首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In cultured primary hepatocytes UDP-glucuronosyltransferase form 1A2 (UGT1A2) mRNA level is 80 times higher than that found in rat liver. We previously identified an enhancer sequence in the UGT1A2 promoter, and designated it as culture-associated expression responsive enhancer module (CEREM). Affinity chromatography with DNA fragments containing CEREM allowed enrichment of nuclear factor I (NFI) proteins from cultured hepatocytes. The NFI family is encoded by four distinct genes, NFI-A, NFI-B, NFI-C, and NFI-X. Immunoblot analysis with isoform-specific antibodies showed that NFI-A1 existed as a major component in rat liver and cultured hepatocytes. By contrast, NFI-C1 was present in rat liver but disappeared immediately upon cultivation of hepatocytes. Only trace amounts of NFI-B and NFI-X were detectable in rat liver and cultured hepatocytes. NFI-A1 elevated expression of the reporter gene that is under the control of CEREM, while NFI-C1 had an inhibitory effect. Co-expression of a constant amount of NFI-A1 with an increasing amount of NFI-C1 led to a concentration-dependent decrease in the expression of the CEREM-controlled reporter gene mediated by NFI-A1. Activation of UGT1A2 expression by NFI-A1 is suppressed by the coexistence of NFI-C1 in the liver, and culture-associated expression of UGT1A2 is triggered by the rapid disappearance of NFI-C1 in cultured hepatocytes.  相似文献   

2.
Human UDP-glucuronosyltransferase (UGT) 1A1 is only enzyme in the conjugation of bilirubin for prevention of hyperbilirubinemia and jaundice. Deletion or mutation of the UGT1A1 gene causes Crigler-Najjar syndrome or Gilbert's syndrome. We previously reported the functional promoter region for expression of UGT1A1 [Hepatology Research 9, 152-163 (1997)]. We investigated the influence of some drugs on the transient transfection assay of the luciferase reporter gene containing the 5'-promoter region -3174/+14 of UGT1A1 in HepG2 cells. Among drugs investigated, dexamethasone was the most effective at the range of concentration of 10-100 microM, whereas stimulation by beta-estradiol was not found. We also could not find stimulation by bilirubin of the endogenous main substrate for UGT1A1. Stimulation by dexamethasone was continued for 48 hr. The luciferase reporter gene containing the 5'-region of -97/+14 was induced by dexamethasone but the gene of the 5'-region -53/+14 was not. The region -97/-53 is essential for induction by dexamethasone. This region contains HNF1 element, therefore, we speculated that dexamethasone directly and/or indirectly stimulates UGT1A1 expression through this HNF1 region in the promoter region of UGT1A1. Thus, we clarified that UGT1A1 was induced by dexamethasone and the key position was the region (-97/-53) in UGT1A1 promoter.  相似文献   

3.
4.
The interactions between alcohol and cytochrome P-450 enzymes have been well investigated. However, the data regarding the effect of alcohol on the regulation of UDP-glucuronosyltranferase (UGT) activity are less clear. The aim of the present study was to determine the role of alcohol in the regulation of UGT mRNA expression by using whole animal and primary cultured hepatocytes. Chronic ethanol feeding of rats significantly increased the expression of liver UGT1A1 mRNA to 177% of control. The mRNA levels for UGT1A5, UGT2B1 and UGT2B3 were also enhanced, but did not reach statistical significance. In cultured hepatocytes, treatment with either ethanol or isopentanol significantly increased the expression of UGT1A1, UGT1A5, UGT2B1, and UGT2B3 mRNAs, but to different degrees. The induction of UGT1A1 and UGT2B1 mRNAs by ethanol or isopentanol was time-dependent and maximal changes occurred at 48 h. The expression of UGT1A6 mRNA was not significantly modified by either ethanol or isopentanol. In conclusion, ethanol and isopentanol have direct roles in the regulation of UGT.  相似文献   

5.
6.
7.
The primary objective of this study was to evaluate the modulation of UGT1A1 expression in human hepatocytes using prototypical CYP450 inducers. A bank of 16 human livers was utilized to obtain an estimate of the range of UGT1A1 protein expression and catalytic activity. Concentration-dependent changes in UGT1A1 response were evaluated in hepatocyte cultures after treatment with 3-methylchloranthrene, beta-napthoflavone, rifampicin, or phenobarbital. Pharmacodynamic analyses of UGT1A1 expression were conducted and compared to those of CYP450 after treatment with inducers in 2-3 different hepatocyte preparations. Additionally, expression of UGT1A1 mRNA and protein was evaluated in human hepatocytes treated with 14 different compounds known to activate differentially the human pregnane-X-receptor or constitutive androstane receptor. Pharmacodynamic modeling revealed EC50 values statistically significant between UGT1A1 and CYP2B6 after treatment with PB, but not statistically distinguishable between UGT1A1 and CYP's 1A2 or 3A4 after treatment with 3-methylchloranthrene or rifampicin, respectively. UGT1A1 was most responsive to the pregnane-X-receptor-agonists rifampicin, ritonavir, and clotrimazole at the mRNA level and, to a lesser extent, the constitutive androstane receptor-activators, phenobarbital and phenytoin. Pharmacodynamic analyses support a mechanism of coordinate regulation between UGT1A1 and a number of CYP450 enzymes by multiple nuclear receptors.  相似文献   

