首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we characterize new multipotent human mesenchymal stem cell lines (MSCs) derived from desquamated (shedding) endometrium of menstrual blood. The isolated endometrial MSC (eMSC) is an adhesive to plastic heterogeneous population composed mainly of endometrial glandular and stromal cells. The established cell lines meet the criteria of the International Society for Cellular Therapy for defining multipotent human MSCs of any origin. The eMSCs have positive expression of CD13, CD29, CD44, CD73, CD90, and CD105 markers and lack hematopoietic cell surface antigens CD19, CD34, CD45, CD117, CD130, and HLA-DR (class II). Multipotency of the established eMSCs is confirmed by their ability to differentiate into other mesodermal lineages, such as osteocytes and adipocytes. In addition, the isolated eMSCs partially (over 50%) express the pluripotency marker SSEA-4. However, they do not express Oct-4. Immunofluorescent analysis of the derived cells revealed the expression of the neural precursor markers nestin and β-III-tubulin. This suggests a neural predisposition of the established eMSCs. These cells are characterized by a high proliferation rate (doubling time 22–23 h) and a high colony-forming efficiency (about 60%). In vitro, the eMSCs undergo more than 45 population doublings without karyotypic abnormalities. We demonstrate that mitotically inactivated eMSCs are perfect feeder cells for maintenance of human embryonic stem cell lines (hESCs) C612 and C910. The eMSCs, being a feeder culture, sustain the hESC pluripotent status that verified by expression of Oct-4, alkaline phosphatase and SSEA-4 markers. The hESCs cocultured with the eMSCs retain their morphology and proliferative rate for more than 40 passages and exhibit the capability for spontaneous differentiation into embryoid bodies comprising three embryonic germ layers. Thus, an easy and noninvasive isolation of the eMSCs from menstrual blood, their multipotency and high proliferative activity in vitro without karyotypic abnormalities demonstrate the potential of use of these stem cells in regenerative medicine. Using the derived eMSCs as the feeder culture eliminates the risks associated with animal cells while transferring hESCs to clinical setting.  相似文献   

2.
In this study, we characterize new multipotent human mesenchymal stem cell (MSC) lines derived from desquamated (shedding) endometrium in menstrual blood. The isolated endometrial MSC (eMSC) is an adhesive to plastic heterogeneous population composed mainly of endometrial glandular and stromal cells. The established cell lines meet the criteria of the International Society for Cellular Therapy for defining multipotent human MSC of any origin. The eMSCs have positive expression of CD73, CD90, CD105, CD13, CD29, CD44 markers and the absence of expression of the hematopoietic cell surface antigens CD19, CD34, CD45, CD117, CD130 and HLA-DR (class II). Multipotency of the established eMSC is confirmed by their ability to differentiate into other mesodermal cell types such as osteocytes and adipocytes. Besides, the isolated eMSC lines partially (over 50%) express the pluripotency marker SSEA-4, but do not express Oct-4. Immunofluorescent analysis of the derived cells revealed the expression of the neural precursor markers nestin and beta-III-tubulin. This suggests a neural predisposition of the established eMSC. These cells are characterized by high rate of cell proliferation (doubling time 22-23 h) and high cloning efficiency (about 60%). In vitro the eMSCs undergo more than 45 population doublings revealing normal karyotype without karyotipic abnormalilies. We demonstrate, that the mititotically inactivated eMSCs are perfect feeder cells for human embryonic stem cell lines (hESC) C612 and C910. The eMSC being a feeder culture maintain the pluripotent status of the hESC, which is revealed by the expression of Oct-4, alkaline phosphatase and SSEA-4. When co-culturing, hESC retain their morphology, proliferative rate for more than 40 passages and capability for spontaneous differentiation into embryoid bodies comprising the three embryonic germ layers. Thus, an easy and non-invasive extraction of the eMSC in menstrual blood, their multipotency and high proliferative activity in vitro without karyotypic abnormalities demonstrate the potential of use of these stem cells in regenerative medicine. Using the derived eMSCs as the feeder culture eliminates the risks associated with animal cells while transferring hESC to clinical setting.  相似文献   

