首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cathepsin B proteinase constitutes a large multigenes family in parasitic and non-parasitic nematodes. The localization of cathepsin B proteinases (AcCP-1 and AcCP-2) in adult worm of Ancylostoma caninum has been characterized (Harrop et al., 1995), but the localization and function in eggs and larval stages remained undiscovered. Here we described the expressing of cathepsin B proteinase (AcCP-2) in Escherichia coli, and immuno-localization of cathepsin B proteinase in eggs and larvae stages of A. caninum. A cDNA fragment encoding a cathepsin B proteinase (AcCP-2) was cloned from A. caninum and expressed in E. coli. Gelatin digestion showed that recombinant cathepsin B proteinase (AcCP-2) has protease activity. The protein level of cathepsin B proteinase in larval and adult worm was detected by western blot. The immuno-localization of cathepsin B proteinase in eggs and larval stages was characterized. The expression of cathepsin B proteinase was more abundant in eggs and larvae stages of A. caninum. It implied that cathepsin B proteinase might play roles in the early development of A. caninum.  相似文献   

3.
Membrane-associated cathepsin L: a role in metastasis of melanomas   总被引:1,自引:0,他引:1  
Subcellular distribution of cathepsin L, the major protein released by transformed or ras transfected fibroblasts, was examined in murine liver, murine B16 amelanotic melanoma and human A2058 melanoma after sequential differential and Percoll density gradient centrifugation. In both murine and human melanomas, cathepsin L activity was found to be enriched in plasma membrane fractions; cathepsin L in these fractions was in both native and acid activatable forms. Plasma membrane fractions from B16 melanoma subpopulations of "low" and "high" metastatic potential were assayed for activity of cathepsin L and of heat stable endogenous inhibitors. The relative specific activity of cathepsin L was 7-fold greater in the subpopulation of "high" metastatic potential, whereas cysteine proteinase inhibitory activity was 5-fold less. Since cathepsin L can degrade intact basement membrane, this membrane-associated cathepsin L may well contribute to metastatic spread of melanomas.  相似文献   

4.
5.
We previously identified the 26/29-kDa proteinase in the hemocytes of Sarcophaga peregrina (flesh fly) that appears to participate in elimination of foreign proteins in this insect [Eur. J. Biochem. 209, 939-944 (1992)]. Here, we report the cDNA cloning of this proteinase. The cDNA encodes a protein which includes both the 26- and 29-kDa subunit, strongly suggesting that the both subunits are derived from a single precursor protein. The 26- and 29-kDa subunit located at the amino-terminal and carboxyl-terminal of the precursor protein. The 29-kDa subunit itself appeared to be a proteinase, for this subunit had 52% sequence identity with Sarcophaga cathepsin L, while 26-kDa subunit had no significant similarity. We also showed that 26/29-kDa proteinase was insensitive to specific inhibitors of cathepsin L. These results indicate that this proteinase is a novel member of the papain family. We isolated similar cDNAs from Drosophila melanogaster and Periplaneta americana (cockroach), suggesting that this proteinase is conserved in a wide variety of insects and participates in their defense mechanisms.  相似文献   

6.
7.
《Insect Biochemistry》1990,20(3):313-318
The larval midgut of the Colorado beetle, Leptinotarsa decemlineata contains cathepsin B, D and H activity detected by use of haemoglobin, synthetic substrates specific for each enzyme, pH at which the substrate was maximally hydrolysed and effects of potential activators and inhibitors on proteolytic activity. Cysteine proteases cathepsin B, and H were activated by thiol compounds and inhibited by iodoacetamide, TLCK and epoxysuccinyl-leucyl-amido(guanidino)butane (E-64) a cysteine specific proteinase inhibitor. Cathepsin B was distinguished from H by hydrolysis of benzoyloxycarbonyl-Ala-Arg-Arg-methoxynaphthylamide, a cathepsin B specific substrate and inhibition of substrate hydrolysis by leupeptin. Cathepsin H activity, detected using the specific substrate arginine-naphthylamide, was insensitive to leupeptin. Cathepsin D had maximal activity at pH 4.5 and was inhibited by pepstatin, an aspartic proteinase inhibitor.  相似文献   

