首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parasite heat-shock proteins   总被引:8,自引:0,他引:8  
Many parasites, including most of those of medical or veterinary importance, experience a major increase in ambient temperature at some stage during their life cycle. This occurs when a cyst or free-living larval form is ingested by a warm-blooded host, when a poikilotherm-infecting parasite is transmitted to a homeotherm, or when a transiently free-living invasive larva penetrates the skin of a mammal. This sudden change in temperature could be expected to stress the intruder, as it should dramatically alter rates of metabolic reactions and of denaturation of proteins. This would especially affect the function of near-equilibrium, regulatory, and membrane-bound enzymes (changes in temperature affect membrane fluidity). In this article George Newport, Janice Culpepper and Nina Agabian consider how parasites cope with this problem, emphasizing the possible role of heat-shock proteins (HSPs), how the expression of these molecules is regulate, and how HSPs interact with the host immune system.  相似文献   

2.
3.
The nuclear-coded 22 kd heat-shock protein (HSP-22) which is transported into the chloroplast and localized in the thylakoids was further characterized and found to be located in the grana lamellae (stacked thylakoids) as an extrinsic protein in the green alga Chlamydomonas reinhardtii. Inhibition of photosynthetic electron flow during heat-shock of Chlamydomonas cells was light-dependent, occurring at low-light intensities (<100 W/m2) as compared with photoinhibition at 25°C (>1000 W/m2). The site of the damage was localized at the photosystem II (PS II) reaction center. The damage was drastically increased when heat-shock treatment was carried out in the presence of the 80S ribosomal translation inhibitor, cycloheximide (CHI). Pre-incubation of Chlamydomonas cells at 42°C resulted in partial protection against photoinhibition during heat-shock, as compared with cells pre-incubated at 42°C in the presence of CHI which, therefore, did not translate the heat-shock proteins. Analysis of the thylakoid polypeptides' pattern by SDS-PAGE revealed that during heat-shock in the light, thylakoid proteins became aggregated proportionally to the light intensity. Heat-shock in the presence of CHI enhanced the aggregation process which, at low light intensities, was specific to the PS II reaction center D1-protein. The results suggest that the chloroplasts HSPs prevent damage to the PS II reaction center during heat-shock in the light.  相似文献   

4.
Heat-shock proteins (hsps) have been identified as molecular chaperones conserved between microbes and man and grouped by their molecular mass and high degree of amino acid homology. This article reviews the major hsps of Saccharomyces cerevisiae, their interactions with trehalose, the effect of fermentation and the role of the heat-shock factor. Information derived from this model, as well as from Neurospora crassa and Achlya ambisexualis, helps in understanding the importance of hsps in the pathogenic fungi, Candida albicans, Cryptococcus neoformans, Aspergillus spp., Histoplasma capsulatum, Paracoccidioides brasiliensis, Trichophyton rubrum, Phycomyces blakesleeanus, Fusarium oxysporum, Coccidioides immitis and Pneumocystis jiroveci. This has been matched with proteomic and genomic information examining hsp expression in response to noxious stimuli. Fungal hsp90 has been identified as a target for immunotherapy by a genetically recombinant antibody. The concept of combining this antibody fragment with an antifungal drug for treating life-threatening fungal infection and the potential interactions with human and microbial hsp90 and nitric oxide is discussed.  相似文献   

5.
Fungal hydrogenosomes contain mitochondrial heat-shock proteins   总被引:3,自引:0,他引:3  
At least three groups of anaerobic eukaryotes lack mitochondria and instead contain hydrogenosomes, peculiar organelles that make energy and excrete hydrogen. Published data indicate that ciliate and trichomonad hydrogenosomes share common ancestry with mitochondria, but the evolutionary origins of fungal hydrogenosomes have been controversial. We have now isolated full-length genes for heat shock proteins 60 and 70 from the anaerobic fungus Neocallimastix patriciarum, which phylogenetic analyses reveal share common ancestry with mitochondrial orthologues. In aerobic organisms these proteins function in mitochondrial import and protein folding. Homologous antibodies demonstrated the localization of both proteins to fungal hydrogenosomes. Moreover, both sequences contain amino-terminal extensions that in heterologous targeting experiments were shown to be necessary and sufficient to locate both proteins and green fluorescent protein to the mitochondria of mammalian cells. This finding, that fungal hydrogenosomes use mitochondrial targeting signals to import two proteins of mitochondrial ancestry that play key roles in aerobic mitochondria, provides further strong evidence that the fungal organelle is also of mitochondrial ancestry. The extraordinary capacity of eukaryotes to repeatedly evolve hydrogen-producing organelles apparently reflects a general ability to modify the biochemistry of the mitochondrial compartment.  相似文献   

