starvation or adrenalectomy. Adrenalectomy abolished the increase in hepatic tyrosine aminotransferase activity in obese rats although serum corticosterone was normal in these animals. Hepatic and brain tyrosine concentrations were decreased in obese rats but normalized after adrenalectomy. The results suggest that the corticosteroid-dependent increase in food and tryptophan intake may be the primary cause of the increased hepatic amino acid catabolism of obese rats.  相似文献   

9.
Dichloroacetate (DCA) was administered orally to normal (nondiabetic) and streptozotocin-diabetic rats in a dose of 1000 mg/day/kg rat wt. One group of diabetic animals received DCA both orally and intraperitoneally. DCA therapy lowered the blood glucose values of diabetic animals but did not alter values in nondiabetic rats. The hepatic activity of glucokinase and pyruvate kinase were significantly lower in both DCA-treated nondiabetic and DCA-treated diabetic animals than values observed for untreated animals. However, DCA therapy was accompanied by remarkable increases in the activities of glucose-6-phosphate dehydrogenase and malic enzyme in both nondiabetic and diabetic animals. Glucose-6-phosphate dehydrogenase was 3-fold higher in DCA-treated nondiabetic animals whereas malic enzyme activity was 10-fold higher in the treated animals than observed in the untreated animals. Similar changes, although smaller in magnitude, were observed for these enzymes in the DCA-treated diabetic animals. Although DCA therapy was accompanied by a significant increase in the wet weights of the liver for both nondiabetic and diabetic animals, no morphological changes were seen by light or electron microscopy. Our observations coupled with those of previous investigators suggest that DCA therapy may have an important role in pyruvate metabolism and may lower the blood glucose concentration by inhibiting hepatic gluconeogenesis.  相似文献   

10.
Dichloroacetate (DCA) and trichloroacetate (TCA) are metabolites of the environmental contaminant trichloroethylene (TCE) that are thought to be responsible for its hepatocarcinogenicity in B6C3F1 mice. TCA and DCA induce peroxisomal proliferation and are mitogenic in rodent liver. The susceptibility of humans to TCA- and DCA-induced hepatocarcinogenesis is unknown. The current studies were aimed at using both primary and long-term human hepatocyte cultures to study the effects of TCA, DCA, and a potent peroxisome proliferator, WY-14,643, on peroxisomal activity and DNA synthesis in human hepatocytes. Peroxisome proliferation, as assessed by palmitoyl-CoA oxidation activity, was below the limit of detection in all human cell lines tested. However, the human cell lines did display small but significant increases in CYP450 4A11 levels following treatment with WY-14,643 (0.1 mmol/L), indicting that the CYP 4A11 gene may be regulated by peroxisome proliferator-activated receptor α in humans. Similarly to their effect in rodent hepatocyte cultures, TCA and DCA were not complete mitogens in human hepatocyte cultures. In fact, DNA synthesis tended to be significantly decreased following treatment of the cells with WY-14,643, TCA, or DCA. In contrast to rodent hepatocyte responses, TCA and DCA did not increase palmitoyl-CoA oxidation and caused a decrease in DNA synthesis in human hepatocyte cultures, suggesting that humans may not be susceptible to TCA- and DCA-induced hepatocarcinogenesis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
D Camaur  P Gallay  S Swingler    D Trono 《Journal of virology》1997,71(9):6834-6841
During virus assembly, a subset of human immunodeficiency virus (HIV) matrix (MA) molecules is phosphorylated on C-terminal tyrosine. This modification facilitates infection of nondividing cells by allowing for the recruitment of the karyophilic MA into the viral core and preintegration complex. MA tyrosine phosphorylation is accomplished by a cellular protein kinase which is incorporated into virions. In this study, we have investigated the nature of this enzyme as well as the determinants of MA necessary for its phosphorylation. Employing an in vitro kinase assay, we found that the MA tyrosine kinase activity is present in various cultured cell lines including CEM and SupT1 T-lymphoid cells, Namalwa B cells, 293 and CV-1 kidney fibroblasts, and P4 HeLa cells. In addition, it could be detected in platelets, macrophages, and activated peripheral blood lymphocytes (PBLs) but not in erythrocytes and resting PBLs isolated from human blood. Subcellular localization of the kinase activity by cell fractionation demonstrated that it is enriched in cellular membranes. In HIV type 2 (HIV-2) particles, the MA tyrosine kinase is associated with the inner leaflet of the viral membrane, while the tyrosine-phosphorylated MA is localized to the core. Individual mutations of each of the last eight residues immediately upstream of the C-terminal tyrosine (Y132) of HIV-1 MA did not prevent Y132 phosphorylation, suggesting that the kinase does not require a highly specific sequence adjacent to the C-terminal tyrosine. Confirming this, we found that the MA of murine leukemia virus, the sequence of which is only moderately homologous to that of HIV-1 and HIV-2 MA, is also C-terminally tyrosine phosphorylated.  相似文献   