3.
Aim of the present study was the isolation, culture, and characterization of amniotic membrane-derived epithelial cells (AE) from term placenta collected postpartum in buffalo. We found that cultured cells were of polygonal in shape, resistance to trypsin digestion and expressed cytokeratin-18 indicating that they were of epithelial origin. These cells have negative expression of mesenchymal stem cell markers (CD29, CD44, and CD105) and positive for pluripotency marker (OCT4) genes indicated that cultured cells were not contaminated with mesenchymal stem cells. Immunofluorescence staining with pluripotent stem cell surface markers, SSEA-1, SSEA-4, TRA-1-60, and TRA-1-81 indicated that these cells may retain pluripotent stem cell characteristics even after long period of differentiation. Differentiation potential of these cells was determined by their potential to differentiate into cells of neurogenic lineages using retinoic acid. In conclusion, we demonstrate that AE cells expressed pluripotent stem cell markers and have propensity to differentiate into cells of neurogenic lineage upon directed differentiation in vitro.  相似文献   

4.
There has been a long persisting dilemma about potential ovarian stem cells in adult mammalian ovaries, including human, and now there is steadily increasing experimental evidence on their existence. After some previous indirect evidence about the presence of stem cells in adult mouse ovaries, an important breakthrough was made by Zou and his co-workers who successfully established long-persisting pluripotent/multipotent ovarian stem cell lines in neonatal and adult mice, and were followed by some other important studies in mouse and human. Moreover, oocyte-like cells can be developed in vitro from pluripotent stem cells of different origins (embryonic stem cells, induced pluripotent stem cells, fetal skin stem cells, pancreatic stem cells). The aim of this article is to elucidate the fast growing new knowledge on the ovarian stem cells and potential in vitro oogenesis in mammals.  相似文献   

5.
Authentic induced pluripotent stem cells (iPSCs), capable of giving rise to all cell types of an adult animal, are currently only available in mouse. Here, we report the first generation of bovine iPSC-like cells following transfection with a novel virus-free poly-promoter vector. This vector contains the bovine cDNAs for OCT4, SOX2, KLF4 and c-MYC, each controlled by its own independent promoter. Bovine fibroblasts were cultured without feeders in a chemically defined medium containing leukaemia inhibitory factor (LIF) and inhibitors of MEK1/2 and glycogen synthase kinase-3 signaling ('2i'). Non-invasive real-time kinetic profiling revealed a different response of bovine vs human and mouse cells to culture in 2i/LIF. In bovine, 2i was necessary and sufficient to induce the appearance of tightly packed alkaline phosphatase-positive iPSC-like colonies. These colonies formed in the absence of DNA synthesis and did not expand after passaging. Following transfection, non-proliferative primary colonies expressed discriminatory markers of pluripotency, including endogenous iPSC factors, CDH1, DPPA3, NANOG, SOCS3, ZFP42, telomerase activity, Tra-1-60/81 and SSEA-3/4, but not SSEA-1. This indicates that they had initiated a self-sustaining pluripotency programme. Bovine iPSC-like cells maintained a normal karyotype and differentiated into derivatives of all three germ layers in vitro and in teratomas. Our study demonstrates that conversion into induced pluripotency can occur in quiescent cells, following a previously undescribed route of direct cell reprogramming. This identifies a major species-specific barrier for generating iPSCs and provides a chemically defined screening platform for factors that induce proliferation and maintain pluripotency of embryo-derived pluripotent stem cells in livestock.  相似文献   

6.
An important risk in the clinical application of human pluripotent stem cells (hPSCs), including human embryonic and induced pluripotent stem cells (hESCs and hiPSCs), is teratoma formation by residual undifferentiated cells. We raised a monoclonal antibody against hESCs, designated anti-stage-specific embryonic antigen (SSEA)-5, which binds a previously unidentified antigen highly and specifically expressed on hPSCs--the H type-1 glycan. Separation based on SSEA-5 expression through fluorescence-activated cell sorting (FACS) greatly reduced teratoma-formation potential of heterogeneously differentiated cultures. To ensure complete removal of teratoma-forming cells, we identified additional pluripotency surface markers (PSMs) exhibiting a large dynamic expression range during differentiation: CD9, CD30, CD50, CD90 and CD200. Immunohistochemistry studies of human fetal tissues and bioinformatics analysis of a microarray database revealed that concurrent expression of these markers is both common and specific to hPSCs. Immunodepletion with antibodies against SSEA-5 and two additional PSMs completely removed teratoma-formation potential from incompletely differentiated hESC cultures.  相似文献   

