首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We developed a dynamic model of a rat proximal convoluted tubule cell in order to investigate cell volume regulation mechanisms in this nephron segment. We examined whether regulatory volume decrease (RVD), which follows exposure to a hyposmotic peritubular solution, can be achieved solely via stimulation of basolateral K\(^+\) and \(\hbox {Cl}^-\) channels and \(\hbox {Na}^+\)\(\hbox {HCO}_3^-\) cotransporters. We also determined whether regulatory volume increase (RVI), which follows exposure to a hyperosmotic peritubular solution under certain conditions, may be accomplished by activating basolateral \(\hbox {Na}^+\)/H\(^+\) exchangers. Model predictions were in good agreement with experimental observations in mouse proximal tubule cells assuming that a 10% increase in cell volume induces a fourfold increase in the expression of basolateral K\(^+\) and \(\hbox {Cl}^-\) channels and \(\hbox {Na}^+\)\(\hbox {HCO}_3^-\) cotransporters. Our results also suggest that in response to a hyposmotic challenge and subsequent cell swelling, \(\hbox {Na}^+\)\(\hbox {HCO}^-_3\) cotransporters are more efficient than basolateral K\(^+\) and \(\hbox {Cl}^-\) channels at lowering intracellular osmolality and reducing cell volume. Moreover, both RVD and RVI are predicted to stabilize net transcellular \(\hbox {Na}^+\) reabsorption, that is, to limit the net \(\hbox {Na}^+\) flux decrease during a hyposmotic challenge or the net \(\hbox {Na}^+\) flux increase during a hyperosmotic challenge.  相似文献   

3.
Previous genomewide association studies (GWAS) and meta-analyses have enumerated several genes/loci in major histocompatibility complex region, which are consistently associated with rheumatoid arthritis (RA) in different ethnic populations. Given the genetic heterogeneity of the disease, it is necessary to replicate these susceptibility loci in other populations. In this case, we investigate the analysis of two SNPs, rs13192471 and rs6457617, from the human leukocyte antigen (HLA) region with the risk of RA in Tunisian population. These SNPs were previously identified to have a strong RA association signal in several GWAS studies. A case–control sample composed of 142 RA patients and 123 healthy controls was analysed. Genotyping of rs13192471 and rs6457617 was carried out using real-time PCR methods by TaqMan allelic discrimination assay. A trend of significant association was found in rs6457617 TT genotype with susceptibility to RA (\(P = 0.04\), \(p_{c} = 0.08\), \(\hbox {OR} = 1.73\)). Moreover, using multivariable analysis, the combination of rs6457617*TT–HLA-DRB1*\(04^{+}\) increased risk of RA (\(\hbox {OR} = 2.38\)), which suggest a gene–gene interaction event between rs6457617 located within the HLA-DQB1 and HLA-DRB1. Additionally, haplotypic analysis highlighted a significant association of rs6457617*T–HLA-DRB1*\(04^{+}\) haplotype with susceptibility to RA (\(P = 0.018\), \(p_{c} = 0.036\), \(\hbox {OR} = 1.72\)). An evidence of association was shown subsequently in \(\hbox {antiCCP}^{+}\) subgroup with rs6457617 both in T allele and TT genotype (\(P = 0.01\), \(p_{c} = 0.03\), \(\hbox {OR} = 1.66\) and \(P = 0.008\), \(p_{c} = 0.024\), \(\hbox {OR} = 1.28\), respectively). However, no association was shown for rs13192471 polymorphism with susceptibility and severity to RA. This study suggests the involvement of rs6457617 locus as risk variant for susceptibility/severity to RA in Tunisian population. Secondly, it highlights the gene–gene interaction between HLA-DQB1 and HLA-DRB1.  相似文献   

