首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The family II cellulose-binding modules (CBM) from Thermobifida fusca Cel5A and Cel48A were cloned in the Escherichia coli/Streptomyces shuttle vector pD730, and the plasmids were transformed into Streptomyces lividans TKM31. CBM(Cel5A), and CBM(Cel48A), CBM(Cel6B) were expressed and purified from S. lividans. The molecular masses were determined by mass spectrometry, and the values were 10595 +/- 2, 10915 +/- 2, and 11291 +/- 2 Da for CBM(Cel5A), CBM(Cel6B), and CBM(Cel48A), respectively. Three different binding models (Langmuir, Interstice Penetration, and Interstice Saturation) were tested to describe the binding isotherms of these CBMs on bacterial microcrystalline cellulose (BMCC). The experimental binding isotherms of T. fusca family II CBMs on BMCC are best modeled by the Interstice Saturation model, which includes binding to the constrained interstice surface of BMCC as well as traditional Langmuir binding on the freely accessible surface. The Interstice Saturation model consists of three different steps (Langmuir binding, interstice binding, and interstice saturation). Full reversibility only occurred in the Langmuir region. The irreversibility in the interstice binding and saturation regions probably was caused by interstice entrapment. Temperature shift experiments in different binding regions support the interstice entrapment assumption. There was no systematic difference in binding between the two types of exocellulase CBMs--one that hydrolyzes cellulose from the nonreducing (CBM(Cel6B)) end and one that hydrolyzes cellulose from the reducing end (CBM(Cel48A)).  相似文献   

2.
Thermobifida fusca Cel9A-90, an unusual family 9 enzyme, is a processive endoglucanase containing a catalytic domain closely linked to a family 3c cellulose binding domain (Cel9A-68) followed by a fibronectin III-like domain and a family 2 cellulose binding domain. To study its catalytic mechanism, 12 mutant genes with changes in five conserved residues of Cel9A-68 were constructed, cloned, and expressed in Escherichia coli. The purified mutant enzymes were assayed for their activities on (carboxymethyl)cellulose, phosphoric acid-swollen cellulose, bacterial microcrystalline cellulose, and 2,4-dinitrophenyl beta-D-cellobioside. They were also tested for ligand binding, enzyme processivity, and thermostability. The results clearly show that E424 functions as the catalytic acid, D55 and D58 are both required for catalytic base activity, and Y206 plays an important role in binding, catalysis, and processivity, while Y318 plays an important role in binding of crystalline cellulose substrates and is required for processivity. Several amino acids located in a loop at the end of the catalytic cleft (T245-L251) were deleted from Cel9A-68, and this enzyme showed slightly improved filter paper activity and binding to BMCC but otherwise behaved like the wild-type enzyme. The FnIII-like domain was deleted from Cel9A-90, reducing BMCC activity to 43% of the wild type.  相似文献   

3.
Detailed understanding of cell wall degrading enzymes is important for their modeling and industrial applications, including in the production of biofuels. Here we used Cel9A, a processive endocellulase from Thermobifida fusca, to demonstrate that cellulases that contain a catalytic domain (CD) attached to a cellulose binding module (CBM) by a flexible linker exist in three distinct molecular states. By measuring the ability of a soluble competitor to reduce Cel9A activity on an insoluble substrate, we show that the most common state of Cel9A is bound via its CBM, but with its CD unoccupied by the insoluble substrate. These findings are relevant for kinetic modeling and microscopy studies of modular glycoside hydrolases.  相似文献   

4.
Cellulases containing a family 9 catalytic domain and a family 3c cellulose binding module (CBM3c) are important components of bacterial cellulolytic systems. We measured the temperature dependence of the activities of three homologs: Clostridium cellulolyticum Cel9G, Thermobifida fusca Cel9A, and C. thermocellum Cel9I. To directly compare their catalytic activities, we constructed six new versions of the enzymes in which the three GH9-CBM3c domains were fused to a dockerin both with and without a T. fusca fibronectin type 3 homology module (Fn3). We studied the activities of these enzymes on crystalline cellulose alone and in complex with a miniscaffoldin containing a cohesin and a CBM3a. The presence of Fn3 had no measurable effect on thermostability or cellulase activity. The GH9-CBM3c domains of Cel9A and Cel9I, however, were more active than the wild type when fused to a dockerin complexed to scaffoldin. The three cellulases in complex have similar activities on crystalline cellulose up to 60°C, but C. thermocellum Cel9I, the most thermostable of the three, remains highly active up to 80°C, where its activity is 1.9 times higher than at 60°C. We also compared the temperature-dependent activities of different versions of Cel9I (wild type or in complex with a miniscaffoldin) and found that the thermostable CBM is necessary for activity on crystalline cellulose at high temperatures. These results illustrate the significant benefits of working with thermostable enzymes at high temperatures, as well as the importance of retaining the stability of all modules involved in cellulose degradation.  相似文献   