6.
7.
Heat shock is an integral part of the life cycle of Trypanosoma cruzi. Here, Edson Rondinelli reviews the parasite's response to stress.  相似文献   

8.
Four DNA binding histone-like proteins have been purified from the nucleoid of the acidothermophilic archaebacterium Sulfolobus acidocaldarius to homogeneity employing DNA-cellulose chromatography and carboxymethylcellulose chromatography. The molecular weights of these proteins are in the range 8,000-12,500. Immunoblotting results suggest that a few antigenic determinants are common among these proteins which could not be detected by immunodiffusion. Spectroscopic properties of the proteins have been studied. The amino acid compositions of these proteins show both similarities and differences with histones and prokaryotic histone-like proteins. All of the four proteins bind native and denatured DNAs and single stranded RNA with differing affinities. Three of the proteins, denoted by HSNP (helix stabilizing nucleoid protein)-A, HSNP-C, and HSNP-C', show physiologically significant, strong, and synergistic effects in stabilizing duplex DNA against thermal denaturation with Tm increases in the range of 15-30 +/- degrees C.  相似文献   

9.
Treatment of mouse tissue-culture cells with nicotine concentrations of 1 mM or less had no significant effects on cell viability, morphology or protein synthesis, but higher concentrations resulted in both altered cell morphology (rounding and vacuolization) and alterations in [3H]leucine-labelled protein profiles on sodium dodecyl sulphate/polyacrylamide gels. The synthesis of a Mr-70 000 protein was increased more than 2-fold relative to that of other major cellular proteins in 3T3 and L929 cells treated with 5 mM-nicotine and in B16 cells treated with 10 mM-nicotine, and this protein appeared to be a soluble cytoplasmic polypeptide. The radiolabelling of several additional polypeptides (Mr 62 000 in 3T3 cells, and Mr 45 000 and 38 000 in B16 cells) was also stimulated by nicotine. The nicotine-enhanced Mr-70 000 protein was distinct, however, from a major cell stress/heat-shock protein whose synthesis was stimulated after incubation of cells at 43.5 degrees C for 20 min.  相似文献   

10.
Legionella pneumophila is a thermotolerant bacterium. To learn more about the thermal adaptation of this organism, we studied the properties of the Legionella 60-kDa heat-shock protein (MopA, GroEL-analog, HtpB, Lp-Hsp60) in L. pneumophila and in an Escherichia coli strain containing the cloned gene. Lp-Hsp60 was found in both cytosol and membrane fractions; however, Lp-Hsp60 in the membrane fraction of L. pneumophila was slightly larger than Lp-Hsp60 in the cytosol. In contrast, both membrane-associated and cytosolic Lp-Hsp60 in the E. coli clone were similar in size to the smaller cytosolic Lp-Hsp60 of L. pneumophila. While peptide mapping suggests there are differences between the two proteins, the larger membrane-associated Lp-Hsp60 and the smaller cytosolic LP-Hsp60 shared Legionella-specific and E. coli GroEL cross-reacting epitopes, and the sequence of their first 20 N-terminal amino acids was identical. Further, Southern blot analysis of EcoRI-digested chromosomal DNA from several strains of L. pneumophila showed two fragments reacting with an htpAB-operon probe. In summary, L. pneumophila contains two Hsp60 proteins, and possibly two hsp60 genes.  相似文献   

11.
Synthesis of heat-shock proteins by cells undergoing myogenesis   总被引:11,自引:0,他引:11       下载免费PDF全文
Subjecting 24-h-old cultures of quail myoblasts to incubation at an elevated temperature causes the pattern of protein synthesis to shift from the production of a broad spectrum of different proteins to the enhanced synthesis of a small number of heat-shock proteins. The synthesis of four major heat-induced polypeptides with Mrs of 88,000, 82,000, 64,000 and 25,000 achieve levels comparable to that of the major structural protein, actin. Two-dimensional electrophoretic separation and fluorographic analysis of these polypeptides establish that those with Mrs of 94,000, 88,000, 82,000, and 64,000 and pIs of 5.1, 5.2, 5.2, and 5.4, respectively, are synthesized by heat-shocked as well as by control (albeit not as intense) cultures. However, the synthesis of polypeptides with Mrs of 94,000, 64,000, and 25,000 and pI's of 5.2, 5.8, and 5.4, respectively, is detectable only in myoblasts shifted to a higher temperature. Recovery of heat-shocked myoblasts, to a normal preinduction pattern of polypeptide synthesis, takes approximately 8 h. Similar studies, completed in older, more differentiated myogenic cells, demonstrated that as cells progress through myogenesis their ability to respond to a similar temperature shift is diminished. The synthesis of some myoblastlike heat-shock proteins by fusing of cells or by myotubes requires that they be maintained at an elevated temperature at least twice as long as myoblasts. This observation and the demonstration that heat-shocked myotubes do not synthesize detectable levels of the 25,000-dalton polypeptide found in heat-shocked myoblasts, suggest that the synthetic response of myogenic cells to heat shock is dependent on the differentiative state of these cells.  相似文献   

