首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Satellite glial cells (SGCs), a peripheral neuroglial cell, surround neurons and form a complete envelope around individual sensory neurons in the trigeminal ganglia (TG), which may be involved in modulating neurons in inflammation. The purpose of this study was to determine the effect of dental injury and inflammation on SGCs in the TG. Pulp exposure (PX) was performed on the first maxillary molar of 28 rats. The neurons innervating injured tooth in TG were labeled by the retrograde transport of fluoro-gold (FG). Specimens were collected at 1, 3, 7, 14, 21 and 28 days after PX and stained immunohistochemically for glial fibrillary acid protein (GFAP), a marker of SGCs activation, in the TG. We observed that GFAP-immunoreactivity (IR) SGCs enclosed FG-labeled neurons increased in a time-dependent manner after PX. The neurons surrounded by GFAP-IR SGCs were mainly small and medium in size. The GFAP-IR SGCs encircled neurons increased significantly in the maxillary nerve region of the TG at 7–28 days following PX. The results show that dental injury and inflammation induced SGCs activation in the TG. It indicates that activation of SGCs might be implicated in the peripheral mechanisms of pain following dental injury and inflammation.  相似文献   

2.
3.
S K Pixley 《Neuron》1992,8(6):1191-1204
Olfactory receptor neurons (ORNs) are replaced and differentiate in adult animals, but differentiation in dissociated cell culture has not been demonstrated. To test whether contact with the CNS regulates maturation, neonatal rat olfactory cells were grown on a culture substrate or on CNS astrocytes. Mature ORNs, immunopositive for olfactory marker protein (OMP), disappeared rapidly from both systems. Neurons positive for neuron-specific tubulin (immature and mature) disappeared from substrate-only cultures, but remained abundant in the cocultures. OMP-positive neurons reappeared after 10 days in vitro. Pulse labeling with [3H]thymidine showed extensive neurogenesis of both immature and mature olfactory neurons. This demonstrates, in vitro, both division and differentiation of olfactory progenitor cells.  相似文献   

4.
Götz M  Barde YA 《Neuron》2005,46(3):369-372
Radial glial cells have been identified as a major source of neurons during development. Here, we review the evidence for the distinct "glial" nature of radial glial cells and contrast these cells with their progenitors, the neuroepithelial cells. Recent results also suggest that not only during neurogenesis in vivo, but also during the differentiation of cultured embryonic stem cells toward neurons, progenitors with clear glial antigenic characteristics act as cellular intermediates.  相似文献   

5.
Neuronal regeneration does generally not occur in the central nervous system (CNS) after injury, which has been attributed to the generation of glial scar tissue. In this report we show that the composition of the glial scar after traumatic CNS injury in rat and mouse is more complex than previously assumed: expression of the intermediate filament nestin is induced in reactive astrocytes. Nestin induction occurs within 48 hours in the spinal cord both at the site of lesion and in degenerating tracts and lasts for at least 13 months. Nestin expression is induced with similar kinetics in the crushed optic nerve. In addition to the expression in reactive astrocytes, we also observed nestin induction within 48 hours after injury in cells close to the central canal in the spinal cord, while nestin expressing cells at later timepoints were found progressively further out from the central canal. This dynamic pattern of nestin induction after injury was mimicked by lacZ expressing cells in nestin promoter/lacZ transgenic mice, suggesting that defined nestin regulatory regions mediate the injury response. We discuss the possibility that the spatiotemporal pattern of nestin expression reflects a population of nestin positive cells, which proliferates and migrates from a region close to the central canal to the site of lesion in response to injury.  相似文献   