5.
The binding and reversibility of Thermobifida fusca intact Cel5A, Cel5B, and Cel48A and their corresponding catalytic domains (CDs) to bacterial microcrystalline cellulose (BMCC) were studied at 5 degrees C. The binding of the intact cellulases and of corresponding CDs to BMCC was irreversible in all regions: Langmuir binding (region I), interstice penetration (region II), and interstice saturation (region III). The three cellulose binding domains (CBMs) bind reversibly in "region I" although their respective CDs do not. The irreversible binding of these enzymes in the Langmuir region does not satisfy the Langmuir assumption; however, the overall fit of the Interstice Saturation model, which includes binding in MBCC interstices as well as on the freely accessible surface (Jung et al., 2002a) is good. The main limitation of the model is that it does not explicitly address a mechanism for forming the enzyme-substrate complex within the active site of the CDs.  相似文献   

6.
Elucidating the molecular mechanisms that govern synergism is important for the rational engineering of cellulase mixtures. Our goal was to observe how varying the loading molar ratio of cellulases in a binary mixture and the recalcitrance of the cellulose to enzymatic degradation influenced the degree of synergistic effect (DSE) and degree of synergistic binding (DSB). The effect of cellulose recalcitrance was studied using a bacterial microcrystalline cellulose (BMCC), which was exhaustively hydrolyzed by a catalytic domain of Cel5A, an endocellulase. The remaining prehydrolyzed BMCC (PHBMCC) was used to represent a recalcitrant form of cellulose. DSE was observed to be sensitive to loading molar ratio. However, on the more recalcitrant cellulose, synergism decreased. Furthermore, the results from this study reveal that when an exocellulase (Cel6B) is mixed with either an endocellulase (Cel5A) or a processive endocellulase (Cel9A) and reacted with BMCC, synergism is observed in both hydrolysis and binding. This study also revealed that when a "classical" endocellulase (Cel5A) and a processive endocellulase (Cel9A) are mixed and reacted with BMCC, only limited synergism is observed in reducing sugar production; however, binding is clearly increased by the presence of the Cel5A.  相似文献   

7.
The gene for a 104-kDa exocellulase, Cel48A, formerly E6, was cloned from Thermobifida fusca into Escherichia coli and Streptomyces lividans. The DNA sequence revealed a type II cellulose-binding domain at the N-terminus, followed by a FNIII-like domain and ending with a glycosyl hydrolase Family 48 catalytic domain. The enzyme and catalytic domain alone were each expressed in and purified from S. lividans and had very low catalytic activity on swollen cellulose, carboxymethyl cellulose, bacterial microcrystalline cellulose and filter paper. However, in synergistic assays on filter paper, the addition of Cel48A to a balanced mixture of T. fusca endocellulase and exocellulase increased the specific activity from 7.9 to 11.7 micromol cellobiose.min-1.mL-1, more than 15-fold higher than any single enzyme alone. Cel48A retained > 50% of its maximum activity from pH 5 to 9 and from 40 to 60 degrees C. Using SWISSMODEL, the amino-acid sequence of the Cel48Acd was modeled to the known structure of Clostridium cellulolyticum CelF. Family 48 enzymes are remarkably homologous at 35% identity for all their catalytic domains and some of the properties of the 10 members are discussed.  相似文献   

