首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kidney has been used as a model organ to analyze organogenesis. In in vitro experiments using Xenopus blastula ectoderm, the development of pronephric tubules (the prototype of the kidney) may be induced by treatment with activin A and retinoic acid (RA). The present study examined whether pronephric tubules induced in ectodermal explants exhibited similar characteristics to those of normal embryos at the molecular level. The experimental conditions required for high frequency induction (100%) of pronephric tubule formation from presumptive ectoderm without the development of muscle and notochord were determined. The developmental expression of the pronephros marker genes Xlim-1 and Xlcaax-1 was examined in induced pronephric tubules. After treatment with 10 ng/mL activin A and 10−4 mol/L RA, only pronephric tubules were induced at a high frequency. Induced pronephric tubules showed the same timing and patterns of expression for the marker genes Xlim-1 and Xlcaax-1 as normal embryos. These results suggest that the in vitro development of pronephric tubules induced in the presumptive ectoderm by activin A and RA parallels normal development at the molecular level.  相似文献   

2.
In the process of amphibian development, an embryonic body plan is established through cell division, sequential gene expression, morphogenesis and cell differentiation. The mechanism of body patterning is complex and includes multiple induction events. Activin, a TGF-beta family protein, can induce several kinds of mesodermal and endodermal tissues in animal cap explants in a dose-dependent manner. In a recent study of the role of activin in organogenesis, we succeeded in raising a beating heart by treating animal caps with a high concentration of activin. Activin also participates in kidney organogenesis in combination with retinoic acid. An embryonic kidney induced by activin and retinoic acid in vitro can function in vivo when it is transplanted into a larva in which pronephros rudiments have already been removed. Further, the activin-treated animal caps clearly show organizer actions that are closely related to body patterning along the anteroposterior axis. These experiments will help to serve as a model system for understanding organogenesis and body patterning at the cellular and molecular levels.  相似文献   

3.
Regeneration processes in many tissues are modulated by various factors, which are involved in their organogenesis. Activin A, a member of the TGF-β superfamily, inhibits branching tubulogenesis of the kidney in organ culture system as well as in in vitro tubulogenesis model. On the other hand, follistatin, an antagonist activin A, reverses the effect of activin A on kidney development, induces branching tubulogenesis, and also promotes tubular regeneration after ischemia/reperfusion injury by blocking the action of endogenous activin A. The activin-follistatin system is one of the important regulatory systems modulating developmental and regeneration processes of the kidneys.  相似文献   

4.
Pancreatic tissue formation from murine embryonic stem cells in vitro   总被引:4,自引:0,他引:4  
The in vitro formation of organs and/or tissues is a major goal for regenerative medicine that would also provide a powerful tool for analyzing both the mechanisms of development and disease processes for each target organ. Here, we present a method whereby pancreatic tissues can be formed in vitro from mouse embryonic stem (ES) cells. Embryoid body-like spheres (EBSs) induced from ES cell colonies were treated with retinoic acid (RA) and activin, which are candidate regulators of pancreatic development in vivo. These induced tissues had decreased expression of the sonic hedgehog (shh) gene and expressed several pancreatic marker genes. ES cell-derived pancreatic tissue was composed of exocrine cells, endocrine cells, and pancreatic duct-like structures. In addition, the ratio of exocrine to endocrine cells in the induced tissue was found to be sensitive to the concentrations of RA and activin in the present experiment.  相似文献   

5.
During the process of mesoderm specification in Xenopus embryos, cells of the equatorial region are induced to form mesoderm in response to signals from the underlying endodermal cells. One mesodermal cell type resulting from this in vivo induction is skeletal muscle, which has a very specific and tightly regulated course of electrical and morphological development. Previously, electrical development could be analyzed only after neurulation, once myocytes could be morphologically identified. In vitro, activin triggers a cascade of events leading to the development of specific mesodermal tissues, including skeletal muscle; however, the precise role of activin in vivo is less clear. Much is now known about the mechanism and control of activin action, but very little is known about the subsequent time course of differentiation of activin-induced muscle. Such muscle is routinely identified by the presence of a small number of specific markers which, although they accurately confirm the presence of muscle, give little indication of the time course or quantitative aspects of muscle development. One of the most important functional aspects of muscle development is the acquisition of the complex electrical properties which allow it to function normally. Here we assess the ability of activin to drive in vitro the normal highly regulated sequence of electrical development in skeletal muscle. We find that in most, but not all, respects the normal time course of development of voltage-gated ion currents is well reproduced in activin-induced muscle. This characterization strengthens the case for activin as an agent capable of inducing the detailed developmental program of muscle and now allows for analysis of the regulation of electrical development prior to neurulation.  相似文献   

