首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Vascular cell interactions mediated through cell surface receptors play a critical role in the assembly and maintenance of blood vessels. These signaling interactions transmit important information that alters cell function through changes in protein dynamics and gene expression. Here, we identify syndecan-2 (SDC2) as a gene whose expression is induced in smooth muscle cells upon physical contact with endothelial cells. Syndecan-2 is a heparan sulfate proteoglycan that is known to be important for developmental processes, including angiogenesis. Our results show that endothelial cells induce mRNA expression of syndecan-2 in smooth muscle cells by activating Notch receptor signaling. Both NOTCH2 and NOTCH3 contribute to the increased expression of syndecan-2 and are themselves sufficient to promote its expression independent of endothelial cells. Syndecan family members serve as coreceptors for signaling molecules, and interestingly, our data show that syndecan-2 regulates Notch signaling and physically interacts with NOTCH3. Notch activity is attenuated in smooth muscle cells made deficient in syndecan-2, and this specifically prevents expression of the differentiation marker smooth muscle α-actin. These results show a novel mechanism in which Notch receptors control their own activity by inducing the expression of syndecan-2, which then acts to propagate Notch signaling by direct receptor interaction.  相似文献   

2.
Vascular smooth muscle cell(VSMC) proliferation and migration are pivotal for the pathogenesis of atherosclerosis and post-angioplasty restenosis. We have recently reported that a disintegrin and metalloproteinase with thrombospondin motifs-7(ADAMTS-7), a novel metalloproteinase, contributes directly to neointima formation by mediating VSMC migration. However, whether ADAMTS-7 affects VSMC proliferation remains unclear. In this study, we found that luminal adenoviral delivery of ADAMTS-7 aggravated intimal hyperplasia 7 d after injury, paralleled by an increased percentage of PCNA-positive cells in both intima and media. In contrast, perivascular administration of ADAMTS-7 si RNA, but not scrambled si RNA to injured arteries attenuated intimal thickening at day 7, paralleled with reduced intimal VSMC replication, without alteration of VSMC proliferation in the media. In accordance, [3H]-thymidine incorporation assay in primary cultured rat VSMCs revealed an enhanced replication rate(by 61%) upon ADAMTS-7 overexpression and retarded proliferation(by 23%) upon ADAMTS-7 si RNA administration. Our data demonstrates that ADAMTS-7 promotes VSMC proliferation both in vitro and in vivo. ADAMTS-7 may therefore serve as a novel therapeutic target for atherosclerosis and post-angioplasty restenosis.  相似文献   

3.
4.
Vascular smooth muscle cell (SMC) apoptosis contributes to physiological and pathological vascular remodeling. Autocrine fibroblast growth factor (FGF) signaling promotes survival in SMC in vitro. Interruption of autocrine FGF signaling results in apoptosis that can be rescued by other growth factors such as PDGF (platelet-derived growth factor) or EGF (epidermal growth factor). Such heterologous growth factor rescue is prevented by pharmacological inhibition of MAPK, implicating signaling through Ras in mediating survival. This study was designed to test the hypothesis that signaling through Ras is both necessary and sufficient to mediate SMC survival in vitro. Recombinant adenoviruses encoding dominant-negative (Ras(N17)) and constitutively active (Ras(L61)) mutants of Ras were used. Ras(N17) blocks growth factor-mediated MAPK activation and can itself induce SMC apoptosis. Ras(N17) is synergistic with inhibition of autocrine FGF signaling in triggering apoptosis and prevents heterologous growth factor rescue. Conversely, Ras(L61) prevents apoptosis resulting from inhibition of autocrine FGF signaling. Rescue by Ras(L61) can be partially prevented by pharmacological inhibition of MEK or phosphatidylinositol 3-kinase, two downstream effectors of Ras. These results suggest that Ras signaling is both necessary and sufficient to mediate survival in SMC in vitro. Further work is required to determine how these signaling events are regulated in the context of vascular remodeling in vivo.  相似文献   