4.
The cathepsin E-A-like, also known as ‘similar to nothepsin’, is a new member of the aspartic protease family, which may take part in processing of egg yolk macromolecules, due to it was identified in the chicken egg-yolk. Previously, studies have suggested that the expression of cathepsin E-A-like increased gradually during sexual maturation of pullets, but the exact regulation mechanism is poorly understood. In this study, to gain insight into the function and regulation mechanism of the gene in egg-laying hen, we cloned the cathepsin E-A-like gene and evaluated its evolutionary origin by using both phylogenetic and syntenic methods. The mode of the gene expression regulation was analysed through stimulating juvenile hens with \(17\upbeta \)-estradiol and chicken embryo hepatocytes with \(17\upbeta \)-estradiol combined with oestrogen receptor antagonists including MPP, ICI 182,780 and tamoxifen. Our results showed that cathepsin E-A-like was an orthologoues gene with nothepsin, which is present in birds but not in mammals. The expression of cathepsin E-A-like significantly increased in a dose-dependent manner after the juvenile hens were treated with \(17\upbeta \)-estradiol (\(P~<~0.05\)). Compared with the \(17\upbeta \)-estradiol treatment group, the expression of cathepsin E-A-like was not significantly changed when the hepatocytes were treated with \(17\upbeta \)-estradiol combined with MPP (\(P~<~0.05\)). In contrast, compared with the \(17\upbeta \)-estradiol combined with MPP treatment group, the expression of cathepsin E-A-like was significantly downregulated when the hepatocytes were treated with \(17\upbeta \)-estradiol combined with tamoxifen or ICI 182,780 (\(P~<~0.05\)). These results demonstrated that cathepsin E-A-like shared the same evolutionary origin with nothepsin. The expression of cathepsin E-A-like was regulated by oestrogen, and the regulative effect was predominantly mediated through ER-\(\upbeta \) in liver of chicken.  相似文献   

5.
Changes in land use affect the terrestrial carbon stock through changes in the land cover. Research on land use and analysis of variations in carbon stock have practical applications in the optimization of land use and the mitigation of climate change effects. This study was conducted in Baixiang and Julu counties in the Taihang Piedmont by employing the trend analysis method to characterize the variation in county land use and carbon stock. The findings show that in both counties, agricultural and unused land areas decreased while built-up land area increased, and the reduction in cropland was the main reason behind the agricultural land reduction. An inflection point appeared on the cropland curves of Julu, because the cropland area decreased by 1576.97 hm\(^{2}\) from 2004 to 2006. Cropland area in Baixiang decreased from 1996 to 1998 by a total of 129.89 hm\(^{2}\) and then remained relatively stable after 1998. The total carbon storage and variation in land use in the two counties displayed similar trends. Total carbon reserves in Julu increased by 2.76 \(\times \) 10\(^{4}\) tC (carbon equivalent), while those in Baixiang decreased by 0.63 \(\times \) 10\(^{4}\) tC. Carbon stock of built-up land in Julu and Baixiang increased by 2.44 \(\times \) 10\(^{4}\) and 1.22 \(\times \) 10\(^{4}\) tC, respectively.  相似文献   

6.
Myocardial stiffness is a valuable clinical biomarker for the monitoring and stratification of heart failure (HF). Cardiac finite element models provide a biomechanical framework for the assessment of stiffness through the determination of the myocardial constitutive model parameters. The reported parameter intercorrelations in popular constitutive relations, however, obstruct the unique estimation of material parameters and limit the reliable translation of this stiffness metric to clinical practice. Focusing on the role of the cost function (CF) in parameter identifiability, we investigate the performance of a set of geometric indices (based on displacements, strains, cavity volume, wall thickness and apicobasal dimension of the ventricle) and a novel CF derived from energy conservation. Our results, with a commonly used transversely isotropic material model (proposed by Guccione et al.), demonstrate that a single geometry-based CF is unable to uniquely constrain the parameter space. The energy-based CF, conversely, isolates one of the parameters and in conjunction with one of the geometric metrics provides a unique estimation of the parameter set. This gives rise to a new methodology for estimating myocardial material parameters based on the combination of deformation and energetics analysis. The accuracy of the pipeline is demonstrated in silico, and its robustness in vivo, in a total of 8 clinical data sets (7 HF and one control). The mean identified parameters of the Guccione material law were \(C_1=3000\pm 1700\,\hbox {Pa}\) and \(\alpha =45\pm 25\) (\(b_f=25\pm 14\), \(b_{ft}=11\pm 6\), \(b_{t}=9\pm 5\)) for the HF cases and \(C_1=1700\,\hbox {Pa}\) and \(\alpha =15\) (\(b_f=8\), \(b_{ft}=4\), \(b_{t}=3\)) for the healthy case.  相似文献   