6.
There are various types of radiation in space including high energy particles. It is, therefore, becoming to be important to study the low dose and low dose-rate effects in space radiation biology. Radiation adaptive response (RAR) for cell growth and its mechanism were examined using cultured glial cells. The cells from hippocampus of Wistar rats were irradiated with a low dose (0.1 Gy) of X-rays and 3 h after with a high dose (2 Gy). Decrease in the rate of cell growth with 2 Gy was suppressed by the 0.1 Gy preirradiation, when cells were counted 2 days after irradiation. The inhibitors of protein kinase C (PKC) and DNA-dependent protein kinase (DNAPK) or phosphatidylinositol 3-kinase (PI3K) suppressed RAR. The treatment with the activators of PKC instead of 0.1 Gy-preirradiation also caused adaptive response to 2 Gy-irradiation. Moreover, glial cells cultured from severe combined immunodeficiency (scid) mice, which have lost DNAPK activity, and AT-2KY cells, fibroblasts of an ataxia-telangiectasia (AT) patient, showed no RAR. These results indicated that PKC, ATtM, DNAPK and/or PI3K were involved in RAR for growth of cultured glial cells. Proteomics [correction of preteomics] analysis of these cells exposed to low dose irradiation in now underway.  相似文献   

7.
Radial glia are among the first cells that develop in the embryonic central nervous system. They are progenitors of glia and neurons but their relationship with restricted precursors that are also derived from neuroepithelia is unclear. To clarify this issue, we analyzed expression of cell type specific markers (BLBP for radial glia, 5A5/E-NCAM for neuronal precursors and A2B5 for glial precursors) on cortical radial glia in vivo and their progeny in vitro. Clones of cortical cells initially expressing only BLBP gave rise to cells that were A2B5+ and eventually lost BLBP expression in vitro. BLBP is expressed in the rat neuroepithelium as early as E12.5 when there is little or no staining for A2B5 and 5A5. In E13.5-15.5 forebrain, A2B5 is spatially restricted co-localizing with a subset of the BLBP+ radial glia. Analysis of cells isolated acutely from embryonic cortices confirmed that BLBP expression could appear without, or together with, A2B5 or 5A5. The numbers of BLBP+/5A5+ cells decreased during neurogenesis while the numbers of BLBP+/A2B5+ cells remained high through the beginning of gliogenesis. The combined results demonstrate that spatially restricted subpopulations of radial glia along the dorsal-ventral axis acquire different markers for neuronal or glial precursors during CNS development.  相似文献   

8.
《遗传学报》2021,48(9):792-802
Gut microbial dysbiosis has been linked to many noncommunicable diseases. However, little is known about specific gut microbiota composition and its correlated metabolites associated with molecular signatures underlying host response to infection. Here, we describe the construction of a proteomic risk score based on 20 blood proteomic biomarkers, which have recently been identified as molecular signatures predicting the progression of the COVID-19. We demonstrate that in our cohort of 990 healthy individuals without infection, this proteomic risk score is positively associated with proinflammatory cytokines mainly among older, but not younger, individuals. We further discover that a core set of gut microbiota can accurately predict the above proteomic biomarkers among 301 individuals using a machine learning model and that these gut microbiota features are highly correlated with proinflammatory cytokines in another independent set of 366 individuals. Fecal metabolomics analysis suggests potential amino acid-related pathways linking gut microbiota to host metabolism and inflammation. Overall, our multi-omics analyses suggest that gut microbiota composition and function are closely related to inflammation and molecular signatures of host response to infection among healthy individuals. These results may provide novel insights into the cross-talk between gut microbiota and host immune system.  相似文献   

9.
Mucosal associated invariant T cells are unique T cells localized at high frequencies at the portals of entry for many pathogens. Mucosal associated invariant T cells display a variety of characteristics that suggest their function is to act as effectors in the initial control of microbial infection at mucosal sites.  相似文献   