8.
Fifteen mutant genes in six loop residues and eight mutant genes in five conserved noncatalytic active site residues of Thermobifida fusca Cel6B were constructed, cloned and expressed in Escherichia coli or Streptomyces lividans. The mutant enzymes were assayed for catalytic activity on carboxymethyl cellulose (CMC), swollen cellulose (SC), filter paper (FP), and bacterial microcrystalline cellulose (BMCC) as well as cellotetraose, cellopentaose, and 2, 4-dinitrophenyl-beta-D-cellobioside. They were also assayed for ligand binding, enzyme processivity, thermostability, and cellobiose feedback inhibition. Two double Cys mutations that formed disulfide bonds across two tunnel forming loops were found to significantly weaken binding to ligands, lower all activities, and processivity, demonstrating that the movement of these loops is important but not essential for Cel6B function. Two single mutant enzymes, G234S and G284P, had higher activity on SC and FP, and the double mutant enzyme had threefold and twofold higher activity on these substrates, respectively. However, synergism with endocellulase T. fusca Cel5A was not increased with these mutant enzymes. All mutant enzymes with lower activity on filter paper, BMCC, and SC had lower processivity. This trend was not true for CMC, suggesting that processivity in Cel6B is a key factor in the hydrolysis of insoluble and crystalline cellulose. Three mutations (E495D, H326A and W329C) located near putative glycosyl substrate subsites -2, +1 and +2, were found to significantly increase resistance to cellobiose feedback inhibition. Both the A229V and L230C mutations specifically decreased activity on BMCC, suggesting that BMCC hydrolysis has a different rate limiting step than the other substrates. Most of the mutant enzymes had reduced thermostability although Cel6B G234S maintained wild-type thermostability. The properties of the different mutant enzymes provide insight into the catalytic mechanism of Cel6B.  相似文献   

9.
Thermobifida fusca Cel9A-90 is a processive endoglucanase consisting of a family 9 catalytic domain (CD), a family 3c cellulose binding module (CBM3c), a fibronectin III-like domain, and a family 2 CBM. This enzyme has the highest activity of any individual T. fusca enzyme on crystalline substrates, particularly bacterial cellulose (BC). Mutations were introduced into the CD or the CBM3c of Cel9A-68 using site-directed mutagenesis. The mutant enzymes were expressed in Escherichia coli; purified; and tested for activity on four substrates, ligand binding, and processivity. The results show that H125 and Y206 play an important role in activity by forming a hydrogen bonding network with the catalytic base, D58; another important supporting residue, D55; and Glc(-1) O1. R378, a residue interacting with Glc(+1), plays an important role in processivity. Several enzymes with mutations in the subsites Glc(-2) to Glc(-4) had less than 15% activity on BC and markedly reduced processivity. Mutant enzymes with severalfold-higher activity on carboxymethyl cellulose (CMC) were found in the subsites from Glc(-2) to Glc(-4). The CBM3c mutant enzymes, Y520A, R557A/E559A, and R563A, had decreased activity on BC but had wild-type or improved processivity. Mutation of D513, a conserved residue at the end of the CBM, increased activity on crystalline cellulose. Previous work showed that deletion of the CBM3c abolished crystalline activity and processivity. This study shows that it is residues in the catalytic cleft that control processivity while the CBM3c is important for loose binding of the enzyme to the crystalline cellulose substrate.  相似文献   

10.
Cellobiohydrolase Cel48C from Paenibacillus sp. BP-23, an enzyme displaying limited activity on most cellulosic substrates, was assayed for activity in the presence of other bacterial endo- or exocellulases. Significant enhanced activity was observed when Cel48C was incubated in the presence of Paenibacillus sp. BP-23 endoglucanase Cel9B or Thermobifida fusca cellulases Cel6A and Cel6B, indicating that Cel48C acts synergistically with them. Maximum synergism rates on bacterial microcrystalline cellulose or filter paper were obtained with a mixture of Paenibacillus cellulases Cel9B and Cel48C, accompanied by T. fusca exocellulase Cel6B. Synergism was also observed in cell extracts from recombinant clone E. coli pUCel9-Cel48 expressing the two contiguous Paenibacillus cellulases Cel9B and Cel48C. The enhanced cellulolytic activity displayed by the cellulase mixtures assayed could be used as an efficient tool for biotechnological applications like pulp and paper manufacturing.  相似文献   