7.
NMR relaxometry plays crucial role in studies of protein dynamics. The measurement of longitudinal and transverse relaxation rates of \(^{15}\)N is the main source of information on backbone motions. However, even the most basic approach exploiting a series of \(^{15}\)N HSQC spectra can require several hours of measurement time. Standard non-uniform sampling (NUS), i.e. random under-sampling of indirect time domain, typically cannot reduce this by more than 2–4\(\times\) due to relatively low “compressibility” of these spectra. In this paper we propose an extension of NUS to relaxation delays. The two-dimensional space of \(t_1\)/\(t_{relax}\) is sampled in a way similar to NUS of \(t_1\)/\(t_2\) domain in 3D spectra. The signal is also processed in a way similar to that known from 3D NUS spectra i.e. using one of the most popular compressed sensing algorithms, iterative soft thresholding. The 2D Fourier transform matrix is replaced with mixed inverse Laplace-Fourier transform matrix. The peak positions in resulting 3D spectrum are characterized by two frequency coordinates and relaxation rate and thus no additional fitting of exponential curves is required. The method is tested on three globular proteins, providing satisfactory results in a time corresponding to acquisition of two conventional \(^{15}\)N HSQC spectra.  相似文献   

8.
Aberrant NSD2 methyltransferase activity is implicated as the oncogenic driver in multiple myeloma, suggesting opportunities for novel therapeutic intervention. The methyltransferase activity of NSD2 resides in its catalytic SET domain, which is conserved among most lysine methyltransferases. Here we report the backbone \(\hbox {H}^{\mathrm{N}}\), N, C\(^{\prime }\), \(\hbox {C}^\alpha\) and side-chain \(\hbox {C}^\beta\) assignments of a 25 kDa NSD2 SET domain construct, spanning residues 991–1203. A chemical shift analysis of C\(^{\prime }\), \(\hbox {C}^\alpha\) and \(\hbox {C}^\beta\) resonances predicts a secondary structural pattern that is in agreement with homology models.  相似文献   

9.
The present study aimed to investigate the association of \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) and \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) polymorphisms of GSTP1 with coronary artery disease (CAD) in a subgroup of north Indian population. In the present case–control study, CAD patients (\(n = 200\)) and age-matched, sex-matched and ethnicity-matched healthy controls (\(n = 200\)) were genotyped for polymorphisms in GSTP1 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Genotype distribution of \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) and \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) polymorphisms of GSTP1 gene was significantly different between cases and controls (\(P = 0.005\) and 0.024, respectively). Binary logistic regression analysis showed significant association of A/G (odds ratio (OR): 1.6, 95% CI: 1.08–2.49, \(P = 0.020\)) and G/G (OR: 3.1, 95% CI: 1.41–6.71, P \(=\) 0.005) genotypes of GSTP1 \(\hbox {g}.313\hbox {A}{\!>\!}\hbox {G}\), and C/T (OR: 5.8, 95% CI: 1.26–26.34, \(P = 0.024\)) genotype of GSTP1 \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) with CAD. The A/G and G/G genotypes of \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) and C/T genotype of \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) conferred 6.5-fold increased risk for CAD (OR: 6.5, 95% CI: 1.37–31.27, \(P = 0.018\)). Moreover, the recessive model of GSTP1 \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) is the best fit inheritance model to predict the susceptible gene effect (OR: 2.3, 95% CI: 1.11–4.92, \(P = 0.020\)). In conclusion, statistically significant associations of GSTP1 \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) (A/G, G/G) and \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) (C/T) genotypes with CAD were observed.  相似文献   

