首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The epithelial surface of the mammalian intestine is a dynamic tissue that renews every 3 - 7 days. Understanding this renewal process identified a population of rapidly cycling intestinal stem cells (ISCs) characterized by their expression of the Lgr5 gene. These are supported by a quiescent stem cell population, marked by Bmi-1 expression, capable of replacing them in the event of injury. Investigating the interactions between these populations is crucial to understanding their roles in disease and cancer. The ISCs exist within crypts on the intestinal surface, these niches support the ISC in replenishing the epithelia. The interaction between active and quiescent ISCs likely involves other differentiated cells within the niche, as it has previously been demonstrated that the ‘‘stemness’’ of the Lgr5 ISC is closely tied to the presence of their neighboring Paneth cells. Using conditional cre-lox mouse models we tested the effect of deleting the majority of active ISCs in the presence or absence of the Paneth cells. Here we describe the techniques and analysis undertaken to characterize the intestine and demonstrate that the Paneth cells play a crucial role within the ISC niche in aiding recovery following substantial insult.  相似文献   

2.
Murine small intestinal crypt development is initiated during the first postnatal week. Soon after formation, overall increases in the number of crypts occurs through a bifurcating process called crypt fission, which is believed to be driven by developmental increases in the number of intestinal stem cells (ISCs). Recent evidence suggests that a heterogeneous population of ISCs exists within the adult intestine. Actively cycling ISCs are labeled by Lgr5, Ascl2 and Olfm4; whereas slowly cycling or quiescent ISC are marked by Bmi1 and mTert. The goal of this study was to correlate the expression of these markers with indirect measures of ISC expansion during development, including quantification of crypt fission and side population (SP) sorting. Significant changes were observed in the percent of crypt fission and SP cells consistent with ISC expansion between postnatal day 14 and 21. Quantitative real-time polymerase chain reaction (RT-PCR) for the various ISC marker mRNAs demonstrated divergent patterns of expression. mTert surged earliest, during the first week of life as crypts are initially being formed, whereas Lgr5 and Bmi1 peaked on day 14. Olfm4 and Ascl2 had variable expression patterns. To assess the number and location of Lgr5-expressing cells during this period, histologic sections from intestines of Lgr5-EGFP mice were subjected to quantitative analysis. There was attenuated Lgr5-EGFP expression at birth and through the first week of life. Once crypts were formed, the overall number and percent of Lgr5-EGFP positive cells per crypt remain stable throughout development and into adulthood. These data were supported by Lgr5 in situ hybridization in wild-type mice. We conclude that heterogeneous populations of ISCs are expanding as measured by SP sorting and mRNA expression at distinct developmental time points.  相似文献   

3.
The concept of ‘field cancerization’ describes the clonal expansion of genetically altered, but morphologically normal cells that predisposes a tissue to cancer development. Here, we demonstrate that biased stem cell competition in the mouse small intestine can initiate the expansion of such clones. We quantitatively analyze how the activation of oncogenic K-ras in individual Lgr5+ stem cells accelerates their cell division rate and creates a biased drift towards crypt clonality. K-ras mutant crypts then clonally expand within the epithelium through enhanced crypt fission, which distributes the existing Paneth cell niche over the two new crypts. Thus, an unequal competition between wild-type and mutant intestinal stem cells initiates a biased drift that leads to the clonal expansion of crypts carrying oncogenic mutations.  相似文献   