8.
Gunn rat is a hyperbilirubinemic rat strain that is inherently deficient in the activity of UDP-glucuronosyltransferase form 1A1 (UGT1A1). A premature termination codon is predicted to produce truncated UGT1 proteins that lack the COOH-terminal 116 amino acids in Gunn rat. Pulse-chase experiments using primary cell cultures showed that the truncated UGT1A1 protein in Gunn rat hepatocytes was synthesized similarly to wild-type UGT1A1 protein in normal Wistar rat hepatocytes. However, the truncated UGT1A1 protein was degraded rapidly with a half-life of about 50 min, whereas the wild-type UGT1A1 protein had a much longer half-life of about 10 h. The rapid degradation of truncated UGT1A1 protein was inhibited partially but not completely by treating Gunn rat hepatocytes with proteasome inhibitors such as carbobenzoxy-Leu-Leu-leucinal and lactacystin. By contrast, neither the lysosomal cysteine protease inhibitor nor the calpain inhibitor slowed the degradation. Our findings show that the absence of UGT1 protein from Gunn rat hepatocytes is due to rapid degradation of the truncated UGT1 protein by the proteasome and elucidate the molecular basis underlying the deficiency in bilirubin glucuronidation.  相似文献   

9.
Xenobiotic Phase I and Phase II reactions in hepatocytes occur sequentially and cooperatively during the metabolism of various chemical compounds including drugs. In order to investigate the sequential metabolism of 7-ethoxycoumarin (7EC) as model substrate in vitro, xenobiotic metabolizing enzymes, rat cytochrome P450 1A1 (P450 1A1) and UDP-glucuronosyltransferase 1A6 (UGT1A6) were co-expressed in Saccharomyces cerevisiae AH22. Rat P450 1A1 and yeast NADPH-P450 reductase were expressed on a multicopy plasmid (pGYR1) in the yeast. Rat UGT1A6 cDNA with a yeast alcohol dehydrogenase I promoter and terminator was integrated into yeast chromosomal DNA to achieve the stable expression. Co-expression of P450 1A1 and UGT1A6 in yeast microsomes was confirmed by immunoblot analysis. Protease treatment of the microsomes showed the correct topological orientation of UGT to the membranes. The metabolism of 7EC to 7-hydroxycoumarin (7HC) and its glucuronide in yeast microsomes was analyzed by reverse phase HPLC. In a co-expression system containing 7EC, NADPH and UDP-glucuronic acid, glucuronide formation was detected after a lag phase, following the accumulation of 7HC. In the case of P450 1A1 and UGT1A6, efficient coupling of hydroxylation and glucuronidation in 7EC metabolism was not observed in the co-expression system. This P450 and UGT co-expression system in yeast allows the sequential biotransformation of xenobiotics to be simulated in vitro.  相似文献   

10.
11.
12.
13.
UDP-glucuronosyltransferase 1A1 (UGT1A1) plays an important physiological role by contributing to the metabolism of endogenous substances such as bilirubin in addition to xenobiotics and drugs. The UGT1A1 gene has been shown to be inducible by nuclear receptors steroid xenobiotic receptor (SXR) and the constitutive active receptor, CAR. In this report, we show that in human hepatoma HepG2 cells the UGT1A1 gene is also inducible with aryl hydrocarbon receptor (Ah receptor) ligands such as 2,3,7,8-tetrachlodibenzo-p-dioxin (TCDD), beta-naphthoflavone, and benzo[a]pyrene metabolites. Induction was monitored by increases in protein and catalytic activity as well as UGT1A1 mRNA. To examine the molecular interactions that control UGT1A1 expression, the gene was characterized and induction by Ah receptor ligands was regionalized to bases -3338 to -3287. Nucleotide sequence analysis of this UGT1A1 enhancer region revealed a xenobiotic response element (XRE) at -3381/-3299. The dependence of the XRE on UGT1A1-luciferase activity was demonstrated by a loss of Ah receptor ligand inducibility when the XRE core region (CACGCA) was deleted or mutated. Gel mobility shift analysis confirmed that TCDD induction of nuclear proteins specifically bound to the UGT1A1-XRE, and competition experiments with Ah receptor and Arnt antibodies demonstrated that the nuclear protein was the Ah receptor. These observations reveal that the Ah receptor is involved in human UGT1A1 induction.  相似文献   