12.
13.
Branched-chain alpha-keto acid dehydrogenase (BCKDH) complex catalyzes the committed step of the catabolism of branched-chain amino acids (BCAA). The liver cirrhosis chemically induced in rats raised the activity of hepatic BCKDH complex and decreased plasma BCAA and branched-chain alpha-keto acid concentrations, suggesting that the BCAA requirement is increased in liver cirrhosis. Since the effects of liver cirrhosis on the BCKDH complex in human liver are different from those in rat liver, further studies are needed to clarify the differences between rats and humans. In the valine catabolic pathway, crotonase and beta-hydroxyisobutyryl-CoA hydrolase are very important to regulate the toxic concentration of mitochondrial methacrylyl-CoA, which occurs in the middle part of valine pathway and highly reacts with free thiol compounds. Both enzyme activities in human and rat livers are very high compared to that of BCKDH complex. It has been found that both enzyme activities in human livers were significantly reduced by liver cirrhosis and hepatocellular carcinoma, suggesting a decrease in the capability to dispose methacrylyl-CoA. The findings described here suggest that alterations in hepatic enzyme activities in the BCAA catabolism are associated with liver failure.  相似文献   

14.
(1) Subcutaneous or intra-abdominal injections of 8 mg of HgCl2/100 g body weight markedly depressed hepatic fatty acid synthetase activity of chicks at 1 h post-injection. The depression occurred despite the fact that the chicks continued to eat up until the time they were killed. Under these same conditions, the hepatic activity of acetyl-CoA carboxylase (EC 6.4.1.2) was not affected by HgCl2, while the activity of the mitochondrial system of fatty acid elongation was stimulated. (2) When 2-mercaptoethanol was included in the incubation medium for a highly purified preparation of fatty acid synthetase, 500 muM HgCl2 was required to show definite inhibition of the enzyme. When 2-mercaptoethanol was omitted, 50 muM HgCl2 was inhibitory and 100 muM HgCl2 abolished enzyme activity. (3) 2 mM dithiothreitol completely protected the purified fatty acid synthetase preparation from inhibition by 100 muM HgCl2. When dithiothreitol was added after the addition of enzyme to the mercury-containing medium, protection of the enzyme was not complete. (4) Dialysis of cytosol fractions from chicks injected with HgCl2 against 500 vol. of 0.2 M potassium phosphate buffer (pH 7.0) containing 1 mM EDTA and 10 mM dithiothreitol for 4 h at 4 degrees stimulated the fatty acid synthetase activity of the fractions. Dialysis of cytosol fractions from noninjected chicks under the same conditions was without effect on fatty acid synthetase activity. (5) These data support the hypothesis that the inhibitory effect of HgCl2 administered in vivo on hepatic fatty acid synthetase activity in chicks is mediated through the interaction of mercury with the sulfhydryl groups of the enzyme.  相似文献   