8.
Cytotoxic T-lymphocyte antigen-2 (CTLA-2) is a novel cysteine proteinase inhibitor. The protein sequence is homologous to the proregion of mouse cathepsin L. Here, we report the expression, purification, and characterization of recombinant CTLA-2 (CTLA-2alpha). CTLA-2alpha was cloned into the pET16b vector and the plasmid was transformed into Escherichia coli strain BL21 (DE3) pLysS. The recombinant CTLA-2alpha was highly expressed and purified by His-Bind affinity chromatography, Factor Xa digestion, and hydrophobic chromatography. Throughout these procedures, 3mg recombinant CTLA-2alpha was obtained from 450 ml of bacterial culture medium. The purified protein exhibited inhibitory activities towards certain cysteine proteinases and was properly refolded, as indicated by circular dichroism spectroscopy. Recombinant CTLA-2alpha fully inhibited Bombyx cysteine proteinase (BCP) (overall Kd (Ki*) = 0.23 nM) and and cathepsin L (overall Kd (Ki*) = 0.38 nM). Inhibition of cathepsin H ( Ki = 86 nM) and papain ( Ki = 560 nM) was much weaker, while inhibition of cathepsin B was negligible ( Ki > 1 microM). Our results indicate that mouse CTLA-2alpha is a selective inhibitor of the cathepsin L-like cysteine proteinases.  相似文献   

9.
The importance of individual residues in the N-terminal region of cystatin B for proteinase inhibition was elucidated by measurements of the affinity and kinetics of binding of N-terminally truncated, recombinant variants of the bovine inhibitor to cysteine proteinases. Removal of Met-1 caused an 8- to 10-fold lower affinity for papain and cathepsin B, decreased the affinity also for cathepsin L but only minimally affected cathepsin H affinity. Additional truncation of Met-2 further weakened the binding to papain and cathepsin B by 40-70-fold, whereas the affinity for cathepsins L and H was essentially unaffected. Removal of Cys-3 had the most drastic effects on the interactions, resulting in a further affinity decrease of approximately 1500-fold for papain, approximately 700-fold for cathepsin L and approximately 15-fold for cathepsin H; the binding to cathepsin B could not be assessed. The binding kinetics could only be evaluated for papain and cathepsin H and showed that the reduced affinities for these enzymes were predominantly due to increased dissociation rate constants. These results demonstrate that the N-terminal region of cystatin B contributes appreciably to proteinase inhibition, in contrast to previous proposals. It is responsible for 12-40% of the total binding energy of the inhibitor to the proteinases investigated, being of least importance for cathepsin H binding. Cys-3 is the most important residue of the N-terminal region for inhibition of papain, cathepsin L and cathepsin H, the role of the other residues of this region varying with the target proteinase.  相似文献   

10.
The peptide-bond-specificity of bovine spleen cathepsin S in the cleavage of the oxidized insulin B-chain and peptide methylcoumarylamide substrates was investigated and the results are compared with those obtained with rat liver cathepsins L and B. Major cleavage sites in the oxidized insulin B-chain generated by cathepsin S are the bonds Glu13-Ala14, Leu17-Val18 and Phe23-Tyr26; minor cleavage sites are the bonds Asn3-Gln4, Ser9-His10 and Leu15-Tyr16. The bond-specificity of this proteinase is in part similar to the specificities of cathepsin L and cathepsin N. Larger differences are discernible in the reaction with synthetic peptide substrates. Cathepsin S prefers smaller neutral amino acid residues in the subsites S2 and S3, whereas cathepsin L efficiently hydrolyses substrates with bulky hydrophobic residues in the P2 and P3 positions. The results obtained from inhibitor studies differ somewhat from those based on substrates. Z-Phe-Ala-CH2F (where Z- represents benzyloxycarbonyl-) is a very potent time-dependent inhibitor for cathepsin S, and inhibits this proteinase 30 times more efficiently than it does cathepsin L and about 300 times better than it does cathepsin B. By contrast, the peptidylmethanes Z-Val-Phe-CH3 and Z-Phe-Lys(Z)-CH3 inhibit competitively both cathepsin S and cathepsin L in the micromolar range.  相似文献   