10.
11.
Neurons in the mammalian central nervous system (CNS) have a poor capacity for regenerating their axons after injury. In contrast, neurons in the CNS of lower vertebrates and in the peripheral nervous system (PNS) of mammals are endowed with a high posttraumatic capacity to regenerate. The differences in regenerative capacity have been attributed to the different compositions of the respective cellular environments and to different responses to injury the nonneuronal cells display, which range from supportive and permissive to nonsupportive and hostile for regeneration. The same cell type may support or inhibit regeneration, depending on its state of maturity or differentiation. Astrocytes and oligodendrocytes are examples of cells in which such a dichotomy is manifested. In developing and in spontaneously regenerating nerves, these cells support (astrocytes) and permit (oligodendrocytes) growth. However, in nonregenerating adult mammalian nerves, astrocytes form the nonsupportive scar tissue; and the mature oligodendrocytes inhibit axonal growth. Maturation of these cells may be regulated differently during development than after injury. Among the putative regulators are factors derived from astrocytes, resident microglia; or cytokines produced by macrophages. During development, regulation leads to a temporal separation between axonal growth and maturation of the cellular environment, which might not occur spontaneously after injury in a nonregenerating CNS without intervention at the appropriate time. Data suggest that temporal intervention aimed at the glial cells might enhance the poor regenerative capacity of the mammalian CNS. Possible regulation of the nonneuronal cell response to injury via involvement of protooncogenes is proposed.  相似文献   

12.
This report describes a case series of granulomatous inflammation in the tails of seven immunocompromised mice. The disease was associated with Mycobacterium chelonae infection. The source and route of infection remained unclear. Spontaneous infection with M. chelonae has not previously been documented in mice. We conclude that M. chelonae, like in humans, should be considered as a facultative pathogen in laboratory animals, particularly under immunosuppressive conditions.  相似文献   

13.
Graeber MB  Li W  Rodriguez ML 《FEBS letters》2011,585(23):3798-3805
There is increasing confusion about the meaning of the terms inflammation, neuroinflammation, and microglial inflammation. We aim in this review to achieve greater clarity regarding these terms, which are essential for our understanding of the role of microglia in CNS inflammatory conditions. The important concept of sterile inflammation is explained against the backdrop of classical inflammation, and its key differences from what researchers refer to when they use the terms neuroinflammation and microglial inflammation are illustrated. We propose to replace the term "neuroinflammation" with "microglial activation" or "CNS pseudo-inflammation", if microglial activation does not suffice. In addition, we recommend abandoning the terms "microglial inflammation" and "inflamed microglia" because of the lack of a clear concept behind them.  相似文献   

14.
The evaluation of genome integrity in populations occupationally exposed to combine industrial factors is of medical importance. In the present study, the DNA-damage response was estimated by means of the alkaline comet assay in a sizeable cohort of volunteers recruited among workers in the automotive industry. For this purpose, freshly collected lymphocytes were treated with hydrogen peroxide (100μM, 1min, 4°C) in vitro, and the levels of basal and H(2)O(2)-induced DNA damage, and the kinetics and efficiency of DNA repair were measured during a 180-min interval after exposure. The parameters studied in the total cohort of workers were in a range of values prescribed for healthy adult residents of Belarus. Based on the 95th percentiles, individuals possessing enhanced cellular sensitivity to DNA damage were present in different groups, but the frequency was significantly higher among elderly persons and among individuals with chronic inflammatory diseases. The results indicate that the inter-individual variations in DNA-damage response should be taken into account to estimate adequately the environmental genotoxic effects and to identify individuals with an enhanced DNA-damage response due to the influence of some external factors or intrinsic properties of the organism. Underling mechanisms need to be further explored.  相似文献   

15.
16.
Regulatory CD4(+)CD25(+)Foxp3(+) T cells (Tregs) have been the focus of significant attention for their role in controlling immune responses. Although knowledge of Treg biology has burgeoned, wide gaps remain in our understanding of Treg function under both normal and pathological conditions. Pioneering studies demonstrated roles for Tregs in cancer and autoimmune diseases, including experimental autoimmune encephalitis, and this knowledge is often applied to other pathologies including neurodegenerative conditions. However, differences between immunity in neurodegeneration and in malignancy or autoimmunity are often neglected. Thus, Treg manipulations in central nervous system (CNS) neurodegenerative conditions often yield unexpected outcomes. In this piece, we explore how the immunology of neurodegeneration differs from that of cancer and autoimmunity and how these differences create confusion about the role of Tregs in neurodegenerative conditions.  相似文献   