4.
Factors regulating the proliferation and apoptosis of intestinal stem cells (ISCs) remain incompletely understood. Because ISCs exist among microbial ligands, immune receptors such as toll-like receptor 4 (TLR4) could play a role. We now hypothesize that ISCs express TLR4 and that the activation of TLR4 directly on the intestinal stem cells regulates their ability to proliferate or to undergo apoptosis. Using flow cytometry and fluorescent in situ hybridization for the intestinal stem cell marker Lgr5, we demonstrate that TLR4 is expressed on the Lgr5-positive intestinal stem cells. TLR4 activation reduced proliferation and increased apoptosis in ISCs both in vivo and in ISC organoids, a finding not observed in mice lacking TLR4 in the Lgr5-positive ISCs, confirming the in vivo significance of this effect. To define molecular mechanisms involved, TLR4 inhibited ISC proliferation and increased apoptosis via the p53-up-regulated modulator of apoptosis (PUMA), as TLR4 did not affect crypt proliferation or apoptosis in organoids or mice lacking PUMA. In vivo effects of TLR4 on ISCs required TIR-domain-containing adapter-inducing interferon-β (TRIF) but were independent of myeloid-differentiation primary response-gene 88 (MYD88) and TNFα. Physiological relevance was suggested, as TLR4 activation in necrotizing enterocolitis led to reduced proliferation and increased apoptosis of the intestinal crypts in a manner that could be reversed by inhibition of PUMA, both globally or restricted to the intestinal epithelium. These findings illustrate that TLR4 is expressed on ISCs where it regulates their proliferation and apoptosis through activation of PUMA and that TLR4 regulation of ISCs contributes to the pathogenesis of necrotizing enterocolitis.  相似文献   

5.
During heat stress (HS), the intestinal epithelium suffers damage due to imbalance of tissue homeostasis. However, the specific mechanism by which intestinal stem cells (ISCs) migrate and differentiate along the crypt–villus axis to heal lesions upon insult is unclear. In our study, C57BL/6 mice and IPEC-J2 cells were subjected to normal ambient conditions (25 °C for 7 days in vivo and 37 °C for 18 h in vitro) or 41 °C. The results showed that HS impaired intestinal morphology and barrier function. The numbers of ISCs (SOX9+ cells), mitotic cells (PCNA+ cells), and differentiated cells (Paneth cells marked by lysozyme, absorptive cells marked by Villin, goblet cells marked by Mucin2, enteroendocrine cells marked by Chromogranin A, and tuft cells marked by DCAMKL1) were reduced under high temperature. Importantly, BrdU incorporation confirmed the decreased migration ability of jejunal epithelial cells exposed to 41 °C. Furthermore, intestinal organoids (IOs) expanded from jejunal crypt cells in the HS group exhibited greater growth disadvantages. Mechanistically, the occurrence of these phenotypes was accompanied by FAK/paxillin/F-actin signaling disruption in the jejunum. The fact that the FAK agonist ZINC40099027 reversed the HS-triggered inhibition of IPEC-J2 cell differentiation and migration further confirmed the dominant role of FAK in response to high-temperature conditions. Overall, the present investigation is the first to reveal a major role of FAK/paxillin/F-actin signaling in HS-induced ISC migration and differentiation along the crypt–villus axis, which indicates a new therapeutic target for intestinal epithelial regeneration after heat injuries.  相似文献   

6.
7.
8.
The mammalian intestinal epithelium constitutes the largest barrier against the external environment and makes flexible responses to various types of stimuli. Epithelial cells are fast-renewed to counteract constant damage and disrupted barrier function to maintain their integrity. The homeostatic repair and regeneration of the intestinal epithelium are governed by the Lgr5+ intestinal stem cells (ISCs) located at the base of crypts, which fuel rapid renewal and give rise to the different epithelial cell types. Protracted biological and physicochemical stress may challenge epithelial integrity and the function of ISCs. The field of ISCs is thus of interest for complete mucosal healing, given its relevance to diseases of intestinal injury and inflammation such as inflammatory bowel diseases. Here, we review the current understanding of the signals and mechanisms that control homeostasis and regeneration of the intestinal epithelium. We focus on recent insights into the intrinsic and extrinsic elements involved in the process of intestinal homeostasis, injury, and repair, which fine-tune the balance between self-renewal and cell fate specification in ISCs. Deciphering the regulatory machinery that modulates stem cell fate would aid in the development of novel therapeutics that facilitate mucosal healing and restore epithelial barrier function.  相似文献   

