首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human African trypanosomiasis (HAT) is a lethal, vector-borne disease caused by the parasite Trypanosoma brucei. Therapeutic strategies for this neglected tropical disease suffer from disadvantages such as toxicity, high cost, and emerging resistance. Therefore, new drugs with novel modes of action are needed. We screened cultured T. brucei against a focused kinase inhibitor library to identify promising bioactive compounds. Among the ten hits identified from the phenotypic screen, AZ960 emerged as the most promising compound with potent antiparasitic activity (IC50 = 120 nM) and was shown to be a selective inhibitor of an essential gene product, T. brucei extracellular signal-regulated kinase 8 (TbERK8). We report that AZ960 has a Ki of 1.25 μM for TbERK8 and demonstrate its utility in establishing TbERK8 as a potentially druggable target in T. brucei.  相似文献   

2.
Protein kinase casein kinase 2 (PKCK2) is a constitutively active, growth factor-independent serine/threonine kinase, and changes in PKCK2 expression or its activity are reported in many cancer cells. To develop a novel PKCK2 inhibitor(s), we first performed cell-based phenotypic screening using 4000 chemicals purchased from ChemDiv chemical libraries (2000: randomly selected; 2000: kinase-biased) and performed in vitro kinase assay-based screening using hits found from the first screening. We identified compound 24 (C24)[(Z)-ethyl 5-(4-chlorophenyl)-2-(3,4-dihydroxybenzylidene)-7-methyl-3-oxo-3,5-dihydro-2H-thiazolo[3,2-a] pyrimidine-6-carboxylate] as a novel inhibitor of PKCK2 that is more potent and selective than 4,5,6,7-tetrabromobenzotriazole (TBB). In particular, compound 24 [half maximal inhibitory concentration (IC50) = 0.56 μM] inhibited PKCK2 2.2-fold more efficiently than did TBB (IC50 = 1.24 μM), which is quite specific toward PKCK2 with respect to ATP binding, in a panel of 31 human protein kinases. The Ki values of compound 24 and TBB for PKCK2 were 0.78 μM and 2.70 μM, respectively. Treatment of cells with compound 24 inhibited endogenous PKCK2 activity and showed anti-proliferative and pro-apoptotic effects against stomach and hepatocellular cancer cell lines more efficiently than did TBB. As expected, compound 24 also enabled tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-resistant cancer cells to be sensitive toward TRAIL. In comparing the molecular docking of compound 24 bound to PKCK2α versus previously reported complexes of PKCK2 with other inhibitors, our findings suggest a new scaffold for specific PKCK2α inhibitors. Thus, compound 24 appears to be a selective, cell-permeable, potent, and novel PKCK2 inhibitor worthy of further characterization.  相似文献   

3.
A series of novel 4-anilinoquinazoline derivatives (3a3j) has been synthesized and evaluated as potential inhibitors for protein kinases implicated in Alzheimer’s disease. Among all the synthesized compounds, compound 3e (N-(3,4-dimethoxyphenyl)-6,7-dimethoxyquinazolin-4-amine) exhibited the most potent inhibitory activity against CLK1 and GSK-3α/β kinase with IC50 values of 1.5 μM and 3 μM, respectively. Docking studies were performed to elucidate the binding mode of the compounds to the active site of CLK1 and GSK-3β. The results of our study suggest that compound 3e may serve as a valuable template for the design and development of dual inhibitors of CLK1 and GSK-3α/β enzymes with potential therapeutic application in Alzheimer’s disease.  相似文献   