6.
Review: role of carbon sources for in vitro plant growth and development   总被引:1,自引:0,他引:1  
In vitro plant cells, tissues and organ cultures are not fully autotrophic establishing a need for carbohydrates in culture media to maintain the osmotic potential, as well as to serve as energy and carbon sources for developmental processes including shoot proliferation, root induction as well as emission, embryogenesis and organogenesis, which are highly energy demanding developmental processes in plant biology. A variety of carbon sources (both reducing and non-reducing) are used in culture media depending upon genotypes and specific stages of growth. However, sucrose is most widely used as a major transport-sugar in the phloem sap of many plants. In micropropagation systems, morphogenetic potential of plant tissues can greatly be manipulated by varying type and concentration of carbon sources. The present article reviews the past and current findings on carbon sources and their sustainable utilization for in vitro plant tissue culture to achieve better growth rate and development.  相似文献   

7.
8.
9.
The earliest form of embryonic kidney, the pronephros, consists of three components: glomus, tubule and duct. Treatment of the undifferentiated animal pole ectoderm of Xenopus laevis with activin A and retinoic acid (RA) induces formation of the pronephric tubule and glomus. In this study, the rate of induction of the pronephric duct, the third component of the pronephros, was investigated in animal caps treated with activin A and RA. Immunohistochemistry using pronephric duct-specific antibody 4A6 revealed that a high proportion of the treated explants contained 4A6-positive tubular structures. Electron microscopy showed that the tubules in the explants were similar to the pronephric ducts of normal larvae, and they also expressed Gremlin and c-ret, molecular markers for pronephric ducts. These results suggest that the treatment of Xenopus ectoderm with activin A and RA induces a high rate of differentiation of pronephric ducts, in addition to the differentiation of the pronephric tubule and glomus, and that this in vitro system can serve as a simple and effective model for analysis of the mechanism of pronephros differentiation.  相似文献   

10.
We have used the P19 embryonal carcinoma (EC) aggregation system as a model for early mouse development to study induction and modulation of mesodermal and neuronal differentiation. By studying the expression of marker genes for differentiated cells in this model we have shown that there is a good correlation between the differentiation direction induced in P19 EC aggregates and the expression of these genes. Expression of the neuronal gene midkine is exclusively upregulated when P19 EC cells are induced to form neurons while expression of early mesodermal genes such as Brachyury T, evx-1 , goosecoid and nodal is elevated after induction to the mesodermal pathway. In the present study we have further shown that activin A blocks the different directions of differentiation of P19 EC cells induced by retinoic acid (RA) in a dose-dependent way. To understand the mechanism behind this inhibitory action of activin A the expression of several RA-responsive genes, including the three RA receptor genes (RARα, RARβ and RARγ) was determined. Since activin has no clear effect on the expression and activity of the RAR it is very likely that this factor acts downstream of these receptors. In addition to activin, fibroblast growth factors (FGF) were shown to modulate P19 EC cell differentiation. However, in contrast to activin, FGF exclusively blocks the mesodermal differentiation of P19 EC cells by either 10−9mol/L RA or a factor produced by visceral endoderm-like cells (END-2 factor). The FGF effect is dose-independent. These results suggest an important function for RA and the END-2 factor in the induction and for activin and FGF in the modulation of specific differentiation processes in murine development.  相似文献   

11.
Formation of three germ layers is the most important event in early vertebrate development. Animal cap assays can be used to reproduce the in vivo induction of amphibian tissues in order to investigate the differentiation processes that occur in normal embryonic development. Activin treatment strongly and dose-dependently induces various types of mesodermal and endodermal tissue in cultured animal caps. Beating heart, pronephros, pancreas and cartilage can be induced by microsurgical manipulation and simultaneous treatment with activin and other factors. These in vitro induction systems will be helpful for elucidating the mechanisms of tissue induction and organ formation in vertebrate development.  相似文献   

12.
This review describes some of the properties of retinoic acid (RA) in its functions as a locally synthesized differentiation factor for the developing nervous system. The emphasis is on the characterization of the metabolic enzymes that synthesize and inactivate RA, and which determine local RA concentrations. These enzymes create regions of autocrine and paracrine RA signaling in the embryo. One mechanism by which RA can act as a differentiation agent is through the induction of growth factors and their receptors. Induction of growth factor receptors in neural progenitor cells can lead to growth factor dependency, and the consequent developmental fate of the cell will depend on the local availability of growth factors. Because RA activates the early events of cell differentiation, which then induce context-specific differentiation programs, RA may be called a master differentiation factor.  相似文献   