10.
Motivated by the propagation of thin bacterial films around planar obstacles, this paper considers the dynamics of travelling wave solutions to the Fisher–KPP equation \(u_t = u(1-u) + u_{xx} + u_{yy}\) in a planar strip \(-\infty< x < \infty \), \(0 \le y \le L\). We examine the propagation of fronts in the presence of a mixed boundary condition (also referred to as a ‘partially absorbing’ or ‘reactive’ boundary) \(u_y = \alpha u\), with \(\alpha >0\), at \(y=0\). The presence of boundary conditions of this kind leads to the development of front solutions that propagate in x but contain transverse structure in y. Motivated by the observation that the speed of propagation in the Fisher–KPP equation is determined (for exponentially decaying initial conditions) by the behaviour at the leading edge, we analyse the linearised Fisher–KPP equation in order to estimate the speed of the stable travelling front, a function of the width L and the imposed boundary conditions. For wide strips the speed estimate based on the linearised equation agrees well with the results of numerical simulations. For narrow channels numerical simulations indicate that the stable front propagates more slowly, and for sufficiently small L or sufficiently large \(\alpha \) the front speed falls to zero and the front collapses. The reason for the collapse is the non-existence, far behind the front, of a stable positive equilibrium solution u(xy). While existence of these equilibrium states can be demonstrated via phase plane arguments, the investigation of stability is similar to calculations of critical patch sizes carried out in similar ecological models.  相似文献   

11.
Caspase-1-mediated pyroptosis is the predominance for driving CD4\(^{+}\) T cells death. Dying infected CD4\(^{+}\) T cells can release inflammatory signals which attract more uninfected CD4\(^{+}\) T cells to die. This paper is devoted to developing a diffusive mathematical model which can make useful contributions to understanding caspase-1-mediated pyroptosis by inflammatory cytokines IL-1\(\beta \) released from infected cells in the within-host environment. The well-posedness of solutions, basic reproduction number, threshold dynamics are investigated for spatially heterogeneous infection. Travelling wave solutions for spatially homogeneous infection are studied. Numerical computations reveal that the spatially heterogeneous infection can make \(\mathscr {R}_0>1\), that is, it can induce the persistence of virus compared to the spatially homogeneous infection. We also find that the random movements of virus have no effect on basic reproduction number for the spatially homogeneous model, while it may result in less infection risk for the spatially heterogeneous model, under some suitable parameters. Further, the death of infected CD4\(^{+}\) cells which are caused by pyroptosis can make \(\mathscr {R}_0<1\), that is, it can induce the extinction of virus, regardless of whether or not the parameters are spatially dependent.  相似文献   

12.
Tumour metastasis in the lymphatics is a crucial step in the progression of breast cancer. The dynamics by which breast cancer cells (BCCs) travel in the lymphatics remains poorly understood. The goal of this work is to develop a model capable of predicting the shear stresses metastasising BCCs experience using numerical and experimental techniques. This paper models the fluidic transport of large particles (\(\eta =d_{\mathrm{p}}/W=0.1-0.4\) where \(d_{\mathrm{p}}\) is the particle diameter and W is the channel width) subjected to lymphatic flow conditions (\({ Re}=0.04\)), in a \(100\times 100\,\upmu \hbox {m}\) microchannel. The feasibility of using the dynamic fluid body interaction (DFBI) method to predict particle motion was assessed, and particle tracking experiments were performed. The experiments found that particle translational velocity decreased from the undisturbed fluid velocity with increasing particle size (5–14% velocity lag for \(\eta =0.1-0.3\)). DFBI simulations were found to better predict particle behaviour than theoretical predictions; however, mesh restrictions in the near-wall region (\(0.2\,\mathrm{W}>y>0.8\,\mathrm{W}\)) result in computationally expensive models. The simulations were in good agreement with the experiments (\(<12\%\) difference) across the channel (\(0.2\,\mathrm{W}\le y\le 0.8\,\mathrm{W}\)), with differences up to 25% in the near-wall region. Particles experience a range of shear stresses (0.002–0.12 Pa) and spatial shear gradients (\(0.004-0.137\,\hbox {Pa}/\upmu \hbox {m}\)) depending on their size and radial position. The predicted shear gradients are far in excess of values associated with BCC apoptosis (\(0.004-0.023\,\hbox {Pa}/\upmu \hbox {m}\)). Increasing our understanding of the shear stress magnitudes and gradients experienced by BCCs could be leveraged to elucidate whether a particular BCC size or location exists that encourages metastasis within the lymphatics.  相似文献   