4.
Colorectal cancer is the third and fourth leading cause of cancer in males and females, respectively. Flavonoids, including chalcones, are secondary metabolites in plants that exhibit diverse biological activities, including antibacterial, antimalarial, and antitumor activities. In order to find potent and novel chemotherapy drugs for colorectal cancer, a series of benzochalcone derivatives, in which an α,β-unsaturated carbonyl group was replaced with a pyrazoline, was designed and synthesized. A clonogenic survival assay was performed with each derivative to evaluate antitumor activity. 1-(5-(2,4-Dimethoxyphenyl)-4,5-dihydro-1H-pyrazol-3-yl)naphthalen-2-ol (derivative 7) had the most potent inhibitory effect on the long-term clonogenicity of HCT116 human colorectal cancer cells (IC50 = 2.4 μM). The results of Western blot and flow cytometric analyses suggested that derivative 7 could inhibit the proliferation of colorectal cancer cells through inhibition of cell cycle progression and induction of apoptosis. To elucidate its molecular mechanism, in vitro kinase binding assays were carried out, which demonstrated that derivative 7 inhibited aurora kinases A and B selectively. The binding modes between the compound and aurora kinases were interpreted using in silico docking experiments to explain the selective inhibitory effects on aurora kinases A and B. These findings will facilitate the design of potent novel benzochalcones as anticancer agents.  相似文献   

5.
In silico target fishing approach using PharmMapper server identified c-Met kinase as the selective target for our previously synthesized compound NCI 748494/1. This approach was validated by in vitro kinase assay which showed that NCI 748494/1 possessed promising inhibitory activity against c-Met kinase (IC50 = 31.70 μM). Assessment of ADMET profiling, drug-likeness, drug score as well as docking simulation for the binding pose of that compound in the active site of c-Met kinase domain revealed that NCI 748494/1 could be considered as a promising drug lead. Based on target identification and validation, it was observed that there is structure similarity between NCI 748494/1 and the reported type II c-Met kinase inhibitor BMS-777607. Optimization of our lead NCI 748494/1 furnished newly synthesized 1,2,4-triazine derivatives based on well-established structure-activity relationships, whereas three compounds namely; 4d, 7a and 8c displayed excellent in vitro cytotoxicity against three c-Met addicted cancer cell lines; A549 (lung adenocarcinoma), HT-29 (colon cancer) and MKN-45 (gastric carcinoma); with IC50 values in the range 0.01–1.86 µM. In vitro c-Met kinase assay showed 8c to possess the highest c-Met kinase inhibition profile (IC50 = 4.31 µM). Docking of the active compounds in c-Met kinase active site revealed strong binding interactions comparable to the lead NCI 748494/1 and BMS-777607, suggesting that c-Met inhibition is very likely to be the mechanism of the antitumor effect of these derivatives.  相似文献   

6.
The FIKK family of kinases is unique to parasites of the Apicomplexan order, which includes all malaria parasites. Plasmodium falciparum, the most virulent form of human malaria, has a family of 19 FIKK kinases, most of which are exported into the host red blood cell during malaria infection. Here, we confirm that FIKK 8 is a non-exported member of the FIKK kinase family. Through expression and purification of the recombinant kinase domain, we establish that emodin is a relatively high-affinity (IC50 = 2 μM) inhibitor of PfFk8. Closely related anthraquinones do not inhibit PfFk8, suggesting that the particular substitution pattern of emodin is critical to the inhibitory pharmacophore. This first report of a P. falciparum FIKK kinase inhibitor lays the groundwork for developing specific inhibitors of the various members of the FIKK kinase family in order to probe their physiological function.  相似文献   

7.
Gram-negative pathogens secrete effector proteins into human cells to modulate normal cellular processes and establish a bacterial replication niche. Shigella and pathogenic Escherichia coli possess homologous effector kinases, OspG and NleH1/2, respectively. Upon translocation, OspG but not NleH binds to ubiquitin and a subset of E2 ~ Ub conjugates, which was shown to activate its kinase activity. Here we show that OspG, having a minimal kinase fold, acquired a novel mechanism of regulation of its activity. Binding of the E2 ~ Ub conjugate to OspG not only stimulates its kinase activity but also increases its optimal temperature for activity to match the human body temperature and stabilizes its labile C-terminal domain. The melting temperature (Tm) of OspG alone is only 31?°C, as compared to 41?°C to NleH1/2 homologs. In the presence of E2 ~ Ub, the Tm of OspG increases to ~ 42?°C, while Ub by itself increases the Tm to 39?°C. Moreover, OspG alone displays maximal activity at 26?°C, while in the presence of E2 ~ Ub, maximal activity occurs at ~ 42?°C. Using NMR and molecular dynamics calculations, we have identified the C-terminal lobe and, in particular, the C-terminal helix, as the key elements responsible for lower thermal stability of OspG as compared to homologous effector kinases.  相似文献   