9.
Roth S  Fodde R 《EMBO reports》2011,12(6):483-484
Mustata et al demonstrate in this issue of EMBO reports that Lgr4 expression in the stem cells and transit amplifying cells of the intestinal crypts is required for the establishment of the stem cell niche and also for the maintenance of intestinal stem cells in ex vivo organoid cultures.EMBO reports 12, 6, 558–564. doi:10.1038/embor.2011.52The ‘nature versus nurture'' debate concerns the relative contributions to an individual''s identity of its nature (that is, its genetic make-up) compared with its nurture, defined as the totality of external, environmental factors. A similar type of debate is ongoing among developmental and stem-cell biologists: is the intrinsic nature (that is, its (epi)genetic make-up) of a stem cell what makes it self-renew and differentiate according to the physiological needs of a given tissue, or is it the immediate environment (nurture) that regulates stemness? Irrespective of the relative weight of each contribution, there is little doubt that both cell-autonomous and environmental factors play crucial roles in the maintenance of homeostasis in self-renewing tissues such as the skin, mammary gland, blood and intestine. In an article published last month in EMBO reports (Mustata et al, 2011), the Lgr4 gene is shown to have a rate-limiting role in establishing the stem-cell niche of the proximal intestinal tract.…the Lgr4 gene is shown to have a rate-limiting role in establishing the stem-cell niche of the proximal intestinal tractThe epithelial lining of the proximal intestine is characterized by a unique tissue architecture consisting of villi and crypts. The intestinal crypt of Lieberkühn is a highly dynamic niche with stem cells in its lower third, which give rise to a population of fast-cycling transit-amplifying cells. Transit-amplifying cells undergo a limited number of cell divisions and eventually differentiate into four specialized cell types of the small intestine: absorptive, enteroendocrine, goblet and Paneth cells. Notably, Paneth cells are the only terminally differentiated cell type of the proximal intestinal tract that (i) move downwards along the crypt–villus axis and (ii) retain canonical Wnt signalling activity upon differentiation (van Es et al, 2005).On the basis of clonal analysis and knock-in experiments, it was shown that the crypt base columnar (CBC) cells—located in the lower third of the crypt and characterized by Lgr5 expression—represent actively cycling stem cells that are able to give rise to all differentiated cell types of the intestinal epithelium (Barker et al, 2007). More recently, it has also been shown that Paneth cells, apart from their well-known bactericidal function, are in close physical association with Lgr5+ stem cells, to which they provide essential niche signals such as EGF, Wnt3a and Dll4 (Sato et al, 2011). This is also important in the light of the observation that single Lgr5+ stem cells, when cultured ex vivo, can generate crypt–villus organoids without a (mesenchymal) niche (Sato et al, 2009). In fact, the latter is only partly true, as these organoids are cultured in matrigel and in the presence of specific growth factors that are probably released by the niche in vivo.Lgr5, together with Lgr4 and Lgr6, belongs to the family of leucine-rich repeat-containing G-protein-coupled seven-transmembrane receptors. Recently, both Lgr5 and Lgr6 have received attention from the stem-cell community: Lgr5 is a downstream Wnt target gene and a marker of cycling stem cells in the intestinal tract and the hair follicle, whereas Lgr6 expression marks adult stem cells in the skin (Barker & Clevers, 2010). However, whether they merely represent stem-cell markers or also have a functional role in stemness is unknown.Mustata et al (2011) report on the functional role of another member of the Lgr family, Lgr4, by studying the effects of a targeted loss-of-function mutation (Lgr4 KO) on the development and differentiation of the mouse small intestine both in vivo and ex vivo. Endogenous Lgr4 expression is detected in transit-amplifying cells above the Paneth-cell zone, in CBC cells, and in rare Paneth cells. Loss of Lgr4 function results in a reduction in crypt depth due to a 50% decrease in epithelial-cell proliferation and, surprisingly, in an 80% reduction in Paneth-cell differentiation. Strikingly, these phenotypic features are apparently antagonistic to those of Lgr5 KO mice, in which premature Paneth-cell development was observed (Garcia et al, 2009). Accordingly, loss of Lgr4 function partly rescues the perinatal lethality of Lgr5 KO mice indicating non-redundancy of their individual functions.Loss of Lgr4 function results in […] an 80% reduction in Paneth-cell differentiationTo further investigate the role of Lgr4 in crypt development, the ex vivo ‘minigut'' culture system (Sato et al, 2009) was used; in contrast to crypts from wild-type mice that give rise to self-renewing structures encompassing all the differentiated cell lineages of the adult gut, organoids derived from age-matched Lgr4 KO animals are initially present as hollow spheres, mainly composed of stem and transit-amplifying cells, which disaggregate within 2–3 days and die within a week in culture. In agreement with their apparently opposite and non-redundant functions, crypt cultures from Lgr5 KO mice survive long-term culture and develop into differentiated organoids comparable with those of normal mice. Whereas loss of Lgr4 function partly rescues the lethality of Lgr5 KO mice in vivo, this is not true ex vivo; compound homozygous Lgr4/5 KO crypts give rise to hollow spheres that collapse and die as observed in Lgr4 KO organoids. Hence, under these experimental conditions—that is, in the absence of a mesenchymal niche—the Lgr4 defect is dominant over the Lgr5 one.Analysis of Paneth-cell differentiation markers and of Wnt targets, including Lgr5, confirmed their downregulation in Lgr4 KO organoids, thus suggesting a role for Lgr4 in Wnt signalling. Notably, lithium chloride treatment partly rescues the ex vivo phenotype of Lgr4 KO crypts, although this is not the case for other Wnt-signalling agonists, such as Wnt3a and Gsk3β inhibitors. On the basis of these observations, the authors conclude that Lgr4 probably has a permissive, rather than a direct and active role in Wnt signalling.In view of this and other studies, a revisitation of the cell-autonomous and niche-independent features of the Lgr5+ cycling stem cell (CBC cells) in the intestinal crypt seems to be necessary (Fig 1). First, the capacity of CBC cells to recapitulate ex vivo the complexity of the crypt–villus unit is mostly dependent on Paneth cells (Sato et al, 2011). When they are sorted as single cells, CBC cells perform poorly in organoid formation, whereas doublets of CBC and Paneth cells show high clonogenicity (Sato et al, 2009, 2011). However, rather than occurring exclusively through the secretion of niche signals in the form of Wnt ligands, the nature of the interdependency between Paneth cells and CBC cells seems to involve additional mechanisms. As shown by Mustata et al, loss of Lgr4 function causes a Paneth-cell differentiation blockade in the presence of wild-type levels of Wnt3a and Wnt11, a defect that can be rescued by lithium chloride, but not by the Wnt3a ligand or Gsk3β inhibitors. This indicates that additional factors secreted by epithelial and possibly mesenchymal cells—for example, stromal myofibroblasts (Vermeulen et al, 2010)—and the physical association of Paneth with Lgr5+ cells underlies their ‘partnership'' in preserving homeostasis within such a highly dynamic tissue. Hence, Paneth cells apparently constitute an essential component of the stem-cell niche in the upper intestinal tract.…rather than occurring exclusively through the secretion of niche signals […] the nature of the interdependency between Paneth cells and CBC cells seems to involve additional mechanismsOpen in a separate windowFigure 1Schematic illustration of the intestinal stem-cell compartment in the upper intestinal tract: Lgr4 (expressed in CBC and TA cells) positively stimulates Paneth-cell differentiation and, indirectly, stem-cell homeostasis, while Lgr5 (expressed in CBC cells) has been reported to inhibit Paneth-cell differentiation (Garcia et al, 2009). CBC, crypt base columnar; Dll4, delta-like 4; EGF, epidermal growth factor; TA, transit amplifying.As it is always the case, good science leads to new questions. Which cell type provides this niche function in the colon where Paneth cells are not present? Of note, it has been shown that in the colon Lgr5+ cells are intermingled with yet uncharacterized CD24+ cells (Sato et al, 2011), a cell-surface antigen known to enrich for Paneth cells in the upper intestinal tract. As CD24 expression does not mark CBC cells, but rather their flanking cells, these observations could again reflect the supportive, niche role of Paneth cells and CD24+ cells in the upper and distal intestinal tract, respectively. This might also be true for colon cancer, where Paneth cells are often present, possibly to provide niche support for cancer stem cells. Alternatively, premature (in the colon) and/or fully differentiated (in the upper intestine) Paneth cells might have a dual function by providing physical and paracrine support for cycling stem cells in homeostasis, as well as representing the hitherto elusive quiescent stem cells that underlie tissue regeneration after tissue insults. Whatever the truth, the intestinal scene is now set to further dissect the complexity of the nature–nurture interaction between intestinal (cancer) stem cells and their niche.  相似文献   