7.
Herein we present a protocol of reprogramming human adult fibroblasts into human induced pluripotent stem cells (hiPSC) using retroviral vectors encoding Oct3/4, Sox2, Klf4 and c-myc (OSKM) in the presence of sodium butyrate 1-3. We used this method to reprogram late passage (>p10) human adult fibroblasts derived from Friedreich''s ataxia patient (GM03665, Coriell Repository). The reprogramming approach includes highly efficient transduction protocol using repetitive centrifugation of fibroblasts in the presence of virus-containing media. The reprogrammed hiPSC colonies were identified using live immunostaining for Tra-1-81, a surface marker of pluripotent cells, separated from non-reprogrammed fibroblasts and manually passaged 4,5. These hiPSC were then transferred to Matrigel plates and grown in feeder-free conditions, directly from the reprogramming plate. Starting from the first passage, hiPSC colonies demonstrate characteristic hES-like morphology. Using this protocol more than 70% of selected colonies can be successfully expanded and established into cell lines. The established hiPSC lines displayed characteristic pluripotency markers including surface markers TRA-1-60 and SSEA-4, as well as nuclear markers Oct3/4, Sox2 and Nanog. The protocol presented here has been established and tested using adult fibroblasts obtained from Friedreich''s ataxia patients and control individuals 6, human newborn fibroblasts, as well as human keratinocytes.  相似文献   

8.
We reported earlier that occasional neurons evolve in human cultures of pluripotent ovarian epithelial stem cells. In subsequent experiments, frequent transdifferentiation into neural stem cells (NSC) and differentiating neurons was observed in human ovarian epithelial stem cells and porcine granulosa cells after exposure to certain combinations of sex steroids. Testosterone (TS), progesterone (PG) or estradiol (E2) alone do not increase the emergence of neurons. However, a mixture of TS+PG after E2 pretreatment converted a majority of ovarian epithelial stem cells or porcine granulosa cells into NSC and differentiating neuronal cells within one to three hours. Cultured neurons manifested an interconnectivity resembling primitive neuronal pathways in culture. These converted cells expressed the cell markers SSEA-1, SSEA-4, NCAM, and Thy-1 glycoconjugates of NSC and neurons, and differentiating cells showed characteristic neuronal morphology. Emergence of NSC and neuronal cells was associated with significant cellular depletion of L-glutamic acid (glutamate), which serves as the major excitatory neurotransmitter in the vertebrate CNS and its fast removal is essential for preventing glutamate excitotoxicity. These observations suggest that certain sequential systemic treatment with common sex steroids and their mixture might be effective in the treatment or prevention of degenerative CNS disorders. The ovarian stem cell cultures readily obtainable from human ovaries regardless of the woman's age have the potential to produce NSC for autologous regenerative treatment of neurologic diseases in aging women. Finally, the proper combination of sex steroids could possibly be employed for transdifferentiation of adult bone marrow stem cells or mobilized peripheral blood cells into autologous NSC and stimulate their neuronal differentiation after homing in the CNS.  相似文献   

9.
In vitro neuronal differentiation of cultured human embryonic germ cells   总被引:8,自引:0,他引:8  
Human embryonic germ (hEG) cells, which have been advanced as one of the most important sources of pluripotent stem cells [the other one being human embryonic stem cells], can be propagated in vitro indefinitely in the primitive undifferentiated state while being capable of developing into all three germ layer derivatives, hence have become anticipated developing novel strategies of tissue regeneration and transplantation in the treatment of degenerative diseases. In the experiments here, we derived hEG cells from cultured human primordial germ cells (PGCs) of 6- to 9-week-post-fertilization embryos. They satisfied the criteria previously used to define hEG cells, including the expression of markers characteristic of pluripotent cells-abundant alkaline phosphatase (AP) activity, stage specific embryonic antigen (SSEA)-1(+), SSEA-3(-), SSEA-4(+), TRA-1-60(+), TRA-1-81(+), Oct-4(+), and hTERT(+), the retention of normal karyotypes, and possessing pluripotency by forming embryoid bodies (EBs) in vitro. Furthermore, these derived cells tended to neurally differentiate in vitro, especially under high-density culture conditions. We successfully isolated neural progenitor cells from differentiating hEG cultures and about 10% cells induced by 2microM all-trans-retinoic acid (RA) or 0.1mM dibutyryl cyclic AMP (dbcAMP)/1mM forskolin to mature neurons expressing microtubule-associated protein 2ab (MAP2ab), synaptophysin, beta-tubulin III, neuron-specific enolase (NSE), tyrosine hydroxylase (TH), but no glial fibrillary acid protein (GFAP) and choline acetyl transferase (ChAT). The data suggested that hEG cells may provide a potential source of cells for use in transplantation therapy for neurological degenerative diseases.  相似文献   