13.
Activins are known to be potentially important regulators of early developmental processes in amphibians, birds, and mammalians. In this study we report the expression of the inhibin subunits, including those that make up activin, the activin-binding protein follistatin, and activin receptor type II in several in vitro systems that model early murine embryonic development, namely embryonic stem (ES) cells, embryonal carcinoma (EC) cells, and their differentiated derivatives. In addition, we examine the expression pattern of these factors in different stages of the mouse embryo itself. Expression of inhibin alpha and beta A subunits is restricted to certain differentiated cell types, while beta B subunits are expressed in both differentiated and undifferentiated cells. Our results further indicate a change in the expression pattern of inhibin subunits during early development from beta B at the blastocyst stage largely to beta A in postgastrulation embryos. This is similar to the expression pattern at equivalent stages of Xenopus and chick development. Expression of the activin-binding protein follistatin is altered by the induction of differentiation of P19 EC and ES cells by several factors, including retinoic acid. In contrast to the inhibin subunits and follistatin, activin receptor levels are not influenced by differentiation in these cell types. The results of this study demonstrate that the inhibin subunits and follistatin, but not the activin receptor type II, are differentially expressed during early murine development and suggest that the different forms of activin/inhibin are involved in the regulation of different developmental processes.  相似文献   

14.
Vitamin A and its analogs (retinoids) have acquired particular significance in embryonic development since the discovery that retinoic acid (RA) possesses properties of an endogenous morphogen and that embryonic tissues contain specific nuclear receptors for RA. Since the mammalian embryo does not synthesize RA de novo but rather must acquire it directly or in a precursor form from the maternal circulation, we sought to establish the relationship between levels of RA, retinol, and retinyl esters in the maternal system and their acquisition by the embryo, particularly during organogenesis in the mouse. Results indicate profound changes in maternal vitamin A levels during pregnancy in the mouse. These changes were characterized by a large, transient decrease in plasma retinol levels coincident with the period of organogenesis (e.g. gestational Days 9-14), and an apparent increase in mobilization from hepatic stores to the conceptus. During organogenesis, the embryo exhibited a steady increase in retinol levels with little increase in retinyl esters and virtually no change in RA. Analysis of retinoid accumulation patterns in the embryonic liver indicate that functional onset of vitamin A storage occurs by mid-organogenesis. In contrast, placental levels of these retinoids remained unchanged throughout organogenesis. Analysis of the conceptus as a developmental unit revealed that during early organogenesis the majority of retinoids are contained in the placenta (8-fold more than in the embryo). However, by mid-organogenesis the retinoid content of the embryo exceeds that of the placenta. Together, these results provide evidence that pregnancy in the mouse is accompanied by pronounced alterations in maternal retinoid homeostasis that occur coincident with the period of high embryonic sensitivity to exogenous retinoids.  相似文献   

15.
Target skin cells induce the neuropeptide calcitonin gene-related peptide (CGRP) in na?ve embryonic dorsal root ganglion (DRG) neurons in vitro, but the molecular basis of that induction is not known. Recombinant activin or bone morphogenetic proteins (BMPs) dramatically increase the number of sensory neurons with CGRP and substance P in vitro (X. Ai et al., 1999, Mol. Cell. Neurosci. 14, 506-518). These experiments were designed to test if activin or BMPs accounted for the CGRP-inductive activity by skin cells. To identify factors from skin that induce CGRP, we developed a bioassay in which embryonic DRG neurons isolated before peripheral target contact in vivo are challenged in vitro with specific factors. Conditioned medium from an embryonic rat skin cell line induced neuronal CGRP expression, and induction was blocked by follistatin, implicating transforming growth factor family members. Immunoblot analysis revealed that the skin cell line medium contained several activin and bone morphogenetic protein moieties. Antibody specific to activin neutralized most of the CGRP-inductive activity in skin conditioned medium. These data indicate that the CGRP-inductive action of skin cells involves activin and establish activin as a candidate regulator of this sensory neuropeptide phenotype during development.  相似文献   

16.
钟原  成仿云  秦磊 《植物学通报》2011,46(3):350-360
分生结节是植物组织离体发育的一种特殊状态,也是一种有价值的植株再生途径。它的外观与体细胞胚有相似之处,但其结构和发育过程上有明显区别。分生结节可以通过液体培养实现高效增殖,并能在长期增殖后保持遗传稳定性和分化能力,在植物微繁殖、次生代谢物生产、植物生长发育的机制等研究领域具有重要的理论和应用价值。该文结合国内外最新研究结果,综合论述了分生结节发生和植株再生的过程及其影响因素,并通过与体细胞胚等其它植株再生途径相比较,分析了分生结节的独特之处及其广阔的应用前景。  相似文献   