10.
11.
12.
The loss of stem cells residing in the base of the intestinal crypt has a key role in radiation-induced intestinal injury. In particular, Lgr5+ intestinal stem cells (ISCs) are indispensable for intestinal regeneration following exposure to radiation. Mesenchymal stem cells (MSCs) have previously been shown to improve intestinal epithelial repair in a mouse model of radiation injury, and, therefore, it was hypothesized that this protective effect is related to Lgr5+ ISCs. In this study, it was found that, following exposure to radiation, transplantation of MSCs improved the survival of the mice, ameliorated intestinal injury and increased the number of regenerating crypts. Furthermore, there was a significant increase in Lgr5+ ISCs and their daughter cells, including Ki67+ transient amplifying cells, Vil1+ enterocytes and lysozyme+ Paneth cells, in response to treatment with MSCs. Crypts isolated from mice treated with MSCs formed a higher number of and larger enteroids than those from the PBS group. MSC transplantation also reduced the number of apoptotic cells within the small intestine at 6 h post-radiation. Interestingly, Wnt3a and active β-catenin protein levels were increased in the small intestines of MSC-treated mice. In addition, intravenous delivery of recombinant mouse Wnt3a after radiation reduced damage in the small intestine and was radioprotective, although not to the same degree as MSC treatment. Our results show that MSCs support the growth of endogenous Lgr5+ ISCs, thus promoting repair of the small intestine following exposure to radiation. The molecular mechanism of action mediating this was found to be related to increased activation of the Wnt/β-catenin signaling pathway.The epithelium of the small intestine contains crypts and villi. Intestinal stem cells (ISCs) reside in the base of the crypts and are responsible for maintaining intestinal epithelial homeostasis and regeneration following injury.1, 2 Recent studies have identified two populations of stem cells in the small intestine of mice called Lgr5+ and Bmi1+ ISCs.3, 4, 5, 6, 7, 8, 9, 10, 11 Lgr5+ ISCs, also known as crypt base columnar cells (CBCs), are interspersed among the Paneth cells and are active rapidly cycling stem cells.12 A single Lgr5+ ISC can grow to form ‘enteroids'' in vitro that develop into all the differentiated cell types found in the intestinal crypt.13 Conversely, Bmi1+ cells are a population of ISCs located at position +4 relative to the base of the crypt, and are quiescent, slowly cycling stem cells.14 The loss of ISCs has a critical role in radiation-induced intestinal injury (RIII).15, 16, 17, 18 Apoptosis of stem cells because of exposure to radiation prevents normal re-epithelialization of the intestines. Therefore, enhancing the survival of ISCs following radiation is a potential effective treatment for RIII.Mesenchymal stem cells (MSCs) possess significant potential as a therapeutic for tissue damage because of their ability to regulate inflammation, inhibit apoptosis, promote angiogenesis, and support the growth and differentiation of local stem and progenitor cells.19, 20 However, the mechanisms by which MSCs mediate these beneficial effects remain unclear, although it has been suggested that MSCs may actively secrete a broad range of bioactive molecules with immunomodulatory (PGE2, IDO, NO, HLA-G5, TSG-6, IL-6, IL-10 and IL-1RA), mitogenic (TGFα/β, HGF, IGF-1, bFGF and EGF), angiogenic (VEGF and TGF-β1) and/or anti-apoptotic (STC-1 and SFRP2) properties that function to modulate the regenerative environment at the site of injury.21 Upon re-establishment of the microenvironment following damage, the surviving endogenous stem and progenitor cells can then regenerate the injured tissue completely.Our previous study, as well as other published studies, has found that systemic administration of MSCs improves intestinal epithelial repair in an animal model of radiation injury.22, 23, 24, 25 Following MSC treatment, radiation-induced lesions in mice were significantly smaller than those in the control group. However, the mechanism behind this protective effect is not fully understood. Lgr5+ ISCs have been previously shown to be indispensable for radiation-induced intestinal regeneration.26 Therefore, in this study, we tested whether the therapeutic effects of MSCs in response to RIII are related to the Lgr5+ population of resident ISCs.  相似文献   