17.
18.
Using a murine model of sepsis, we found that the balance of tissue pro- to anti-inflammatory cytokines directly correlated with severity of infection and mortality. Sepsis was induced in C57BL/6 mice by cecal ligation and puncture (CLP). Liver tissue was analyzed for levels of IL-1beta, IL-1 receptor antagonist (IL-1ra), tumor necrosis factor (TNF)-alpha, and soluble TNF receptor 1 by ELISA. Bacterial DNA was measured using quantitative real-time PCR. After CLP, early predominance of proinflammatory cytokines (6 h) transitioned to anti-inflammatory predominance at 24 h. The elevated anti-inflammatory cytokines were mirrored by increased tissue bacterial levels. The degree of anti-inflammatory response compared with proinflammatory response correlated with the bacterial concentration. To modulate the timing of the anti-inflammatory response, mice were treated with IL-1ra before CLP. This resulted in decreased proinflammatory cytokines, earlier bacterial load, and increased mortality. These studies show that the initial tissue proinflammatory response to sepsis is followed by an anti-inflammatory response. The anti-inflammatory phase is associated with increased bacterial load and mortality. These data suggest that it is the timing and magnitude of the anti-inflammatory response that predicts severity of infection in a murine model of sepsis.  相似文献   

19.
Spinal cord injury results in progressive waves of secondary injuries, cascades of noxious pathological mechanisms that substantially exacerbate the primary injury and the resultant permanent functional deficits. Secondary injuries are associated with inflammation, excessive cytokine release, and cell apoptosis. The purine nucleoside guanosine has significant trophic effects and is neuroprotective, antiapoptotic in vitro, and stimulates nerve regeneration. Therefore, we determined whether systemic administration of guanosine could protect rats from some of the secondary effects of spinal cord injury, thereby reducing neurological deficits. Systemic administration of guanosine (8 mg/kg per day, i.p.) for 14 consecutive days, starting 4 h after moderate spinal cord injury in rats, significantly improved not only motor and sensory functions, but also recovery of bladder function. These improvements were associated with reduction in the inflammatory response to injury, reduction of apoptotic cell death, increased sparing of axons, and preservation of myelin. Our data indicate that the therapeutic action of guanosine probably results from reducing inflammation resulting in the protection of axons, oligodendrocytes, and neurons and from inhibiting apoptotic cell death. These data raise the intriguing possibility that guanosine may also be able to reduce secondary pathological events and thus improve functional outcome after traumatic spinal cord injury in humans.  相似文献   

20.
Recruitment of inflammatory cells is known to drive the secondary damage cascades that are common to injuries of the central nervous system (CNS). Cell activation and infiltration to the injury site is orchestrated by changes in the expression of chemokines, the chemoattractive cytokines. Reducing the numbers of recruited inflammatory cells by the blocking of the action of chemokines has turned out be a promising approach to diminish neuroinflammation and to improve tissue preservation and neovascularization. In addition, several chemokines have been shown to be essential for stem/progenitor cell attraction, their survival, differentiation and cytokine production. Thus, chemokines might indirectly participate in remyelination, neovascularization and neuroprotection, which are important prerequisites for CNS repair after trauma. Moreover, CXCL12 promotes neurite outgrowth in the presence of growth inhibitory CNS myelin and enhances axonal sprouting after spinal cord injury (SCI). Here, we review current knowledge about the exciting functions of chemokines in CNS trauma, including SCI, traumatic brain injury and stroke. We identify common principles of chemokine action and discuss the potentials and challenges of therapeutic interventions with chemokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号