11.
Various types of proteinases are implicated in the malignant progression of human and animal tumors. Proteinase inhibitors may therefore be useful as therapeutic agents in anti-invasive and anti-metastatic treatment. The aims of this study were (1) to estimate the relative importance of proteinases in B16 cell invasion in vitro using synthetic, class-specific proteinase inhibitors and (2) to assess the inhibitory effect of some naturally occurring cysteine proteinase inhibitors. Serine proteinase inhibitor reduced invasiveness by up to 24%, whereas inhibition of aspartic proteinases reduced invasion by 11%. Synthetic inhibitors of cysteine proteinases markedly impaired invasion: cathepsin B inhibitors, particularly Ca-074Me, inhibited invasion from 20-40%, whereas cathepsin L inhibitor Clik 148 reduced invasion by 11%. The potato cysteine proteinase inhibitor PCPI 8.7 inhibited invasion by 21%, whereas another potato inhibitor, PCPI 6.6, and the mushroom cysteine proteinase inhibitor clitocypin had no effects. As the inhibitors that inhibited cathepsin B were in general more efficient at impairing the invasiveness, we conclude that of the two cysteine proteinases, cathepsin B plays a more important role than cathepsin L in murine melanoma cell invasion.  相似文献   

12.
Cystatin B is unique among cysteine proteinase inhibitors of the cystatin superfamily in having a free Cys in the N-terminal segment of the proteinase binding region. The importance of this residue for inhibition of target proteinases was assessed by studies of the affinity and kinetics of interaction of human and bovine wild-type cystatin B and the Cys 3-to-Ser mutants of the inhibitors with papain and cathepsins L, H, and B. The wild-type forms from the two species had about the same affinity for each proteinase, binding tightly to papain and cathepsin L and more weakly to cathepsins H and B. In general, these affinities were appreciably higher than those reported earlier, perhaps because of irreversible oxidation of Cys 3 in previous work. The Cys-to-Ser mutation resulted in weaker binding of cystatin B to all four proteinases examined, the effect varying with both the proteinase and the species variant of the inhibitor. The affinities of the human inhibitor for papain and cathepsin H were decreased by threefold to fourfold and that for cathepsin B by approximately 20-fold, whereas the reductions in the affinities of the bovine inhibitor for papain and cathepsins H and B were approximately 14-fold, approximately 10-fold and approximately 300-fold, respectively. The decreases in affinity for cathepsin L could not be properly quantified but were greater than threefold. Increased dissociation rate constants were responsible for the weaker binding of both mutants to papain. By contrast, the reduced affinities for cathepsins H and B were due to decreased association rate constants. Cys 3 of both human and bovine cystatin B is thus of appreciable importance for inhibition of cysteine proteinases, in particular cathepsin B.  相似文献   

13.
Cathepsin L--a latent proteinase in guinea pig sperm   总被引:1,自引:0,他引:1  
Guinea pig spermatozoa were found to contain a fully-latent cysteine proteinase that could be unmasked by incubating epididymal sperm for 2 hr at pH 3.5 and 37 degrees C. The proteinase was identified as cathepsin L (EC 3.4.22.15) on the basis of its optimal hydrolysis of benzyloxycarbonyl-Phe-Arg-7-(4-methyl)coumarylamide (Z-Phe-Arg-NMec) at pH 5.5; lack of action on Z-Arg-Arg-NMec and Arg-NMec; urea-enhanced digestion of azocasein; marked sensitivity to thiol reagents, leupeptin, Z-Phe-Phe-CHN2, and L-trans-epoxy-succinylleucylamido(3-methyl)butane (Ep-475 or E-64-c); and insensitivity to pepstatin and serine proteinase inhibitors. Gossypol, a male antifertility agent, was inhibitory. The unmasking phenomenon was reversibly inhibited by HgCl2 and mersalyl acid, and prevented by leupeptin and Ep-475, but not by pepstatin.  相似文献   

14.
Proteolytically active complexes of the proteinase cathepsin L, with an endogenous inhibitor of cysteine proteinases, were purified from sheep liver. The complexes were active against the synthetic substrate Z-Phe-Arg-NHMec and also the proteins azocasein and gelatin. The composition of the complexes was demonstrated by Western blotting, after reducing and nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis with monospecific antibodies raised against purified sheep liver cathepsin L and purified sheep liver cysteine proteinase inhibitor (probably stefin B). Similar complexes could be formed in vitro, by coincubation of purified sheep liver cathepsin L with the purified sheep liver cystatin at a pH of 5.5 or higher.  相似文献   