12.
The effect of cellular capsule elimination in Saccharomyces cerevisiae yeasts (protoplast formation) on the heat-shock protein synthesis and the synthesis of the proteins in protoplasts were studied. The methods of mono- and dimeric electrophoresis have demonstrated that (1) about 18 heat-shock proteins with the molecular masses 26-98 Kd are synthesized in cells at 41 degrees C; (2) protoplast formation per se does not induce the synthesis of heat-shock proteins, but the induction of these proteins in protoplasts at 41 degrees C is similar to the one in intact cells. The protoplast formation induces the synthesis of specific proteins different from heat-shock proteins and the synthesis is inhibited by the heat-shock. The heat-shock induces modification of 88 and 86 Kd heat-shock proteins. It inhibits the synthesis of a number of peptides (15-50 Kd) in cells and protoplasts.  相似文献   

13.
Small heat-shock proteins (sHSPs) are ubiquitous ATP-independent molecular chaperones that play crucial roles in protein quality control in cells. They are able to prevent the aggregation and/or inactivation of various non-native sub- strate proteins and assist the refolding of these substrates independently or under the help of other ATP-dependent chaperones. Substrate recognition and binding by sHSPs are essential for their chaperone functions. This review focuses on what natural substrate proteins an sHSP pro- tects and how it binds the substrates in cells under fluctuat- ing conditions. It appears that sHSPs of prokaryotes, although being able to bind a wide range of cellular pro- teins, preferentially protect certain classes of functional proteins, such as translation-related proteins and metabolic enzymes, which may well explain why they could increase the resistance of host cells against various stresses. Mechanistically, the sHSPs of prokaryotes appear to possess numerous multi-type substrate-binding residues and are able to hierarchically activate these residues in a temperature-dependent manner, and thus act as tempera- ture-regulated chaperones. The mechanism of hierarchical activation of substrate-binding residues is also discussed regarding its implication for eukaryotic sHSPs.  相似文献   

14.
Wounding lettuce leaves induces the de novo synthesis of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5), the accumulation of phenolic compounds, and subsequent tissue browning. A brief heat-shock at 45°C reduces the rise in wound-induced PAL, the accumulation of phenolic compounds, and tissue browning. The activity of PAL measured 24 h after wounding and the content of phenolic compounds (absorbance of methanol extract at 320 nm) measured 48 h after wounding was highly correlated (R2 > 0.90) in tissue developing the normal wound response and in tissue subjected to 0–180 s of heat-shock after wounding. The synthesis of a unique set of proteins called heat-shock proteins (hsps) is induced by these heat-shock treatments. Western-blot analyses of proteins isolated from wounded and heat-shocked Iceberg and Romaine lettuce mid-rib leaf tissue was done using antibodies against hsp 23. Only those heat-shock treatments that were effective at inducing the synthesis of hsp 23 were effective in reducing the activity of PAL induced by wounding and the subsequent accumulation of phenolic compounds. Hsps induced in non-wounded, whole leaves by exposure to 45°C for 150 s did not significantly interact with PAL previously synthesized in non-heat-shocked wounded leaves to limit its activity. The preferential synthesis of hsps over that of wound-induced PAL, rather than the presence of hsps, may be responsible for the ability of a heat-shock treatment to reduce the wound-induced increase in PAL activity. Our results support this novel concept, and the possibility that heat-shock treatments can have significant physiological effects on the response of the tissue to other stresses, not because of the specific genes they induce or repress, or the products they cause to be synthesized, but by their secondary action of influencing the synthesis of other proteins (e.g. PAL) by the suppression of non-hsps protein synthesis.  相似文献   