10.
11.
12.
13.
Multipotent properties of myofibroblast cells derived from human placenta   总被引:3,自引:0,他引:3  
Human uterine fibroblasts (HuF) isolated from the maternal part (decidua parietalis) of a term placenta provide a useful model of in vitro cell differentiation into decidual cells (decidualization, a critical process for successful pregnancy). After isolation, the cells adhere to plastic and have either a small round or spindle-shaped morphology that later changes into a flattened pattern in culture. HuF robustly proliferate in culture until passage 20 and form colonies when plated at low densities. The cells express the mesenchymal cell markers fibronectin, integrin-β1, ICAM-1 (CD54), and collagen I. Flow cytometry of HuF has detected the presence of CD34, a marker of the hematopoietic stem cell lineage, and an absence of CD10, CD11b/Mac, CD14, CD45, and HLA type II. Furthermore, they also express the pluripotency markers SSEA-1, SSEA-4, Oct-4, Stro-1, and TRA-1–81 as detected by confocal microscopy. Treatment for 14–21 days with differentiation-inducing media leads to the differentiation of HuF into osteoblasts, adipocytes, and chondrocytes. The presence of α-smooth muscle actin, calponin, and myosin light-chain kinase in cultured HuF implies their similarity to myofibroblasts. Treatment of the HuF with dimethyl sufoxide causes reversion to the spindle-shaped morphology and a loss of myofibroblast characteristics, suggesting a switch into a less differentiated phenotype. The unique abilities of HuF to exhibit multipotency, even with myofibroblast characteristics, and their ready availability and low maintenance requirements make them an interesting cell model for further exploration as a possible tool for regenerative medicine. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized user. This work was supported by National Institutes of Health Grant HD-44713 (to Z.S.).  相似文献   

14.
Glycolipids are compounds containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety. Because of their expression patterns and the intracellular localization patterns, glycolipids, including stage-specific embryonic antigens (SSEA-3, SSEA-4, and possibly SSEA-1) and gangliosides (e.g., GD3, GD2, and A2B5 antigens), have been used as marker molecules of stem cells. In this review, I will introduce glycolipids expressed in pluripotent stem cells (embryonic stem cells, induced pluripotent stem cells, very small embryonic-like stem cells, amniotic stem cells, and multilineage-differentiating stress enduring cells), multipotent stem cells (neural stem cells, mesenchymal stem cells, fetal liver multipotent progenitor cells, and hematopoietic stem cells), and cancer stem cells (brain cancer stem cells and breast cancer stem cells), and discuss their availability as biomarkers for identifying and isolating stem cells.  相似文献   

15.
Here, we identify CD44(+)CD90(+)CD73(+)CD34(−)CD45(−) cells within the adult human arterial adventitia with properties of multipotency which were named vascular wall-resident multipotent stem cells (VW-MPSCs). VW-MPSCs exhibit typical mesenchymal stem cell characteristics including cell surface markers in immunostaining and flow cytometric analyses, and differentiation into adipocytes, chondrocytes and osteocytes under culture conditions. Particularly, TGFß1 stimulation up-regulates smooth muscle cell markers in VW-MPSCs. Using fluorescent cell labelling and co-localisation studies we show that VW-MPSCs differentiate to pericytes/smooth muscle cells which cover the wall of newly formed endothelial capillary-like structures in vitro. Co-implantation of EGFP-labelled VW-MPSCs and human umbilical vein endothelial cells into SCID mice subcutaneously via Matrigel results in new vessels formation which were covered by pericyte- or smooth muscle-like cells generated from implanted VW-MPSCs. Our results suggest that VW-MPSCs are of relevance for vascular morphogenesis, repair and self-renewal of vascular wall cells and for local capacity of neovascularization in disease processes.  相似文献   

16.
Due to the limitations in the clinical application of embryonic stem cells (ESC) and induced pluripotent stem cells, mesenchymal stem cells (MSCs) are now much more interesting for cell-based therapy. Although MSCs have several advantages, they are not capable of differentiating to all three embryonic layers (three germ layers) without cultivation under specific induction media. Hence, improvement of MSCs for cell therapy purposes is under intensive study now. In this study, we isolated MSCs from umbilical cord tissue at the single-cell level, by treatment with trypsin, followed by cultivation under suspension conditions to form a colony. These colonies were trypsin resistant, capable of self-renewal differentiation to the three germ layers without any induction, and they were somewhat similar to ESC colonies. The cells were able to grow in both adherent and suspension culture conditions, expressed both the MSCs markers, especially CD105, and the multipotency markers, i.e., SSEA-3, and had a limited lifespan. The cells were expanded under simple culture conditions at the single-cell level and were homogenous. Further and complementary studies are required to understand how trypsin-tolerant mesenchymal stem cells are established. However, our study suggested non-embryonic resources for future cell-based therapy.  相似文献   