13.
Resistance ofStaphylococcus aureus to acid pH was studied.Staphylococcus aureus ATCC 6538 was acid-adapted at pH 5.0 in tryptic soy broth (TSB) for 4 h. Commercial products, mayonnaise pH 3.57, rape pH 3.72, fatty yogurt pH 4.01, were purchased from a local supermarket, and kisir köfte pH 4.9 samples were prepared by us. All of the samples were inoculated with acid-adapted or non-adapted cells ofS. aureus. In un-inoculated mayonnaise, rape, fatty yogurt, and kisir köfteS. aureus was not detected. The viable population of S. aureus in mayonnaise declined quickly when stored at 4 or 25 °C. After 48 h of storage, no viable cells were recovered from mayonnaise inoculated with acid-adapted or non-adapted ATCC 6538 at 25 °C. Acid-adapted cells were recovered in greater numbers than non-adapted cells during storage at 4 or 25 °C. After 24 h of storage, no viable cells were recovered from rape and yogurt inoculated with acid-adapted and non-adapted ATCC 6538 at 4 and 25 °C. Acid-adaptedS. aureus survived in kisir köfte during 48 h. After 72 h of storage, no viable cells were recovered from kisir köfte inoculated with acid-adapted and non-adapted ATCC 6538 at 25 °C and 4 °C.  相似文献   