15.
R Cavicchioli  K Watson 《FEBS letters》1986,207(1):149-152
Yeast cells when subjected to a primary heat shock, defined as a temperature shift from 23 to 37 degrees C for 30 min, acquired tolerance to heat stress (52 degrees C/5 min). Primary heat shocked cells incubated at 23 degrees C for up to 3 h, progressively lost thermotolerance but retained high levels of the major heat-shock proteins as observed on polyacrylamide gels. On the other hand, a temperature shift back up to 37 degrees C for 30 min fully restored thermotolerance. The major high-molecular-mass heat-shock proteins (hsp) identified were of approximate molecular mass 100 kDa (hsp 100), 80 kDa (hsp 80) and 70 kDa (hsp 70). The results indicate that loss of heat-shock acquisition of thermotolerance is not correlated with loss of heat-shock proteins.  相似文献   

16.
Roles of heat-shock proteins in innate and adaptive immunity   总被引:1,自引:0,他引:1  
Heat-shock proteins (HSPs) are the most abundant and ubiquitous soluble intracellular proteins. In single-cell organisms, invertebrates and vertebrates, they perform a multitude of housekeeping functions that are essential for cellular survival. In higher vertebrates, their ability to interact with a wide range of proteins and peptides--a property that is shared by major histocompatibility complex molecules--has made the HSPs uniquely suited to an important role in organismal survival by their participation in innate and adaptive immune responses. The immunological properties of HSPs enable them to be used in new immunotherapies of cancers and infections.  相似文献   

17.
The role of heat-shock proteins as molecular chaperones.   总被引:8,自引:0,他引:8  
Recent studies have revealed that protein folding and assembly events in vivo require the participation of accessory components, now being referred to as 'molecular chaperones'. A number of chaperones have been identified as members of the heat-shock (or stress) protein family. This review discusses the roles of two classes of chaperones, the heat-shock protein 70 and groEL/ES families, in facilitating protein maturation, and describes how such events are perturbed in the cell subjected to metabolic stress.  相似文献   

18.
We have studied modifications in the pattern of proteins synthesized by tobacco (Nicotiana tabacum var Maryland) mesophyll protoplasts when they are transferred from 25°C to 40°C. The synthesis of one group of proteins is practically unaffected by the heat shock. On the other hand, the synthesis of most other 25°C proteins is greatly reduced, while specific heat-shock proteins appear: 17 stable, neutral, major proteins, which are synthesized throughout the culture period at the higher temperature and which correspond to those observed in other organisms, and two basic proteins with a short lifetime and which are synthesized only during the first 2 hours of heat shock. We suggest that these latter proteins are regulatory peptides which intervene in the inhibition of 25°C syntheses.  相似文献   

19.
Involvement of 70-kD heat-shock proteins in peroxisomal import   总被引:11,自引:3,他引:8       下载免费PDF全文
《The Journal of cell biology》1994,125(5):1037-1046
This report describes the involvement of 70-kD heat-shock proteins (hsp70) in the import of proteins into mammalian peroxisomes. Employing a microinjection-based assay (Walton, P. A., S. J. Gould, J. R. Feramisco, and S. Subramani. 1992. Mol. Cell Biol. 12:531-541), we demonstrate that proteins of the hsp70 family were associated with proteins being imported into the peroxisomal matrix. Import of peroxisomal proteins could be inhibited by coinjection of antibodies directed against the constitutive hsp70 proteins (hsp73). In a permeabilized-cell assay (Wendland and Subramani. 1993. J. Cell Biol. 120:675-685), antibodies directed against hsp70 proteins were shown to inhibit peroxisomal protein import. Inhibition could be overcome by the addition of exogenous hsp70 proteins. Purified rat liver peroxisomes were shown to have associated hsp70 proteins. The amount of associated hsp70 was increased under conditions of peroxisomal proliferation. Furthermore, proteinase protection assays indicated that the hsp70 molecules were located on the outside of the peroxisomal membrane. Finally, the process of heat-shocking cells resulted in a considerable delay in the import of peroxisomal proteins. Taken together, these results indicate that heat-shock proteins of the cytoplasmic hsp70 family are involved in the import of peroxisomal proteins.  相似文献   

20.
Small heat-shock proteins function in the insoluble protein complex   总被引:2,自引:0,他引:2  
Small heat-shock proteins (sHSPs) represent an abundant and ubiquitous family of molecular chaperones. The current model proposes that sHSPs function to prevent irreversible aggregation of non-native proteins by forming soluble complex. The chaperone activity of sHSPs is usually determined by the capacity to suppress thermally or chemically induced protein aggregation. However, sHSPs were frequently found in the insoluble complex particularly in vivo. In this report, it is clearly revealed that the insoluble sHSP/substrate complex is formed when sHSP is overloaded with non-native substrates, which is the very case under in vivo conditions. The proposal that sHSPs function to prevent the protein aggregation seems misleading. sHSPs appear to promote the elimination of protein aggregates by incorporating into the insoluble protein complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号