5.
6.
To dissect the effect of hyperinsulinemia versus hyperglycemia on TNF-related apoptosis inducing ligand (TRAIL) expression in the macrovascular district, we measured TRAIL mRNA and protein in four groups of animals: streptozotocin (SZT)-induced diabetic rats, vehicle-treated control animals, diabetic rats treated with insulin and non-diabetic rats treated with insulin. While the aortas of diabetic rats did not show significant differences in TRAIL expression with respect to vehicle-treated control animals, the aortas of both diabetic and non-diabetic rats treated in vivo for 16 days with insulin showed a significant decrease in TRAIL expression with respect to either diabetic and control rats. Moreover, in vitro treatment of both rat and human vascular smooth muscle cells (VSMC) with insulin induced the down-regulation of TRAIL protein. While the addition of recombinant TRAIL to rat VSMC promoted the dose-dependent release of bioactive nitric oxide (NO), this effect was significantly counteracted by pre-exposure of VSMC to insulin. These findings suggest that TRAIL might act as an endogenous regulator of the vascular tone and that chronic elevation of insulin might contribute to the vascular abnormalities characterizing type-2 diabetes mellitus by down-regulating TRAIL expression and activity.  相似文献   

7.
Previous research in arterial remodeling in response to changes in blood pressure seldom included both hyper- and hypotension. To compare the effects of low and high pressure on arterial remodeling and vascular smooth muscle tone and performance, we have utilized an in vitro model. Porcine carotid arteries were cultured for 3 days at 30 and 170mmHg and compared to controls cultured at 100mmHg for 1 and 3 days. On the first and last day of culture, pressure-diameter and pressure-wall thickness curves were measured under normal smooth muscle tone using a high-resolution ultrasonic device. Last-day experiments included measurements where vascular smooth muscle was contracted or totally relaxed. From the data wall cross-sectional area, Hudetz elastic modulus and a contraction index related to the diameter reduction under normal smooth muscle tone were calculated. We found that although wall cross-sectional area (indicating wall mass) did not change much, Hudetz elastic modulus was significantly reduced in the 3-day hypotension group. Inspection of the wall contraction index suggests that this is due to a reduction in the vascular smooth muscle tone. Further, the peak of contraction index was found to be shifted to higher pressures in the 3-day 170mmHg group. We conclude that vascular smooth muscle performance adapts to both hypo- and hypertension at short time scales and can alter the biomechanics of the vascular wall in vitro.  相似文献   

8.
Mutations in TIGR/MYOC (myocilin), a secretory protein of unknown function, have been recently linked to glaucoma. Most known mutations map to the C-terminus, an olfactomedin-like domain. We have previously shown that, in contrast to the wild-type, a truncated form of myocilin lacking the olfactomedin domain is not secreted. In this study, we present evidence that the mutant protein is not correctly processed in the endoplasmic reticulum (ER) and accumulates into insoluble aggregates. In addition, we show that the presence of increasing amounts of mutant protein induces a fraction of the soluble, native myocilin to move to the insoluble fraction. Given the importance of such protein aggregates in the etiology of several aging-related diseases, we propose that olfactomedin-defective mutants might contribute to the pathology of glaucoma through a mechanism involving intracellular accumulation of misfolded proteins.  相似文献   

9.
Both insulin resistance and reactive oxygen species (ROS) have been reported to play essential pathophysiological roles in cardiovascular diseases, such as hypertension and atherosclerosis. However, the mechanistic link between ROS, such as H2O2 and insulin resistance in the vasculature, remains undetermined. Akt, a Ser/Thr kinase, mediates various biological responses induced by insulin. In this study, we examined the effects of H2O2 on Akt activation in the insulin-signaling pathway in vascular smooth muscle cells (VSMCs). In VSMCs, insulin stimulates Akt phosphorylation at Ser473. Pretreatment with H2O2 concentration- and time-dependently inhibited insulin-induced Akt phosphorylation with significant inhibition observed at 50 microM for 10 min. A ROS inducer, diamide, also inhibited insulin-induced Akt phosphorylation. In addition, H2O2 inhibited insulin receptor binding partially and inhibited insulin receptor autophosphorylation almost completely. However, pretreatment with a protein kinase C inhibitor, GF109203X (2 microM), for 30 min did not block the inhibitory effects of H2O2 on insulin-induced Akt phosphorylation, suggesting that protein kinase C is not involved in the inhibition by H2O2. We conclude that ROS inhibit a critical insulin signal transduction component required for Akt activation in VSMCs, suggesting potential cellular mechanisms of insulin resistance, which would require verification in vivo.  相似文献   