11.
A critical structural feature of many microbial endo-beta-1,4-glucanases (EGases, or cellulases) is a carbohydrate binding module (CBM), which is required for effective crystalline cellulose degradation. However, CBMs are absent from plant EGases that have been biochemically characterized to date, and accordingly, plant EGases are not generally thought to have the capacity to degrade crystalline cellulose. We report the biochemical characterization of a tomato EGase, Solanum lycopersicum Cel8 (SlCel9C1), with a distinct C-terminal noncatalytic module that represents a previously uncharacterized family of CBMs. In vitro binding studies demonstrated that this module indeed binds to crystalline cellulose and can similarly bind as part of a recombinant chimeric fusion protein containing an EGase catalytic domain from the bacterium Thermobifida fusca. Site-directed mutagenesis studies show that tryptophans 559 and 573 play a role in crystalline cellulose binding. The SlCel9C1 CBM, which represents a new CBM family (CBM49), is a defining feature of a new structural subclass (Class C) of plant EGases, with members present throughout the plant kingdom. In addition, the SlCel9C1 catalytic domain was shown to hydrolyze artificial cellulosic polymers, cellulose oligosaccharides, and a variety of plant cell wall polysaccharides.  相似文献   

12.
Molecular docking and molecular dynamics (MD) simulations were used to investigate the binding of a cellodextrin chain in a crystal-like conformation to the carbohydrate-binding module (CBM) of Cel9A from Thermobifida fusca. The fiber was found to bind to the CBM in a single and well-defined configuration in-line with the catalytic cleft, supporting the hypothesis that this CBM plays a role in the catalysis by feeding the catalytic domain (CD) with a polysaccharide chain. The results also expand the current known list of residues involved in the binding. The polysaccharide-protein attachment is shown to be mediated by five amine/amide-containing residues. E478 and E559 were found not to interact directly with the sugar chain; instead they seem to be responsible to stabilize the binding motif via hydrogen bonds.  相似文献   

13.
The modular endocellulase Cel9 of the bicistronic operon cel9-cel48 of Myxobacter sp. AL-1 shares not only amino acid sequence similarity but also biochemical properties similar to those of Thermobifida fusca endo/exocellulase E4. Amino acid alignments of a T. fusca E4 cellulase subfamily of family 9 cellulases revealed that Asp(446) of Myxobacter sp. AL-1 Cel9, a putatively noncatalytic residue, is highly conserved in one of the catalytic domains of this subfamily. Directed mutagenesis of residue aspartate (Asp(446)) to alanine generated a Cel9 mutant that lost more than 99% of its activity, suggesting that Asp(446) plays an essential structural role in Cel9 during cellulose degradation. Owing to its high degree of conservation and essential role, we propose that Asp(446) of Myxobacter sp. AL-1 Cel9 is a good landmark that distinguishes members of the E4 subfamily of family 9 cellulases.  相似文献   

14.
Synergism between cellulases facilitates efficient hydrolysis of microcrystalline cellulose. We hypothesize that the effects of synergism, observed as enhanced extents of hydrolysis, are related to cellulase binding to the substrate in mixtures. In this study, direct measurements of bound concentrations of fluorescence-labeled T. fusca Cel5A, Cel6B, and Cel9A on bacterial microcrystalline cellulose were used to study binding behaviors of cellulases in binary component reactions. The accuracy of the determination of fluorescence-labeled cellulase concentrations in binary component mixtures was in the range of 7-9%. Data at 5 degrees C show that binding levels of cellulases in mixture reactions are only 22-70% of the binding levels in single component reactions. At 50 degrees C, however, most of the cellulase components in the same mixtures bound to extents of 40-126% higher than in the corresponding single component reactions. The degrees of synergistic effect (DSE) observed for the reactions at 50 degrees C were greater than 1, indicating that the components in the mixture acted synergistically, whereas DSE < 1 was generally observed for the reactions at 5 degrees C indicating anti-synergistic behavior. Degrees of synergistic binding (DSB) were also calculated, where anti-synergistic mixtures had DSB < 1 and synergistic mixtures had DSB>1. We conclude that the lower extents of binding at 5 degrees C are due to competition for binding sites by the cellulase components in the mixtures and the enhanced binding extents at 50 degrees C are due to increased availability of binding sites on the substrates brought about by the higher extents of hydrolysis.  相似文献   