17.
18.
Renewal of stem cells differs from cancer cell growth in self-controlled cell division. The mir-302 microRNA (miRNA) family (mir-302s) is expressed most abundantly in slow-growing human embryonic stem (ES) cells, and quickly decreases after cell differentiation and proliferation. Therefore, mir-302s was investigated as one of the key factors essential for maintenance of ES cell renewal and pluripotency in this study. The Pol-II-based intronic miRNA expression system was used to transgenically transfect the mir-302s into several human cancer cell lines. The mir-302 – transfected cells, namely, miRNA-induced pluripotent stem (mirPS) cells, not only expressed many key ES cell markers, such as Oct3/4, SSEA-3, SSEA-4 ,Sox2, and Nanog, but also had a highly demethylated genome similar to a reprogrammed zygotic genome. Microarray analyses further revealed that genome-wide gene expression patterns between the mirPS and human ES H1 and H9 cells shared over 86% similarity. Using molecular guidance in vitro, these mirPS cells could differentiate into distinct tissue cell types, such as neuron-, chondrocyte-, fibroblast-, and spermatogonia-like primordial cells. Based on these findings, we conclude that mir-302s not only function to reprogram cancer cells into an ES-like pluripotent state but also to maintain this state under a feeder-free cultural condition, which may offer a great opportunity for therapeutic intervention.  相似文献   

19.
Undifferentiated stem cells are better donor cells for somatic cell nuclear transfer (SCNT), resulting in more offspring than more differentiated cells. While various stem cell populations have been confirmed to exist in the skin, progress has been restricted due to the lack of a suitable marker for their prospective isolation. To address this fundamental issue, a marker is required that could unambiguously prove the differentiation state of the donor cells. We therefore utilized magnetic activated cell sorting (MACS) to separate a homogeneous population of small SSEA-4+ cells from a heterogeneous population of bovine embryonic skin fibroblasts (BEF). SSEA-4+ cells were 8-10 μm in diameter and positive for alkaline phosphatase (AP). The percentage of SSEA-4+ cells within the cultured BEF population was low (2-3%). Immunocytochemistry and PCR analyses revealed that SSEA-4+ cells expressed pluripotency-related markers, and could differentiate into cells comprising all three germ layers in vitro. They remained undifferentiated over 20 passages in suspension culture. In addition, cloned embryos derived from SSEA-4 cells showed significant differences in cleavage rate and blastocyst development when compared with those from BEF and SSEA-4 cells. Moreover, blastocysts derived from SSEA-4+ cells showed a higher total cell number and lower apoptotic index as compared to BEF and SSEA-4 derived cells. It is well known that nuclei from pluripotent stem cells yield a higher cloning efficiency than those from adult somatic cells, however, pluripotent stem cells are relatively difficult to obtain from bovine. The SSEA-4+ cells described in the current study provide an attractive candidate for SCNT and a promising platform for the generation of transgenic cattle.  相似文献   

20.
Novel human embryonic stem cell lines C612 and C910 have been established from atching blastocytes. Cells were cultivated in mTeSR medium on a mouse fibroblast feeder layer; they exhibit common pluripotent markers, such as alkaline phosphatase, Oct 3/4, SSEA-4, Nanog, Rex1. The immunophenotyping of these cells by flow cytometry revealed CD90 (Thy-1) and CD117 (c-kit) antigens and showed weak or no expression of CD13, CD34, CD45, CD130, and HLA class I and II antigens, which is typical for human embryonic stem cells. Karyotypic structure of C612 and C910 assayed by the G-banding of metaphase plates is normal in both chromosome number and structure. The cells generate embryoid bodies, undergo spontaneous differentiation, and express three germ-layer markers (nestin, keratin, vimentin ectoderm), α-fetoprotein (entoderm), muscle α-actinin (mesoderm), i.e., possess pluripotent potency. Thus, C612 and C910 display accepted human embryonic stem cell properties, including unlimited self-renewal, expression of pluripotent markers, ability to differentiate into three germ layers, and are diploid; therefore, they may be of potential use for fundamental research, as well as for replacement therapy studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号