15.
Trypanosoma carassii is a fish kinetoplastid parasite that belongs to the family Trypanosomatida. In the present study we cloned a cathepsin L-like proteinase from T. carassii. The nucleotide sequence of 1371bp translated into a preproprotein of 456 amino acids. The preproprotein contained the oxyanion hole (Gln), the active triad formed by Cys, His and Asn and the conserved ERFNIN-like, GNFD and GCNGG motifs, characteristic for cathepsin L proteinases. Phylogenetic analysis showed that the T. carassii cysteine proteinase clustered with other cathepsin L-like proteinases from the Trypanosomatida. We produced a recombinant T. carassii cysteine proteinase in Escherichia coli and demonstrated that it has cathepsin L activity. Immunization of common carp (Cyprinus carpio L.) with the recombinant protein induced a very high increase in proteinase-specific antibodies but only slightly lowered parasitaemia. Our findings suggest that the T. carassii cysteine proteinase is highly conserved within the Trypanosomatida with respect to structure and activity but is not a major protective antigen in carp.  相似文献   

16.
In electrophoretic analyses, extracts of Xenopus laevis neurulae exhibited activities digesting yolk proteins maximally at pH4.8. These activities were completely inhibited by a mixture of pepstatin A and Z-Phe-Phe-CHN2, thus being identifiable as cathepsin D and cysteine proteinase. The electrophoretic profiles of yolk proteins cleaved by embryonic extracts changed at gastrula stages; the profile before stage 13 was the same as that given by cathepsin D treatment and the profile at stage 13 was a combination of the profile given by cathepsin D treatment and that given by cysteine proteinase treatment. Quantitative measurement of enzyme activities showed that the cathepsin D activity that was preserved from the beginning of development increased from stages 13 to 25 and decreased thereafter, whereas the cysteine proteinase activity appeared at stage 13, gradually increased until stage 35 and strongly increased thereafter. Immunoblot analyses showed that the 43 kDa form of cathepsin D was processed to its 36 kDa form, presumably by cysteine proteinase. This change can explain the increase of cathepsin D activity at stage 13 and thereafter. Immunofluorescent staining with the antibody against cysteine proteinase occurred in mesodermal and ectodermal cells other than neural ones at stages 13–24, and in the endodermal cells at stages 24–36. Faint staining in the neural ectoderm persisted from stages 18 to 36. Immunoelectron microscope observation showed that what stained was the superficial layer of yolk platelets. All these results indicate that cysteine proteinase plays a key role in the initiation of yolk digestion during embryonic development.  相似文献   

17.
Summary Collagens of most connective tissues are subject to continuous remodelling and turnover, a phenomenon which occurs under both physiological and pathological conditions. Degradation of these proteins involves participation of a variety of proteolytic enzymes including members of the following proteinase classes: matrix metalloproteinases (e.g. collagenase, gelatinase and stromelysin), cysteine proteinases (e.g. cathepsin B and L) and serine proteinases (e.g. plasmin and plasminogen activator). Convincing evidence is available indicating a pivotal role for matrix metalloproteinases, in particular collagenase, in the degradation of collagen under conditions of rapid remodelling, e.g. inflammation and involution of the uterus. Under steady state conditions, such as during turnover of soft connective tissues, involvement of collagenase has yet to be demonstrated. Under these circumstances collagen degradation is likely to take place particularly within the lysosomal apparatus after phagocytosis of the fibrils. We propose that this process involves the following steps: (i) recognition of the fibril by membranebound receptors (integrins?), (ii) segregation of the fibril, (iii) partial digestion of the fibril and/or its surrounding noncollagenous proteins by matrix metalloproteinases (possibly gelatinase), and finally (iv) lysosomal digestion by cysteine proteinases, such as cathepsin B and/or L. Modulation of this pathway is carried out under the influence of growth factors and cytokines, including transforming growth factor β and interleukin 1α.  相似文献   