15.
In Reuber rat hepatoma cells (R-Y121B), alkaline phosphatase activity increased without de novo enzyme synthesis (Sorimachi, K., and Yasumura, Y. (1986) Biochim. Biophys. Acta 885, 272-281). The enzyme was partially purified by butanol extraction from the particulate fractions. The incubation of the extracted alkaline phosphatase with the cytosol fraction induced a large increase in enzyme activity (5-10-fold of control). The dialyzed cytosol was more effective than the undialyzed cytosol during an early period of incubation at 37 degrees C. This difference between the dialyzed and the undialyzed cytosol fractions was due to endogenous Na+. For maximal activation of the enzyme, both Mg2+ above 1 mM and Zn2+ at low concentrations (below 0.01 mM) were needed, although Zn2+ at high concentrations (above 0.1 mM) showed an inhibitory effect. Zn2+ and Mg2+ alone slightly increased alkaline phosphatase activity. This activation of the enzyme was temperature dependent and was not observed at 0 or 4 degrees C. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed that the increase in alkaline phosphatase activity did not involve the fragmentation of the enzyme and that 65Zn2+ bound to it during enzyme activation with 65Zn2+ and Mg2+. The cytosol fraction not only supplied Zn2+ to the nascent enzyme but also increased the maximal enzyme activity more than did direct addition of metal ions. Ferritin and metallothionein contributed to the activation of alkaline phosphatase with the metal ions. Since the binding of Zn2+ and Mg2+ to the nascent alkaline phosphatase is disturbed in Reuber rat hepatoma cells (R-Y121B), the apoenzyme is accumulated inside the cells. The binding of Zn2+ and Mg2+ to the apoenzyme readily takes place in the cell homogenates accompanied by an increase in catalytic activity without new enzyme synthesis.  相似文献   

16.
The effect of thyroparathyroidectomy (TPTX) on ATP citrate lyase regulation, a rate-limiting enzyme of fatty acid synthesis in hepatic cytosol, was investigated in rats refed after a 24 h fast. ATP citrate lyase activity in the hepatic cytosol was increased 2-fold by refeeding. This increase was suppressed about 50% by TPTX. The suppression of the enzyme activity by TPTX was completely restored by administration of calcitonin (CT; 80 MRC mU/100 g body weight). This hormonal effect was also observed at 20 MRC mU/100 g dose of CT. CT administration to refeeding-TPTX rats produced a significant increase in the calcium content of the liver tissue and the cytosol. The cytosolic ATP citrate lyase activity increase with CT administration was completely blocked by treatment of cytosol with EGTA (10 microM). This inhibition was clearly reversed by addition of calcium ion (1.25-5.0 microM). In addition, CT-induced rise in enzyme activity was markedly reduced by the presence of W-7 (5 and 50 microM), a calmodulin inhibitor, in the enzyme assay system. The present results suggest that CT plays a role in the elevation of hepatic ATP citrate lyase activity brought about by refeeding of fasted rats, and that this hormonal regulation might depend on Ca2+-calmodulin.  相似文献   

17.
We characterized the pharmacokinetics and dynamics of dichloroacetate (DCA), an investigational drug for mitochondrial diseases, pulmonary arterial hypertension, and cancer. Adult Beagle dogs were orally administered 6.25 mg/kg q12h DCA for 4 weeks. Plasma kinetics was determined after 1, 14, and 28 days. The activity and expression of glutathione transferase zeta 1 (GSTZ1), which biotransforms DCA to glyoxylate, were determined from liver biopsies at baseline and after 27 days. Dogs demonstrate much slower clearance and greater inhibition of DCA metabolism and GSTZ1 activity and expression than rodents and most humans. Indeed, the plasma kinetics of DCA in dogs is similar to humans with GSTZ1 polymorphisms that confer exceptionally slow plasma clearance. Dogs may be a useful model to further investigate the toxicokinetics and therapeutic potential of DCA.  相似文献   