8.
Eukaryotic elongation factor 2 kinase (eEF-2K), the only known calmodulin (CaM)-activated α-kinase, phosphorylates eukaryotic elongation factor 2 (eEF-2) on a specific threonine (Thr-56) diminishing its affinity for the ribosome and reducing the rate of nascent chain elongation during translation. Despite its critical cellular role, the precise mechanisms underlying the CaM-mediated activation of eEF-2K remain poorly defined. Here, employing a minimal eEF-2K construct (TR) that exhibits activity comparable to the wild-type enzyme and is fully activated by CaM in vitro and in cells, and using a variety of complimentary biophysical techniques in combination with computational modeling, we provide a structural mechanism by which CaM activates eEF-2K. Native mass analysis reveals that CaM, with two bound Ca2 + ions, forms a stoichiometric 1:1 complex with TR. Chemical crosslinking mass spectrometry and small-angle X-ray scattering measurements localize CaM near the N-lobe of the TR kinase domain and the spatially proximal C-terminal helical repeat. Hydrogen/deuterium exchange mass spectrometry and methyl NMR indicate that the conformational changes induced on TR by the engagement of CaM are not localized but are transmitted to remote regions that include the catalytic site and the functionally important phosphate binding pocket. The structural insights obtained from the present analyses, together with our previously published kinetics data, suggest that TR, and by inference, wild-type eEF-2K, upon engaging CaM undergoes a conformational transition resulting in a state that is primed to efficiently auto-phosphorylate on the primary activating T348 en route to full activation.  相似文献   

9.
36 new compounds with the typical skeleton of 4-anilino-5-vinyl/ethynyl pyrimidine, 4-anilino-3-cyano-5-vinyl/ethynyl/phenyl pyridine, and m-amino-N-phenylbenzamide, are designed, synthesized and selectively tested on EGFR, ErbB-2 kinases, and A-549, HL60 cells growth inhibition. Results from the bioactivity and chemical structures yield preliminary structure–activity relationships (SARs). The most potent 5-ethynylpyrimidine derivative 20a has an IC50 value of 45 nM to EGFR kinase. Several compounds of other series also show IC50 values <1 μM for EGFR and <5 μM for A-549 and HL60 cells growth inhibition.  相似文献   

10.
Carbocyclic 6-benzylthioinosine analogues were synthesized and evaluated for their binding affinity against Toxoplasma gondii adenosine kinase [EC.2.7.1.20]. Various substituents on the aromatic ring of the 6-benzylthio group resulted in increased binding affinity to the enzyme as compared to the unsubstituted compound. Carbocyclic 6-(p-methylbenzylthio)inosine 9n exhibited the most potent binding affinity. Docking simulations were performed to position compound 9n into the T. gondii adenosine kinase active site to determine the probable binding mode. Experimental investigations and theoretical calculations further support that an oxygen atom of the sugar is not critical for the ligand-binding. In agreement with its binding affinity, carbocyclic 6-(p-methylbenzylthio)inosine 9n demonstrated significant anti-toxoplasma activity (IC50 = 11.9 μM) in cell culture without any apparent host-toxicity.  相似文献   