17.
The discovery of the organizer by H. Spemann and Hilde Mangold, prompted a number of studies of embryonic induction in Japan. C.O. Whitman, N. Yatsu, T. Sato, H. Oka, T. Yamada, and Y.K. Okada were the pioneers in the field of embryonic induction. T. Yamada postulated the double potential theory for embryonic induction. O. Nakamura has modified the fate map of Vogt using newt and Xenopusblastulae. T.S. Okada and G. Eguchi proposed the new concept of "transdifferentiation" based on in vitro experiments in the retina and lens. T.S. Okada is not only an excellent scientist, but he has also nurtured many active developmental biologists. M. Takeichi, from his school, discovered the cell adhesion molecle, cadherin. Nakamura and colleagues tried to determine the origin and formation of the organizer. They performed recombination experiments using the ectoderm, endoderm and mesoderm, and concluded that the phenomenon in which various mesoderm tissues are formed by the recombination of the presumptive ectoderm with endoderm was "regulation of the vegetal-animal gradient". Some groups have also tried to purify specific inducing factors. T. Yamada and colleagues isolated two different types of ribonucleoproteins. I. Kawakami and colleagues showed that the ribosome fraction has neural inducing capacity, and that the extracellular matrix contains mesodermal inducing factors. Finally Asashima and colleagues isolated and identified activin A as a MIF factor. This finding had a great influence not only in the field of developmental biology, but also in molecular biology. Using activin, Asashima's group has successfully generated various organs, tissues, trunk-tail and head structures in vitro using animal caps (undifferentiated cells). Some other important molecules such as BMP, chordin and bFGF are also being studied by young Japanese scientists.  相似文献   

18.
We have demonstrated a role for activin A, follistatin, and FSH in male germ cell differentiation at the time when spermatogonial stem cells and committed spermatogonia first appear in the developing testis. Testis fragments from 3-day-old rats were cultured for 1 or 3 days with various combinations of these factors, incubated with bromodeoxyuridine (BrdU) to label proliferating cells, and then processed for stereological analysis and detection of BrdU incorporation. Gonocyte numbers were significantly elevated in cultures treated with activin, while the combination of FSH and the activin antagonist, follistatin, increased the proportion of spermatogonia in the germ cell population after 3 days. All fragment groups treated with FSH contained a significantly higher proportion of proliferating Sertoli cells, while activin and follistatin each reduced Sertoli cell division. In situ hybridization and immunohistochemistry on normal rat testes demonstrated that gonocytes, but not spermatogonia, contain the activin beta(A) subunit mRNA and protein. In contrast, gonocytes first expressed follistatin mRNA and protein at 3 days after birth, concordant with the transition of gonocytes to spermatogonia. Collectively, these data demonstrate that germ cells have the potential to regulate their own maturation through production of endogenous activin A and follistatin. Sertoli cells were observed to produce the activin/inhibin beta(A) subunit, the inhibin alpha subunit, and follistatin, demonstrating that these cells have the potential to regulate germ cell maturation as well as their own development. These findings indicate that local regulation of activin bioactivity may underpin the coordinated development of germ cells and somatic cells at the onset of spermatogenesis.  相似文献   

19.
Activin, originally discovered as a polypeptide hormone that is capable of stimulating follicle-stimulating hormone secretion from pituitary cells in vitro, has recently been found to have a much wider range of biological activities. There are a number of reports of activin action as a cell differentiation factor on various types of cells rather than as a modulator of hormone secretion, as predicted initially, based on its structural similarity to transforming growth factor-β. Studies of the distribution of activin and its receptor in a variety of tissues and its wide-ranging actions clearly illustrates its multifunctional properties. In particular, activin has been shown to be a potential regulator of early development of Xenopus laevis. Observation of activin effect in embryogenesis is of general importance to our understanding of the role of the family of growth factors in developmental processes.  相似文献   

20.
It has been previously reported that activin A, a homodimer of the betaA inhibin subunit, is secreted by stromal cells from mouse bone marrow and causes apoptotic death of mouse plasmacytoma tumor cells. Recent in vitro studies have also implicated this cytokine in the suppression of normal B-cell lymphopoiesis. In this study we examined the occurrence of activin A in nasal polyp tissues that present a combination of epithelium, mesenchyme, and vascular endothelium, with frequent massive hemopoietic infiltration. Anti-betaA-chain antibodies strongly stained epithelial mucous glands and some endothelial cells, and diffusely stained the polyp stroma. Normal adult conchae were similarly stained, whereas activin A was not detected prenatally by immunostaining of nasal tissues. Staining specificity was substantiated by ligand competition assays. Detailed examination of the inflammatory polyp infiltrate showed that activin A staining was reduced in sites of focal infiltration of B-lymphoid cells. It is therefore implied that local accumulation of a large number of B-cells is associated with relatively low activin A expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号