15.
Barr BK  Holewinski RJ 《Biochemistry》2002,41(13):4447-4452
The kinetics of cellulose binding and hydrolysis by cellulases is not well understood except at steady-state conditions. For use in studies of cellulase pre-steady-state and steady-state kinetics, we have prepared 4-methyl-7-thioumbelliferyl-beta-D-cellobioside (MUS-CB), a ground-state nonhydrolyzable analogue of the fluorescent cellulase substrate 4-methylumbelliferyl-beta-D-cellobioside (MU-CB). MUS-CB is not hydrolyzed by the catalytic domain of cellulase E1 from Acidothermus cellulolyticus under conditions where this enzyme rapidly degrades MU-CB. Thermodynamic parameters describing the steady-state binding of MUS-CB to Thermobifida fusca cellulase Cel6A are similar to those for MU-CB, indicating that MUS-CB can be used in place of MU-CB to study binding events in the Cel6A active-site cleft. In the pre-steady-state, MUS-CB binds to Cel6A by a simple, one-step bimolecular association reaction. It is anticipated that similar thio-containing 4-methylumbelliferyl compounds will have applications in studies of other enzyme systems.  相似文献   

16.
The availability of a high-resolution structure of the Thermobifida fusca endocellulase Cel6A catalytic domain makes this enzyme ideal for structure-based efforts to engineer cellulases with high activity on native cellulose. In order to determine the role of conserved, noncatalytic residues in cellulose hydrolysis, 14 mutations of six conserved residues in or near the Cel6A active-site cleft were studied for their effects on catalytic activity, substrate specificity, processivity and ligand-binding affinity. Eleven mutations were generated by site-directed mutagenesis using PCR, while three were from previous studies. All the CD spectra of the mutant enzymes were indistinguishable from that of Cel6A indicating that the mutations did not dramatically change protein conformation. Seven mutations in four residues (H159, R237, K259 and E263) increased activity on carboxymethyl cellulose (CM-cellulose), with K259H (in glucosyl subsite -2) creating the highest activity (370%). Interestingly, the other mutations in these residues reduced CM-cellulose activity. Only the K259H enzyme retained more activity on acid-swollen cellulose than on filter paper, suggesting that this mutation affected the rate-limiting step in crystalline cellulose hydrolysis. All the mutations lowered activity on cellotriose and cellotetraose, but two mutations, both in subsite +1 (H159S and N190A), had higher kcat/Km values (6.6-fold and 5.0-fold, respectively) than Cel6A on 2,4-dinitrophenyl-beta-D-cellobioside. Measurement of enzyme : ligand dissociation constants for three methylumbelliferyl oligosaccharides and cellotriose showed that all mutant enzymes bound these ligands either to the same extent as or more weakly than Cel6A. These results show that conserved noncatalytic residues can profoundly affect Cel6A activity and specificity.  相似文献   

17.
An inexpensive source of active cellulases is critical to efficient and cost-effective conversion of lignocellulosic biomass to ethanol. Transgenic plants expressing foreign cellulases are potential sources of cellulases for biomass conversion. A number of foreign proteins have been reported to accumulate to high levels when the transgene is incorporated into the chloroplast genome rather than into the nuclear genome. We developed plastid transformation vectors carrying two Thermobifida fusca thermostable cellulases, Cel6A and Cel6B, and expressed them in nicotine-free or nicotine-containing tobacco varieties following chloroplast transformation. We obtained homoplasmic tobacco plants expressing Cel6A or Cel6B. Maximum estimates of expression levels ranged from 2 to 4% of total soluble protein. Enzyme assays indicated that both Cel6A and Cel6B expressed in transplastomic tobacco were active in hydrolyzing crystalline cellulose. With further optimization, it may be feasible to produce bacterial cellulases in tobacco chloroplasts in large quantities.  相似文献   