11.
SHP-1 (PTPN6) is a member of the SHP sub-family of protein tyrosine phosphatases and plays a critical role in the regulation of the JAK/STAT signaling pathway. Previous studies suggested that SHP-1 contains a PTP1B-like second phosphotyrosine pocket that allows for binding of tandem phosphotyrosine residues, such as those found in the activation loop of JAK kinases. To discover the structural nature of the interaction between SHP-1 and the JAK family member, JAK1, we determined the 1.8 Å co-crystal structure of the SHP-1 catalytic domain and a JAK1-derived substrate peptide. This structure reveals electron density for only one bound phosphotyrosine residue. To investigate the role of the predicted second site pocket we determined the structures of SHP-1 in complex with phosphate and sulfate to 1.37 Å and 1.7 Å, respectively, and performed anomalous scattering experiments for a selenate-soaked crystal. These crystallographic data suggest that SHP-1 does not contain a PTP1B-like second site pocket. This conclusion is further supported by analysis of the relative dephosphorylation and binding affinities of mono- and tandem-phosphorylated peptide substrates. The crystal structures instead indicate that SHP-1 contains an extended C-terminal helix α2’ incompatible with the predicted second phosphotyrosine binding site. This study suggests that SHP-1 defines a new category of PTP1B-like protein tyrosine phosphatases with a hindered second phosphotyrosine pocket.  相似文献   

12.
BackgroundAurora kinases are key mitotic kinases executing multiple aspects of eukaryotic cell-division. The apicomplexan homologs being essential for survival, suggest that the Leishmania homolog, annotated LdAIRK, may be equally important.MethodsBioinformatics, stage-specific immunofluorescence microscopy, immunoblotting, RT-PCR, molecular docking, in-vitro kinase assay, anti-leishmanial activity assays, flow cytometry, fluorescence microscopy.ResultsLdairk expression is seen to vary as the cell-cycle progresses from G1 through S and finally G2M and cytokinesis. Kinetic studies demonstrate their enzymatic activity exhibiting a Km and Vmax of 6.12 μM and 82.9pmoles·min 1mg 1 respectively against ATP using recombinant Leishmania donovani H3, its physiological substrate. Due to the failure of LdAIRK −/+ knock-out parasites to survive, we adopted a chemical knock-down approach. Based on the conservation of key active site residues, three mammalian Aurora kinase inhibitors were investigated to evaluate their potential as inhibitors of LdAIRK activity. Interestingly, the cell-cycle progressed unhindered, despite treatment with GSK-1070916 or Barasertib, inhibitors with greater potencies for the ATP-binding pocket compared to Hesperadin, which at nanomolar concentrations, severely compromised viability at IC50s 105.9 and 36.4 nM for promastigotes and amastigotes, respectively. Cell-cycle and morphological studies implicated their role in both mitosis and cytokinesis.ConclusionWe identified an Aurora kinase homolog in L. donovani implicated in cell-cycle progression, whose inhibition led to aberrant changes in cell-cycle progression and reduced viability.General significanceHuman homologs being actively pursued drug targets and the observations with LdAIRK in both promastigotes and amastigotes suggest their potential as therapeutic-targets. Importantly, our results encourage the exploration of other proteins identified herein as potential novel drug targets.  相似文献   

13.
 Enzymatic hydrolysis of corncob and ethanol fermentation from cellulosic hydrolysate were investigated. After corncob was pretreated by 1% H2SO4 at 108 °C for 3 h, the cellulosic residue was hydrolyzed by cellulase from Trichoderma reesei ZU-02 and the hydrolysis yield was 67.5%. Poor cellobiase activity in T. reesei cellulase restricted the conversion of cellobiose to glucose, and the accumulation of cellobiose caused severe feedback inhibition to the activities of β-1,4-endoglucanase and β-1,4-exoglucanase in cellulase system. Supplementing cellobiase from Aspergillus niger ZU-07 greatly reduced the inhibitory effect caused by cellobiose, and the hydrolysis yield was improved to 83.9% with enhanced cellobiase activity of 6.5 CBU g−1 substrate. Fed-batch hydrolysis process was started with a batch hydrolysis containing 100 g l−1 substrate, with cellulosic residue added at 6 and 12 h twice to get a final substrate concentration of 200 g l−1. After 60 h of reaction, the reducing sugar concentration reached 116.3 g l−1 with a hydrolysis yield of 79.5%. Further fermentation of cellulosic hydrolysate containing 95.3 g l−1 glucose was performed using Saccharomyces cerevisiae 316, and 45.7 g l−1 ethanol was obtained within 18 h. The research results are meaningful in fuel ethanol production from agricultural residue instead of grain starch.  相似文献   