18.
BACKGROUND: The cysteine proteinase cathepsin K has aroused intense interest as the main effector in the digestion of extracellular matrix during bone resorption by osteoclasts. The enzyme is not a housekeeping lysosomal hydrolase, but is instead expressed with striking specificity in osteoclasts. In this work, we present evidence for the association of cathepsin K with the granulomatous reaction. Granulomas are inflammatory tissue reactions against persistent pathogens or foreign bodies. We came across cathepsin K while working on Echinococcus granulosus, a persistent tissue-dwelling, cyst-forming parasite that elicits a granulomatous response. MATERIALS AND METHODS: The walls of hydatid cysts from infected cattle were solubilized. Strong proteolytic activity was detected in the extracts. The proteinase responsible was purified by anion exchange and gel filtration. The purified protein was subjected to N-terminal sequencing, and its identity further confirmed by Western blotting, with a cathepsin K-specific antibody. The same antibody was used to localize the proteinase in paraffin-embedded sections of the parasite and the local host response. RESULTS: A proteinase was purified to near homogeneity from hydatid cyst extracts. The enzyme was unequivocally identified as host cathepsin K. Both the proenzyme and the mature enzyme forms were found. Cathepsin K was then immunolocalized both to the parasite cyst wall and to the epithelioid and giant multinucleated cells of the host granulomatous response. CONCLUSIONS: In the granulomatous response to the hydatid cyst, cathepsin K is expressed by epithelioid and giant multinucleated cells. We propose that, by analogy with bone resorption, cathepsin K is secreted by the host in an attempt to digest the persistent foreign body. Both processes, bone resorption and granulomatous reactions, therefore tackle persistent extracellular material (the bone matrix or the foreign body), and utilize specialized cells of the monocytic lineage (osteoclasts or epithelioid/giant cells) secreting cathepsin K as an effector.  相似文献   

19.
We have utilized specific, irreversible inhibitors of cysteine proteinases to examine the role of renal cathepsin B and cathepsin L in the proteinuria which occurs in an experimental model of human glomerular disease. Administration of trans-epoxysuccinyl-L-leucylamido-(3-methyl)butane (Ep475) a specific, irreversible inhibitor of cysteine proteinases, including cathepsins B and L, significantly reduced proteinuria in rats with experimentally induced, neutrophil-independent, anti-GBM antibody disease (controls: 10 +/- 1 mg/24 h, N = 8; anti-GBM antibody disease: 203 +/- 30 mg/24 h, N = 8; anti-GBM antibody disease + Ep475: 112 +/- 13 mg/24 h, mean +/- SEM, N = 6, P less than 0.05). There was a marked reduction in the activity of both cathepsin B and cathepsin L in renal cortices obtained from Ep475-treated rats compared to either saline-treated controls or rats treated with anti-GBM IgG only. Administration of Z-Phe-Tyr(O-t-butyl)CHN2, a specific, irreversible cysteine proteinase inhibitor with a high degree of selectivity toward cathepsin L, also caused a reduction in anti-GBM antibody-induced proteinuria (90 +/- 18 mg/24 h, N = 6, P less than 0.05). This reduction in proteinuria was accompanied by a marked decrease (-84%) in the specific activity of renal cortical cathepsin L in Z-Phe-Tyr(O-t-butyl)CHN2-treated rats. However, cathepsin B activity was unchanged. There was no significant change in the renal anti-GBM antibody uptake, plasma urea nitrogen, or plasma creatinine values in the Z-Phe-Tyr(O-t-butyl)CHN2-treated rats compared to rats treated with anti-GBM IgG only or saline-treated controls. These data document the ability of cysteine proteinase inhibitors to decrease the proteinuria which occurs in a neutrophil-independent model of human anti-GBM antibody disease and suggest an important role for cathepsin L in the pathophysiology of the proteinuria which occurs in this model.  相似文献   

20.
By focusing on the amphiphilic properties of cyclopropenone (e.g. a good electrophile and a precursor for a stable 2pi-aromatic hydroxycyclopropenium cation), a new class of cysteine proteinase inhibitors containing a cyclopropenone moiety was designed. For the purpose of the present research, we needed to devise a new method to introduce a peptide-related moiety as a substituent on the cyclopropenone residue. We investigated the reaction of metalated cyclopropenone acetal derivatives (2, R2 = metal) with N-protected alpha-aminoaldehydes 4 to obtain the adduct 5, and succeeded in the preparation of highly potentiated cysteine proteinase inhibitors 8 after several steps transformations. They showed strong inhibitory activities only to cysteine proteinases such as calpain, papain, cathepsin B, and cathepsin L and not to serine (e.g. thrombin and cathepsin G) and aspartic proteinases (e.g. cathepsin D). Kinetic studies indicated that they are competitive inhibitors, and by the examinations of their inhibitory mechanism it became clear that they are reversible inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号