18.
Three thermostable neutral cellulases from Melanocarpus albomyces, a 20-kDa endoglucanase (Cel45A), a 50-kDa endoglucanase (Cel7A), and a 50-kDa cellobiohydrolase (Cel7B) heterologously produced in a recombinant Trichoderma reesei were purified and studied in hydrolysis (50 degrees C, pH 6.0) of crystalline and amorphous cellulose. To improve their efficiency, M. albomyces cellulases naturally harboring no cellulose-binding module (CBM) were genetically modified to carry the CBM of T. reesei CBHI/Cel7A, and were studied under similar experimental conditions. Hydrolysis performance and product profiles were used to evaluate hydrolytic features of the investigated enzymes. Each cellulase proved to be active against the tested substrates; the cellobiohydrolase Cel7B had greater activity than the endoglucanases Cel45A and Cel7A against crystalline cellulose, whereas in the case of amorphous substrate the order was reversed. Evidence of synergism was observed when mixtures of the novel enzymes were applied in a constant total protein dosage. Presence of the CBM improved the hydrolytic potential of each enzyme in all experimental configurations; it had a greater effect on the endoglucanases Cel45A and Cel7A than the cellobiohydrolase Cel7B, especially against crystalline substrate. The novel cellobiohydrolase performed comparably to the major cellobiohydrolase of T. reesei (CBHI/Cel7A) under the applied experimental conditions.  相似文献   

19.
The crystal structure of the carbohydrate-binding module (CBM) 4 Ig fused domain from the cellulosomal cellulase cellobiohydrolase A (CbhA) of Clostridium thermocellum was solved in complex with cellobiose at 2.11 Å resolution. This is the first cellulosomal CBM4 crystal structure reported to date. It is similar to the previously solved noncellulosomal soluble oligosaccharide-binding CBM4 structures. However, this new structure possesses a significant feature—a binding site peptide loop with a tryptophan (Trp118) residing midway in the loop. Based on sequence alignment, this structural feature might be common to all cellulosomal clostridial CBM4 modules. Our results indicate that C. thermocellum CbhA CBM4 also has an extended binding pocket that can optimally bind to cellodextrins containing five or more sugar units. Molecular dynamics simulations and experimental binding studies with the Trp118Ala mutant suggest that Trp118 contributes to the binding and, possibly, the orientation of the module to soluble cellodextrins. Furthermore, the binding cleft aromatic residues Trp68 and Tyr110 play a crucial role in binding to bacterial microcrystalline cellulose (BMCC), amorphous cellulose, and soluble oligodextrins. Binding to BMCC is in disagreement with the structural features of the binding pocket, which does not support binding to the flat surface of crystalline cellulose, suggesting that CBM4 binds the amorphous part or the cellulose “whiskers” of BMCC. We propose that clostridial CBM4s have possibly evolved to bind the free-chain ends of crystalline cellulose in addition to their ability to bind soluble cellodextrins.  相似文献   

20.
Cellulase enzymes often contain carbohydrate-binding modules (CBMs) for binding to cellulose. The mechanisms by which CBMs recognize specific surfaces of cellulose and aid in deconstruction are essential to understand cellulase action. The Family 1 CBM from the Trichoderma reesei Family 7 cellobiohydrolase, Cel7A, is known to selectively bind to hydrophobic surfaces of native cellulose. It is most commonly suggested that three aromatic residues identify the planar binding face of this CBM, but several recent studies have challenged this hypothesis. Here, we use molecular simulation to study the CBM binding orientation and affinity on hydrophilic and hydrophobic cellulose surfaces. Roughly 43 μs of molecular dynamics simulations were conducted, which enables statistically significant observations. We quantify the fractions of the CBMs that detach from crystal surfaces or diffuse to other surfaces, the diffusivity along the hydrophobic surface, and the overall orientation of the CBM on both hydrophobic and hydrophilic faces. The simulations demonstrate that there is a thermodynamic driving force for the Cel7A CBM to bind preferentially to the hydrophobic surface of cellulose relative to hydrophilic surfaces. In addition, the simulations demonstrate that the CBM can diffuse from hydrophilic surfaces to the hydrophobic surface, whereas the reverse transition is not observed. Lastly, our simulations suggest that the flat faces of Family 1 CBMs are the preferred binding surfaces. These results enhance our understanding of how Family 1 CBMs interact with and recognize specific cellulose surfaces and provide insights into the initial events of cellulase adsorption and diffusion on cellulose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号