14.
Glucose transport into cells may be regulated by a variety of conditions, including ischemia. We investigated whether some enzymes frequently involved in the metabolic adaptation to ischemia are also required for glucose transport activation. Ischemia was simulated by incubating during 3 h H9c2 cardiomyoblasts in a serum- and glucose-free medium in hypoxia. Under these conditions 2-deoxy-d-[2,6-3H]-glucose uptake was increased (57% above control levels, p < 0.0001) consistently with GLUT1 and GLUT4 translocation to sarcolemma. Tyrosine kinases inhibition via tyrphostin had no effect on glucose transport up-regulation induced by simulated ischemia. On the other hand, chelerythrine, a broad range inhibitor of protein kinase C isoforms, and rottlerin, an inhibitor of protein kinase C delta, completely prevented the stimulation of the transport rate. A lower activation of hexose uptake (19%, p < 0.001) followed also treatment with Gö6976, an inhibitor of conventional protein kinases C. Finally, PD98059-mediated inhibition of the phosphorylation of ERK 1/2, a downstream mitogen-activated protein kinase (MAPK), only partially reduced the activation of glucose transport induced by simulated ischemia (31%, p < 0.01), while SB203580, an inhibitor of p38 MAPK, did not exert any effect. These results indicate that stimulation of protein kinase C delta is strongly related to the up-regulation of glucose transport induced by simulated ischemia in cultured cardiomyoblasts and that conventional protein kinases C and ERK 1/2 are partially involved in the signalling pathways mediating this process.  相似文献   

15.
Brucellosis is one of the most common bacterial zoonoses worldwide. Infection is usually chronic and sometimes lifelong. Different mechanisms can be postulated as to the basis for the induction of the chronic status of brucellosis, but a comprehensive knowledge is still lacking. Here, we carried out a series of experiments in order to assess if the persistence of Brucella abortus could be ascribed to the effect of a down regulation of the immune response due to activity of regulatory T cells. We demonstrate that CD4 + CD25 + T regulatory cells are able to limit the effectiveness of CD4 + T cells and are able to favor the maintenance and the progression of B. abortus infection.  相似文献   

16.
The viridins like demethoxyviridin (Dmv) and wortmannin (Wm) are nanomolar inhibitors of the PI3 kinases, a family of enzymes that play key roles in a host of regulatory processes. Central to the use of these compounds to investigate the role of PI3 kinase in biological systems, or as scaffolds for drug development, are the interrelated issues of stability, chemical reactivity, and bioactivity as inhibitors of PI3 kinase. We found that Dmv was an even more potent inhibitor of PI3 kinase than Wm. However, Dmv was notably less stable than Wm in PBS, with a half-life of 26 min versus Wm’s half-life of 3470 min. Dmv, like Wm, disappeared in culture media with a half-life of less than 1 min. To overcome Dmv’s instability, it was esterified at the C1 position, and then reacted with glycine at the C20 position. The resulting Dmv derivative, termed SA–DmvC20-Gly had a half-life of 218 min in PBS and 64 min in culture media. SA–DmvC20-Gly underwent an exchange reaction at the C20 position with N-acetyl lysine in a manner similar to a WmC20 derivative, WmC20-Proline. SA–DmvC20-Gly inhibited PI3 kinase with an IC50 of 44 nM, compared to Wm’s IC50 of 12 nM. These results indicate that the stability of Dmv can be manipulated by reactions at the C1 and C20 positions, while substantially maintaining its ability to inhibit PI3 kinase. Our results indicate it may be possible to obtain stabilized Dmv derivatives for use as PI3 kinase inhibitors in biological systems.  相似文献   