13.
Identifying the best performing hybrid without a field test was essential to save resources and time. In this study, the genetic divergence was estimated using morphological and expressed sequence tag (EST)-derived simple sequence repeats (SSR) markers. Cluster analysis showed that APMS6A and RPHR 1005 belong to groups I and II, respectively, and the hybrid combination recorded the highest mean grain yield of 32.25 g among generated 40 \(\hbox {F}_{1}\hbox {s}\) with standard heterosis of 8.4% over hybrid check, KRH2. The coefficient of marker polymorphism (CMP) value was calculated based on EST-SSR markers; it ranged from 0.40 to 0.80, and a higher CMP value of 0.80 was obtained for the parental combination APMS6A \(\times \) RPHR1005. We predicted heterosis for 40 \(\hbox {F}_{1}\hbox {s}\) based on correlation between CMP and standard heterosis in different traits with standard varietal and hybrid checks indicating positive correlation and significant value for grain yield per plant (\(r=0.58\)**), productivity per day (\(r=0.54\)**), productive tillers (\(r=0.34\)*) and panicle weight (\(r=0.42\)**). This study revealed that the relationship of molecular marker heterozygosity, along with the combining ability, high mean value of different traits, grouping of parental lines based on morphological and molecular characterization is helpful to identify heterotic patterns in rice.  相似文献   

14.
Amphibians are globally threatened by habitat loss and fragmentation; species within the order Ambystoma are not the exception, as there are 18 species of mole salamanders in México, of which 16 are endemic and all species are under some national or international status of protection. The mole salamander, Ambystoma altamirani is a microendemic species, which is distributed in central México, within the trans-Mexican volcanic belt, and is one of the most threatened species due to habitat destruction and the introduction of exotic species. Nine microsatellite markers were used to determine the genetic structure, genetic variability, effective population size, presence of bottlenecks and inbreeding coefficient of one population of A. altamirani to generate information which might help to protect and conserve this threatened species. We found two genetic subpopulations with significant level of genetic structure (\(F_{\mathrm{ST}}= 0.005\)) and high levels of genetic variability (\(H_{\mathrm{o}}= 0.883\); \(H_{\mathrm{e}}= 0.621\)); we also found a small population size (\(N_{\mathrm{e}} = 8.8\)), the presence of historical (\(M =\) 0.486) and recent bottlenecks under IAM and TPM models, with a low, but significant coefficient of inbreeding (\(F_{\mathrm{IS}} = -\)0.451). This information will help us to raise conservation strategies of this microendemic mole salamander species.  相似文献   

15.
Most current cartilage testing devices require the preparation of excised samples and therefore do not allow intra-operative application for diagnostic purposes. The gold standard during open or arthroscopic surgery is still the subjective perception of manual palpation. This work presents a new diagnostic method of ultrasound palpation (USP) to acquire applied stress and strain data during manual palpation of articular cartilage. With the proposed method, we obtain cartilage thickness and stiffness. Moreover, repeated palpations allow the quantification of relaxation effects. USP measurements on elastomer phantoms demonstrated very good repeatability for both, stage-guided (97.2%) and handheld (96.0%) applications. The USP measurements were compared with conventional indentation experiments and revealed very good agreement on elastomer phantoms (\(r = 0.98\)) and good agreement on porcine cartilage samples (\(r = 0.76\)). Artificially degenerated cartilage samples showed reduced stiffness, weak capacity to relax after palpation and an increase of stiffness of approximately 50% with each single palpation. Intact cartilage was measured by USP directly at the patella (in situ) and after excision and removal of the subchondral bone (ex situ), leading to stiffness values of \(12.1\pm 5.5\) and \(8.5\pm 5.9\,\hbox {MPa}\) (\(p<0.05\)), respectively. The results demonstrate the potential of the USP system for cartilage testing, its sensitivity to degenerative changes and as a method for quantifying relaxation processes by means of repeated palpations. Furthermore, the differences in the results of in-situ and ex-situ measurements are of general interest, since such comparison has not been reported previously. We point out the limited comparability of ex-situ cartilage with its in-situ biomechanical behavior.  相似文献   