18.
Tyrosine hydroxylase is the rate-limiting step in the synthesis of dopamine and is tightly regulated. Previous studies have shown it to be covalently modified and potently inhibited by 3,4-dihydroxyphenylacetaldehyde (DOPAL), an endogenous neurotoxin via dopamine catabolism which is relevant to Parkinson's disease. In order to elucidate the mechanism of enzyme inhibition, a source of pure, active tyrosine hydroxylase was necessary. The cloning and novel purification of human recombinant TH from Escherichia coli is described here. This procedure led to the recovery of ~23 mg of pure, active and stable enzyme exhibiting a specific activity of ~17 nmol/min/mg. The enzyme produced with this procedure can be used to delineate the tyrosine hydroxylase inhibition by DOPAL and its relationship to Parkinson's disease. This procedure improves upon previous methods because the fusion protein gives rise to high expression and convenient affinity-capture, and the cleaved and highly purified hTH makes the product useful for a wider variety of applications.  相似文献   

19.
The antimicrobial activity of T cell-derived cytokines, especially interferon (IFN)-γ, against intracellular pathogens, such as Chlamydia trachomatis, involves the induction of 3 major biochemical processes: tryptophan catabolism, nitric oxide (NO) induction and intracellular iron (Fe) deprivation. Since the epithelial cell is the natural target of chlamydial infection, the presence of these antimicrobial systems in the cell would suggest that they may be involved in T cell control of intracellular multiplication of Chlamydia. However, the controversy over whether these 3 antimicrobial processes are present in both mice and humans has precluded the assessment of the relative contribution of each of the 3 mechanisms to chlamydial inhibition in the same epithelial cell from either mice or humans. In the present study, we identified a Chlamydia-susceptible human epithelial cell line, RT4, that possesses the 3 antimicrobial systems, and we examined the role of nitric oxide (NO) induction, and deprivation of tryptophan or Fe in cytokine-induced inhibition of chlamydiae. It was found that the 3 antimicrobial systems contributed to cytokine-mediated inhibition of the intracellular growth of Chlamydia. NO induction accounted for ~20% of the growth inhibition; tryptophan catabolism contributed approximately 30%; iron deprivation was least effective; but the combination of the 3 systems accounted for greater than 60% of the inhibition observed. These results indicate that immune control of chlamydial growth in human epithelial cells may involve multiple mechanisms that include NO induction, tryptophan catabolism and Fe deprivation.  相似文献   

20.
Dichloroacetate (DCA) and trichloroacetate (TCA) are prominent by-products of chlorination of drinking water. Both chemicals have been shown to be hepatic carcinogens in mice. Prior work has demonstrated that DCA inhibits its own metabolism in rats and humans. This study focuses on the effect of prior administration of DCA or TCA in drinking water on the pharmacokinetics of a subsequent challenge dose of DCA or TCA in male B6C3F1 mice. Mice were provided with DCA or TCA in their drinking water at 2 g/l for 14 days and then challenged with a 100 mg/kg i.v. (non-labeled) or gavage (14C-labeled) dose of DCA or TCA. The challenge dose was administered after 16 h fasting and removal of the haloacetate pre-treatment. The haloacetate blood concentration-time profile and the disposition of 14C were characterized and compared with controls. The effect of pre-treatment on the in vitro metabolism of DCA in hepatic S9 was also evaluated. Pre-treatment with DCA caused a significant increase in the blood concentration-time profiles of the challenge dose of DCA. No effect on the blood concentration-time profile of DCA was observed after pre-treatment with TCA. Pre-treatment with TCA had no effect on subsequent doses of DCA. Pre-treatment with DCA did not have a significant effect on the formation of 14CO2 from radiolabeled DCA. In vitro experiments with liver S9 from DCA-pre-treated mice demonstrated that DCA inhibits it own metabolism. These results indicate that DCA metabolism in mice is also susceptible to inhibition by prior treatment with DCA, however the impact on clearance is less marked in mice than in F344 rats. In contrast, the metabolism and pharmacokinetics of TCA is not affected by pre-treatment with either DCA or TCA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号