17.
NTRK1/2/3 fusions have recently been characterized as low incidence oncogenic alterations across various tumor histologies. Tyrosine kinase inhibitors (TKIs) of the tropomyosin receptor kinase family TrkA/B/C (encoded by NTRK1/2/3) are showing promises in the clinic for the treatment of cancer patients whose diseases harbor NTRK tumor drivers. We describe herein the development of [18F]QMICF ([18F]-(R)-9), a quinazoline-based type-II pan-Trk radiotracer with nanomolar potencies for TrkA/B/C (IC50 = 85–650 nM) and relevant TrkA fusions including TrkA-TPM3 (IC50 = 162 nM). Starting from a racemic FLT3 (fms like tyrosine kinase 3) inhibitor lead with off-target TrkA activity ((±)-6), we developed and synthesized the fluorinated derivative (R)-9 in three steps and 40% overall chemical yield. Compound (R)-9 displays a favorable selectivity profile on a diverse set of kinases including FLT3 (>37-fold selectivity for TrkB/C). The mesylate precursor 16 required for the radiosynthesis of [18F]QMICF was obtained in six steps and 36% overall yield. The results presented herein support the further exploration of [18F]QMICF for imaging of Trk fusions in vivo.  相似文献   

18.
A number of cyclic and linear peptides containing various combinations of amino acids were evaluated for their Src kinase inhibitory potency. Among all the peptides, cyclic decapeptide C[RW]5 containing alternative arginine (R) and tryptophan (W) residues was found to be the most potent Src kinase inhibitor. C[RW]5 showed higher inhibitory activity (IC50 = 2.8 μM) than C[KW]5, L(KW)5, C[RW]4, and C[RW]3 with IC50 values of 46.9, 69.1, 21.5, and 25.0 μM, respectively, as determined in a fluorescence intensity-based assay. Thus, the cyclic nature, the presence of arginine, ring size, and the number of amino acids in the structure of the peptide were found to be critical in Src kinase inhibitory potency. The IC50 value of C[RW]5 was found to be 0.8 μM in a radioactive assay using [γ-32P]-ATP and polyE4Y as the substrate. C[RW]5 was a noncompetitive Src kinase inhibitor, showing approximately fourfold more selectivity towards Src than Abl.  相似文献   

19.
The alkene peptide isostere for the d-Ala-d-Ala dipeptide was synthesized via a convergent approach utilizing olefin cross-metathesis. The new isostere was then evaluated for binding to the last resort antibiotic, vancomycin. The alkene isostere exhibited a KD = 90 μM in comparison to the native peptide (KD = 2.3 μM) and Lac mutant (KD = 2300 μM). This study demonstrates that loss of binding in vancomycin resistant strains as a result of a d-Ala to d-Lac mutation is from both the loss of a crucial hydrogen bond and introduction of a repulsive lone pair interaction.  相似文献   

20.
Mycosin protease-1 (MycP1) cleaves ESX secretion-associated protein B (EspB) that is a virulence factor of Mycobacterium tuberculosis, and accommodates an octapeptide, AVKAASLG, as a short peptide substrate. Because peptidoboronic acids are known inhibitors of serine proteases, the synthesis and binding of a boronic acid analog of the pentapeptide cleavage product, AVKAA, was studied using MycP1 variants from Mycobacterium thermoresistible (MycP1mth), Mycobacterium smegmatis (MycP1msm) and M. tuberculosis (MycP1mtu). We synthesized the boropentapeptide, HAlaValLysAlaAlaB(OH)2 (1) and the analogous pinanediol PD-protected HAlaValLysAlaAlaBO2(PD) (2) using an Fmoc/Boc peptide strategy. The pinanediol boropentapeptide 2 displayed IC50 values 121.6 ± 25.3 μM for MycP1mth, 93.2 ± 37.3 μM for MycP1msm and 37.9 ± 5.2 μM for MycP1mtu. Such relatively strong binding creates a chance for crystalizing the complex with 2 and finding the structure of the unknown MycP1 catalytic site that would potentially facilitate the development of new anti-tuberculosis drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号