16.
Despite major strides in the treatment of cancer, the development of drug resistance remains a major hurdle. One strategy which has been proposed to address this is the sequential application of drug therapies where resistance to one drug induces sensitivity to another drug, a concept called collateral sensitivity. The optimal timing of drug switching in these situations, however, remains unknown. To study this, we developed a dynamical model of sequential therapy on heterogeneous tumors comprised of resistant and sensitive cells. A pair of drugs (DrugA, DrugB) are utilized and are periodically switched during therapy. Assuming resistant cells to one drug are collaterally sensitive to the opposing drug, we classified cancer cells into two groups, \(A_\mathrm{R}\) and \(B_\mathrm{R}\), each of which is a subpopulation of cells resistant to the indicated drug and concurrently sensitive to the other, and we subsequently explored the resulting population dynamics. Specifically, based on a system of ordinary differential equations for \(A_\mathrm{R}\) and \(B_\mathrm{R}\), we determined that the optimal treatment strategy consists of two stages: an initial stage in which a chosen effective drug is utilized until a specific time point, T, and a second stage in which drugs are switched repeatedly, during which each drug is used for a relative duration (i.e., \(f \Delta t\)-long for DrugA and \((1-f) \Delta t\)-long for DrugB with \(0 \le f \le 1\) and \(\Delta t \ge 0\)). We prove that the optimal duration of the initial stage, in which the first drug is administered, T, is shorter than the period in which it remains effective in decreasing the total population, contrary to current clinical intuition. We further analyzed the relationship between population makeup, \(\mathcal {A/B} = A_\mathrm{R}/B_\mathrm{R}\), and the effect of each drug. We determine a critical ratio, which we term \(\mathcal {(A/B)}^{*}\), at which the two drugs are equally effective. As the first stage of the optimal strategy is applied, \(\mathcal {A/B}\) changes monotonically to \(\mathcal {(A/B)}^{*}\) and then, during the second stage, remains at \(\mathcal {(A/B)}^{*}\) thereafter. Beyond our analytic results, we explored an individual-based stochastic model and presented the distribution of extinction times for the classes of solutions found. Taken together, our results suggest opportunities to improve therapy scheduling in clinical oncology.  相似文献   

17.
Muscle and joint contact force influence stresses at the proximal growth plate of the femur and thus bone growth, affecting the neck shaft angle (NSA) and femoral anteversion (FA). This study aims to illustrate how different muscle groups’ activation during gait affects NSA and FA development in able-bodied children. Subject-specific femur models were developed for three able-bodied children (ages 6, 7, and 11 years) using magnetic resonance images. Contributions of different muscle groups—hip flexors, hip extensors, hip adductors, hip abductors, and knee extensors—to overall hip contact force were computed. Specific growth rate for the growth plate was computed, and the growth was simulated in the principal stress direction at each element in the growth front. The predicted growth indicated decreased NSA and FA (of about \(0.1 {^{\circ }}\) over a four-month period) for able-bodied children. Hip abductors contributed the most, and hip adductors, the least, to growth rate. All muscles groups contributed to a decrease in predicted NSA (\(\sim \)0.01\({^{\circ }}\)–0.04\({^{\circ }})\) and FA (\(\sim \)0.004\({^{\circ }}\)\(0.2{^{\circ }}\)), except hip extensors and hip adductors, which showed a tendency to increase the FA (\(\sim \)0.004\({^{\circ }}\)\(0.02{^{\circ }}\)). Understanding influences of different muscle groups on long bone growth tendency can help in treatment planning for growing children with affected gait.  相似文献   