10.
11.
In hypertension or other forms of cardiovascular disease, the chronic activation of the renin-angiotensin-aldosterone system (RAAS) leads to dysfunction of the vasculature, including, increased vascular tone, inflammation, fibrosis and thrombosis. Cross-talk between the main mediators of the RAAS, aldosterone and angiotensin (Ang) II, participates in the development of this vascular dysfunction. Recent studies have highlighted the molecular mechanisms supporting this cross-talk in vascular smooth muscle cells (VSMCs). Some of the signaling pathways activated by the Ang II type 1 receptor (AT1R) are dependent on the mineralocorticoid receptor (MR) and vice versa. VSMC signaling pathways involved in migration and growth are under the control of cross-talk between aldosterone and Ang II. A synergistic mechanism leads to potentiation of signaling pathways activated by each agent. The genomic and non-genomic mechanisms activated by aldosterone cooperate with Ang II to regulate vascular tone and gene expression of pro-inflammatory and pro-fibrotic molecules. This cross-talk is dependent on the non-receptor tyrosine kinase c-Src, and on receptor tyrosine kinases, EGFR and PDGFR, and leads to activation of MAP kinases and growth, migration and inflammatory effects. These new findings will contribute to development of better treatments for conditions in which the RAAS is excessively activated.  相似文献   

12.
13.
Restenosis after angioplasty occurs in 30-40% of the treated patients. To develop a strategy to deliver drugs to restenotic lesions, we selected phages that bind to proliferating vascular smooth muscle cells (VSMC), from a random constraint 15-mer peptide phage display library. Phages were selected for binding to cultured primary aortic VSMC (in vitro biopanning) and selected for binding to denudated carotid arteries in mice (in vivo biopanning). In vitro biopanning did not result in a consensus sequence, but recurring FLGW and LASR amino acid motifs were identified. In vivo biopanning resulted in two consensus peptides 5G6 (CNIWGVVLSWIGVFPEC) and 5E5 (CESLWGGLMWTIGLSDC). Surprisingly, these two sequences were recovered after both in vitro and in vivo biopanning, but predominantly in vivo. Moreover, a strong recurring motif, IGR, was identified in the in vivo clones. The consensus phages 5G6 and 5E5 bind selectively to VSMC compared to other cell types. Furthermore, they bind preferentially to proliferating VSMC compared to VSMC that were growth arrested, and are effectively internalized by their target cells. The specific binding capacities of 5G6 and 5E5 phages suggest that these peptide sequences can be used for targeting of restenotic lesions, in which proliferating VSMC are the dominant cell type.  相似文献   

14.
Vitronectin, a multifunctional glycoprotein present in the plasma and interstitial tissues, has recently been found to be localized in atherosclerotic lesions. In this study we examined the effects of vitronectin on the migration of cultured bovine aortic smooth muscle cells using a modified Boyden chamber assay. The cells migrated to fluid-phase vitronectin in a concentration-dependent fashion. The cells also migrated to membrane filter surfaces precoated with vitronectin for a few minutes in the absence of additional vitronectin in the fluid phase, suggesting that this substance binds easily to the filters and stimulates cell migration by haptotaxis under the conditions described. These observations suggest that vitronectin deposited in the intima may be involved in the pathogenesis of atherosclerosis by recruiting smooth muscle cells from the media into the intima.  相似文献   

15.
The contractile function of vascular smooth muscle cells within the media of resistance arterioles is tightly connected to the role of these blood vessels in the maintenance of blood pressure homeostasis. Thus, much effort has been made to understand the intracellular signaling pathways that control vascular smooth muscle cell contractility with the aim that this knowledge will provide important clues for reducing the impact of uncontrolled blood pressure in our society. A key set of surface receptors, the G-protein coupled receptors, has been widely associated with the regulation of vascular smooth muscle cell contractility. Indeed, many of the current treatments for hypertension involve selective inhibition of these receptors. More recently, we have begun to understand the cellular mechanisms whereby G-protein coupled pathways are connected to the contractile machinery of the vascular smooth muscle cells. What has emerged is a view where there are multiple intracellular control points for G-protein signaling that coordinate and focus the extracellular stimuli into meaningful physiologic responses. This work will examine some of the recent advances in our understanding of G-protein signaling and its regulation of contractile function in vascular smooth muscle cells.  相似文献   