14.
To better understand the molecular mechanisms of cytochrome P450 1A2 (CYP1A2) regulation, we have characterized a region of the promoter (+3 to -176) that contains a single E-box and an adjacent nuclear factor 1 (NF1)-like DNA binding site. The E-box was shown to specifically bind nuclear proteins that were recognized by antibodies against upstream stimulatory factor (USF) 1 and 2. Comparison of NF1 binding proteins in HepG2 cells and primary cultures of rat hepatocytes revealed different patterns of DNA-protein complexes, all of which were recognized by a general NF1 antibody. Mutations of the E-box resulted in substantial reduction of promoter activity in either primary hepatocytes or HepG2 cells regardless of the presence in the reporter constructs of other CYP1A2 regulatory elements, such as the hepatic nuclear factor 1 (HNF-1) binding site. In contrast, reporter gene activity of the promoter construct harboring the mutated NF1-like binding site was affected by upstream sequences when transfected into HepG2 cells, but not in primary hepatocytes. We conclude that both USF proteins and different isoforms of NF1 contribute to the constitutive expression of CYP1A2.  相似文献   

15.
16.
17.
Fujita K  Mogami A  Hayashi A  Kamataki T 《Life sciences》2000,66(20):1955-1967
Human uridinediphosphate-glucuronosyltransferase 1A1 (UGT1A1) was expressed in Salmonella typhimurium TA1535 cells by transfection of the cells with plasmids carrying the UGT1A1 cDNA. UGT1A1 cDNA was isolated by a polymerase chain reaction from human liver total RNA and was inserted into the pSE420 plasmid, linked to the trc promoter and terminator. The plasmid thus constructed was introduced into Salmonella TA1535 cells. The expression of human UGT1A1 protein was confirmed by Western blot analysis. The maximal expression was observed at 24 h after the addition of isopropyl-beta-D-thiogalactopyranoside, an inducer. However, the bilirubin conjugation activity of the membrane fraction from the Salmonella cells was not detectable. When a beta-glucuronidase inhibitor such as saccharic acid 1,4-lactone, glycyrrhizin or 1-naphtyl-beta-D-glucuronide was added to the reaction mixture, the bilirubin conjugation activity of the human UGT1A1 was detected. When geniposide was added to the reaction mixture, the bilirubin conjugation activity of UGT1A1 was not seen. Taking these results into account, the established Salmonella strain possesses the beta-glucuronidase activity. Since the beta-glucuronidase activity of the Salmonella was lower than that of E. coli, it was concluded that Salmonella seemed to be a good host to express UGT protein. This is the first study to demonstrate the establishment of a bacterial strain expressing native human UGT protein showing catalytic activity.  相似文献   

18.
19.
20.
The human UDP-glucuronosyltransferase 1 (UGT1) locus spans nearly 200 kb on chromosome 2 and encodes nine UGT1A proteins that play a prominent role in drug and xenobiotic metabolism. Transgenic UGT1 (Tg-UGT1) mice have been created, and it has been demonstrated that tissue-specific and xenobiotic receptor control of the UGT1A genes is influenced through circulating humoral factors. In Tg-UGT1 mice, the UGT1A proteins are differentially expressed in the liver and gastrointestinal tract. Gene expression profiles confirmed that all of the UGT1A genes can be targeted for regulation by the pregnane X receptor activator pregnenolone-16alpha-carbonitrile (PCN) or the Ah receptor ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In addition, the selective induction of glucuronidation activity toward lamotrigine, ethinyl estradiol, chenodeoxycholic acid, and lithocholic acid by either PCN or TCDD in small intestine from Tg-UGT1 mice corresponded to expression of the locus in this tissue. Induction of UGT1A1 by PCN and TCDD is believed to be highly dependent upon glucocorticoids, because submicromolar concentrations of dexamethasone actively promote PCN and TCDD induction of UGT1A1 in Tg-UGT1 primary hepatocytes. The role of hormonal control of the UGT1 locus was further verified in pregnant and nursing Tg-UGT1 mice. In maternal 14-day post-conception Tg-UGT1mice, liver UGT1A1, UGT1A4, and UGT1A6 were induced, with the levels returning to near normal by birth. However, maternal liver UGT1A4 and UGT1A6 were dramatically elevated and maintained after birth, indicating that these proteins may play a critical role in maternal metabolism during lactation. With expression of the UGT1 locus confirmed in a variety of mouse tissues, these results suggested that the Tg-UGT1 mice will be a useful model to examine the regulatory and functional properties of human glucuronidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号