14.
The constant renewal of the intestinal epithelium is fueled by intestinal stem cells (ISCs) lying at the base of crypts, and these ISCs continuously give rise to transit-amplifying progenitor cells during homeostasis. Upon injury and loss of ISCs, the epithelium has the ability to regenerate by the dedifferentiation of progenitor cells that then regain stemness and repopulate the pool of ISCs. Epithelial cells receive cues from immune cells, mesenchymal cells and the microbiome to maintain homeostasis. This review focuses on the response of the epithelium to damage and the interplay between the different intestinal compartments.  相似文献   

15.
16.
Cryopreservation is the only long-term storage option for the storage of vessels and vascular constructs. However, endothelial barrier function is almost completely lost after cryopreservation in most established cryopreservation solutions. We here aimed to improve endothelial function after cryopreservation using the 2D-model of porcine aortic endothelial cell monolayers.?The monolayers were cryopreserved in cell culture medium or cold storage solutions based on the 4°C vascular preservation solution TiProtec®, all supplemented with 10% DMSO, using different temperature gradients. After short-term storage at ?80°C, monolayers were rapidly thawed and re-cultured in cell culture medium.?Thawing after cryopreservation in cell culture medium caused both immediate and delayed cell death, resulting in 11 ± 5% living cells after 24 h of re-culture. After cryopreservation in TiProtec and chloride-poor modifications thereof, the proportion of adherent viable cells was markedly increased compared to cryopreservation in cell culture medium (TiProtec: 38 ± 11%, modified TiProtec solutions ≥ 50%). Using these solutions, cells cryopreserved in a sub-confluent state were able to proliferate during re-culture. Mitochondrial fragmentation was observed in all solutions, but was partially reversible after cryopreservation in TiProtec and almost completely reversible in modified solutions within 3 h of re-culture. The superior protection of TiProtec and its modifications was apparent at all temperature gradients; however, best results were achieved with a cooling rate of ?1°C/min.?In conclusion, the use of TiProtec or modifications thereof as base solution for cryopreservation greatly improved cryopreservation results for endothelial monolayers in terms of survival and of monolayer and mitochondrial integrity.  相似文献   