16.
Retinoids have been shown to modulate inflammation and the immune response in many cell types including macrophages, endothelial cells, and vascular smooth muscle cells. However, present knowledge of whether inflammatory mediators modulate vitamin A status in these cells is limited. To identify the role of inflammation on retinoid metabolism in vascular smooth muscle cells, the cells were exposed to a combination of proinflammatory cytokines: interleukin-1beta, interferon-gamma, and lipopolysaccharides. Without stimulation with proinflammatory cytokines, vascular smooth muscle cells expressed retinol dehydrogenases-2 and 5 mRNA detected by RT-PCR. Stimulation with the combination of cytokines induced a substantial increase of retinol dehydrogenase-5 mRNA. This was associated with increased production of ligands for retinoic acid receptors, when assayed in a retinoic acid receptor-dependent luciferase reporter system. Our results demonstrate that inflammatory mediators activate the retinoid metabolic pathway in vascular smooth muscle cells, which potentially may modulate the inflammatory response in the vascular wall.  相似文献   

17.
Prostacyclin plays an important cardioprotective role, which has been increasingly appreciated in recent years in light of adverse effects of COX-2 inhibitors in clinical trials. This cardioprotection is thought to be mediated, in part, by prostacyclin inhibition of platelet aggregation. Multiple lines of evidence suggest that prostacyclin additionally protects from cardiovascular disease by pleiotropic effects on vascular smooth muscle. Genetic deletion of the prostacyclin receptor in mice revealed an important role for prostacyclin in preventing the development of atherosclerosis, intimal hyperplasia, and restenosis. In vitro studies have shown these effects may be due to prostacyclin inhibition of vascular smooth muscle cell proliferation and migration. Prostacyclin has also been shown to promote vascular smooth muscle cell differentiation at the level of gene expression through the Gs/cAMP/PKA pathway. Recently identified single nucleotide polymorphisms in the prostacyclin receptor that compromise receptor function suggest that some genetic variations may predispose individuals to increased cardiovascular disease. Herein, we review the literature on the cardioprotective effects of prostacyclin on vascular smooth muscle, and the underlying molecular signaling mechanisms. Understanding the role of prostacyclin and other eicosanoid mediators in the vasculature may lead to improved therapeutic and preventative options for cardiovascular disease.  相似文献   

18.
19.
The pulmonary circulation constricts in response to acute hypoxia, which is reversible on reexposure to oxygen. On exposure to chronic hypoxia, in addition to vasoconstriction, the pulmonary vasculature undergoes remodeling, resulting in a sustained increase in pulmonary vascular resistance that is not immediately reversible. Hypoxic pulmonary vasoconstriction is physiological in the fetus, and there are many mechanisms by which the pulmonary vasculature relaxes at birth, principal among which is the acute increase in oxygen. Oxygen-induced signaling mechanisms, which result in pulmonary vascular relaxation at birth, and the mechanisms by which chronic hypoxia results in pulmonary vascular remodeling in the fetus and adult, are being investigated. Here, the roles of cGMP-dependent protein kinase in oxygen-mediated signaling in fetal pulmonary vascular smooth muscle and the effects of chronic hypoxia on ion channel activity and smooth muscle function such as contraction, growth, and gene expression were discussed.  相似文献   

20.
Reactive oxygen species (ROS) mediate cell-signaling processes in response to various ligands and play important roles in the pathogenesis of cardiovascular diseases. The present study reports that interleukin-22 (IL-22) elicits signal transduction in vascular smooth muscle cells (SMCs) through a ROS-dependent mechanism. We find that pulmonary artery SMCs express IL-22 receptor alpha 1 and that IL-22 activates STAT3 through this receptor. IL-22-induced signaling is found to be mediated by NADPH oxidase, as indicated by the observations that the inhibition and siRNA knock-down of this enzyme inhibit IL-22 signaling. IL-22 triggers the oxidative modifications of proteins through protein carbonylation and protein glutathionylation. Mass spectrometry identified some proteins that are carbonylated in response to IL-22 stimulation, including α-enolase, heat shock cognate 71 kDa protein, mitochondrial 60 kDa heat shock protein, and cytoplasmic 2 actin and determined that α-tubulin is glutathionylated. Protein glutathionylation and STAT3 phosphorylation are enhanced by the siRNA knock-down of glutaredoxin, while IL-22-mediated STAT3 phosphorylation is suppressed by knocking down thioredoxin interacting protein, an inhibitor of thioredoxin. IL-22 is also found to promote the growth of SMCs via NADPH oxidase. In rats, pulmonary hypertension is found to be associated with increased smooth muscle IL-22 expression. These results show that IL-22 promotes the growth of pulmonary vascular SMCs via a signaling mechanism that involves NADPH oxidase-dependent oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号