18.
This study aimed to explore whether the genetic variant of COL11A1 is functionally associated with the development of lumbar disc herniation (LDH) in Chinese population. SNP rs1676486 of COL11A1 was genotyped in 647 patients and 532 healthy controls. The differences of genotype and allele distributions between LDH patients and healthy controls were evaluated using the \(\upchi ^{2}\) test. One-way ANOVA test was used to compare the relationship between genotypes and clinical features including tissue expression of COL11A1 and the degree of disc degeneration. Patients were found to have a significantly higher frequency of TT than the controls (10.2% versus 7.3%, \(P=0.004\)). Besides, the frequency of allele T was found to be remarkably higher in the patients than the controls (34.8% versus 28.1%, \(P < 0.001\)) with an odds ratio of 1.36 (95% confidential interval \(=\) 1.14–1.63). Patients with genotype TT were found to have remarkably more severe disc degeneration (\(P=0.02\)). Besides, the expression of COL11A1 in the lumbar disc was significantly lower in the patients with genotype TT than in those with genotype CT or CC (\(P < 0.001\)). Moreover, the expression level was inversely correlated with the severity of disc degeneration (\(P < 0.001\)). We confirmed that the rs1676486 of COL11A may be functionally associated with LDH in the Chinese population. Extracellular matrix related proteins may play an important role in the pathogenesis of LDH. Our findings shed light on a better understanding of the pathogenesis of LDH, which could be a promising target for a novel treatment modality of LDH.  相似文献   

19.
This study presents a framework for a direct comparison of experimental vocal fold dynamics data to a numerical two-mass-model (2MM) by solving the corresponding inverse problem of which parameters lead to similar model behavior. The introduced 2MM features improvements such as a variable stiffness and a modified collision force. A set of physiologically sensible degrees of freedom is presented, and three optimization algorithms are compared on synthetic vocal fold trajectories. Finally, a total of 288 high-speed video recordings of six excised porcine larynges were optimized to validate the proposed framework. Particular focus lay on the subglottal pressure, as the experimental subglottal pressure is directly comparable to the model subglottal pressure. Fundamental frequency, amplitude and objective function values were also investigated. The employed 2MM is able to replicate the behavior of the porcine vocal folds very well. The model trajectories’ fundamental frequency matches the one of the experimental trajectories in \(98.6\%\) of the recordings. The relative error of the model trajectory amplitudes is on average \(9.5\%\). The experiments feature a mean subglottal pressure of 10.16 (SD \(= 2.31\)) \({\text {cmH}}_2{\text {O}}\); in the model, it was on average 7.61 (SD \(= 2.40\)) \({\text {cmH}}_2{\text {O}}\). A tendency of the model to underestimate the subglottal pressure is found, but the model is capable of inferring trends in the subglottal pressure. The average absolute error between the subglottal pressure in the model and the experiment is 2.90 (SD \(= 1.80\)) \({\text {cmH}}_2{\text {O}}\) or \(27.5\%\). A detailed analysis of the factors affecting the accuracy in matching the subglottal pressure is presented.  相似文献   

20.
In this study, we sought to model the mechanical behavior of an electrospun tubular scaffold previously reported for vascular tissue engineering with hyperelastic constitutive equations. Specifically, the scaffolds were made by wrapping electrospun polycaprolactone membranes that contain aligned fibers around a mandrel in such a way that they have microstructure similar to the native arterial media. The biaxial stress-stretch data of the scaffolds made of moderately or highly aligned fibers with three different off-axis fiber angles \(\alpha \) (30\(^\circ \), 45\(^\circ \), and 60\(^\circ \)) were fit by a phenomenological Fung model and a series of structurally motivated models considering fiber directions and fiber angle distributions. In particular, two forms of fiber strain energy in the structurally motivated model for a linear and a nonlinear fiber stress–strain relation, respectively, were tested. An isotropic neo-Hookean strain energy function was also added to the structurally motivated models to examine its contribution. The two forms of fiber strain energy did not result in significantly different goodness of fit for most groups of the scaffolds. The absence of the neo-Hookean term in the structurally motivated model led to obvious nonlinear stress-stretch fits at a greater axial stretch, especially when fitting data from the scaffolds with a small \(\alpha \). Of the models considered, the Fung model had the overall best fitting results; its applications are limited because of its phenomenological nature. Although a structurally motivated model using the nonlinear fiber stress–strain relation with the neo-Hookean term provided fits comparably as good as the Fung model, the values of its model parameters exhibited large within-group variations. Prescribing the dispersion of fiber orientation in the structurally motivated model, however, reduced the variations without compromising the fits and was thus considered to be the best structurally motivated model for the scaffolds. It appeared that the structurally motivated models could be further improved for fitting the mechanical behavior of the electrospun scaffold; fiber interactions are suggested to be considered in future models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号