17.
Heat stress induced by continuous high ambient temperatures or strenuous exercise in humans and animals leads to intestinal epithelial damage through the induction of intracellular stress response. However, the precise mechanisms involved in the regulation of intestinal epithelial cell injury, especially intestinal stem cells (ISCs), remain unclear. Thereby, in vitro a confluent monolayer of IPEC-J2 cells was exposed to the high temperatures (39, 40, and 41°C), the IPEC-J2 cell proliferation, apoptosis, differentiation, and barrier were determined, as well as the expression of GRP78, which is a marker protein of endoplasmic reticulum stress (ERS). The Wnt/β-catenin pathway-mediated regenerative response was validated using R-spondin 1 (Rspo1). And ex-vivo, three-dimensional cultured enteroids were developed from piglet jejunal crypt and employed to assess the ISC activity under heat exposure. The results showed that exposure to 41°C for 72 hr, rather than 39°C and 40°C, decreased IPEC-J2 cell viability, inhibited cell proliferation and differentiation, induced ERS and cell apoptosis, damaged barrier function and restricted the Wnt/β-catenin pathway. Nevertheless, Wnt/β-catenin reactivation via Rspo1 protects the intestinal epithelium from heat exposure-induced injury. Furthermore, exposure to 41°C for 24 hr reduced ISC activity, stimulated crypt-cell apoptosis, upregulated the expression of GRP78 and caspase-3, and downregulated the expression of β-catenin, Lgr5, Bmi1, Ki67, KRT20, ZO-1, occludin, and claudin-1. Taken together, we conclude that heat exposure induces ERS and downregulates the Wnt/β-catenin signaling pathway to disrupt epithelial integrity by inhibiting the intestinal epithelial cell proliferation and stem cell expansion.  相似文献   

18.
19.
Streptomyces similanensis 9X166 is known to be an antagonist of the black rot pathogen of orchids, Phytophthora palmivora. In this study, we investigated the production of highly viable S. similanensis 9X166 cells by solid state fermentation using agro-industrial substrates, and the shelf life of a S. similanensis 9X166 dried solid. Rice bran was found to be the most appropriate raw material for production of both viable cells and β-1,3-glucanase. A medium containing 12?g of rice bran and coconut husks at a ratio of 10:2, supplemented with 10?mL of mineral salts produced the highest number of viable cells and greatest level of β-1,3-glucanase. Ammonium sulfate was the most suitable nitrogen source, and an initial moisture content of 65% and a temperature of 30°C were found to be optimal conditions for the production of viable cells and β-1,3-glucanase. Storing the dried fermented solid under non-vacuum conditions resulted in the highest cell viability. The specific rate of degradation on viability increased as the temperature increased to 37°C, according to the Arrhenius equation. There was no difference between the storage time estimated by the Arrhenius equation from the specific rate of degradation compared to the validated storage time of S. similanensis 9X166 dried solids when maintained at the ambient temperature in Thailand. At 60 days, the product retained 106 CFU/g of S. similanensis 9X166 in dried solid, which was the minimal effective amount for 100% inhibition of P. palmivora in living orchids.  相似文献   

20.
Intestinal stem cells, characterized by high Lgr5 expression, reside between Paneth cells at the small intestinal crypt base and divide every day. We have carried out fate mapping of individual stem cells by generating a multicolor Cre-reporter. As a population, Lgr5(hi) stem cells persist life-long, yet crypts drift toward clonality within a period of 1-6 months. We have collected short- and long-term clonal tracing data of individual Lgr5(hi) cells. These reveal that most Lgr5(hi) cell divisions occur symmetrically and do not support a model in which two daughter cells resulting from an Lgr5(hi) cell division adopt divergent fates (i.e., one Lgr5(hi) cell and one transit-amplifying [TA] cell per division). The cellular dynamics are consistent with a model in which the resident stem cells double their numbers each day and stochastically adopt stem or TA fates. Quantitative analysis shows that stem cell turnover follows a pattern of neutral drift dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号