首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We measured picosecond time-resolved fluorescence of intact Photosystem I complexes from Chlamydomonas reinhardtii and Arabidopsis thaliana. The antenna system of C. reinhardtii contains about 30-60 chlorophylls more than that of A. thaliana, but lacks the so-called red chlorophylls, chlorophylls that absorb at longer wavelength than the primary electron donor. In C. reinhardtii, the main lifetimes of excitation trapping are about 27 and 68 ps. The overall lifetime of C. reinhardtii is considerably shorter than in A. thaliana. We conclude that the amount and energies of the red chlorophylls have a larger effect on excitation trapping time in Photosystem I than the antenna size.  相似文献   

2.
Phototropin, a plant blue light photoreceptor, mediates important blue light responses such as phototropism, chloroplast positioning and stomatal opening in higher plants. In Arabidopsis thaliana, two phototoropins, phototropin 1 and 2, are known. Recently, in the unicellular green alga, Chlamydomonas reinhardtii, a phototropin homolog was identified. It exhibits photochemical properties similar to those of higher plant phototropins and is involved in multiple steps of the sexual life cycle of Chlamydomonas. Here, we expressed Chlamydomonas phototropin in Arabidopsis to examine whether it is active in a distantly related plant species. The Arabidopsis mutant deficient in both phototropin 1 and 2 was transformed with a vector containing Chlamydomonas phototropin cDNA fused to a cauliflower mosaic virus 35S promoter. The resulting lines were classified into high, medium and low expressers based on RNA gel blot and immunoblot analyses. Typical phototropin responses were restored in high expression lines. These results demonstrate that Chlamydomonas phototropin is functional in higher plants. Hence, the basic mechanism of phototropin action is highly conserved, even though its apparent physiological functions are quite diverse.  相似文献   

3.
We have developed a rapid method for isolation of the Photosystem I (PS1) complex from Chlamydomonas reinhardtii using epitope tagging. Six histidine residues were genetically added to the N-terminus of the PsaA core subunit of PS1. The His6-tagged PS1 could be purified with a yield of 80–90% from detergent-solubilized thylakoid membranes within 3 h in a single step using a Ni-nitrilotriacetic acid (Ni-NTA) column. Immunoblots and low-temperature fluorescence analysis indicated that the His6-tagged PS1 preparation was highly pure and extremely low in uncoupled pigments. Moreover, the introduced tag appeared to have no adverse effect upon PS1 structure/function, as judged by photochemical assays and EPR spectroscopy of isolated particles, as well as photosynthetic growth tests of the tagged strain. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The analysis of FDMR spectra, recorded at multiple emission wavelengths, by a global decomposition technique, has allowed us to characterise the triplet populations associated with Photosystem I and Photosystem II of thylakoids in the green alga Chlamydomonas reinhardtii. Three triplet populations are observed at fluorescence emissions characteristic of Photosystem II, and their zero field splitting parameters have been determined. These are similar to the zero field parameters for the three Photosystem II triplets previously reported for spinach thylakoids, suggesting that they have a widespread occurrence in nature. None of these triplets have the zero field splitting parameters characteristic of the Photosystem II recombination triplet observed only under reducing conditions. Because these triplets are generated under non-reducing redox conditions, when the recombination triplet is undetectable, it is suggested that they may be involved in the photoinhibition of Photosystem II. At emission wavelengths characteristic of Photosystem I, three triplet populations are observed, two of which are attributed to the P(700) recombination triplet frozen in two different conformations, based on the microwave-induced fluorescence emission spectra and the triplet minus singlet difference spectra. The third triplet population detected at Photosystem I emission wavelengths, which was previously unresolved, is proposed to originate from the antenna chlorophyll of the core or the unusually blue-shifted outer antenna complexes of this organism.  相似文献   

5.
The energy transfer and charge separation kinetics in core Photosystem I (PSI) particles of Chlamydomonas reinhardtii has been studied using ultrafast transient absorption in the femtosecond-to-nanosecond time range. Although the energy transfer processes in the antenna are found to be generally in good agreement with previous interpretations, we present evidence that the interpretation of the energy trapping and electron transfer processes in terms of both kinetics and mechanisms has to be revised substantially as compared to current interpretations in the literature. We resolved for the first time i), the transient difference spectrum for the excited reaction center state, and ii), the formation and decay of the primary radical pair and its intermediate spectrum directly from measurements on open PSI reaction centers. It is shown that the dominant energy trapping lifetime due to charge separation is only 6-9 ps, i.e., by a factor of 3 shorter than assumed so far. The spectrum of the first radical pair shows the expected strong bleaching band at 680 nm which decays again in the next electron transfer step. We show furthermore that the early electron transfer processes up to approximately 100 ps are more complex than assumed so far. Several possibilities are discussed for the intermediate redox states and their sequence which involve oxidation of P700 in the first electron transfer step, as assumed so far, or only in the second electron transfer step, which would represent a fundamental change from the presently assumed mechanism. To explain the data we favor the inclusion of an additional redox state in the electron transfer scheme. Thus we distinguish three different redox intermediates on the timescale up to 100 ps. At this level no final conclusion as to the exact mechanism and the nature of the intermediates can be drawn, however. From comparison of our data with fluorescence kinetics in the literature we also propose a reversible first charge separation step which has been excluded so far for open PSI reaction centers. For the first time an ultrafast 150-fs equilibration process, occurring among exciton states in the reaction center proper, upon direct excitation of the reaction center at 700 nm, has been resolved. Taken together the data call for a fundamental revision of the present understanding of the energy trapping and early electron transfer kinetics in the PSI reaction center. Due to the fact that it shows the fastest trapping time observed so far of any intact PSI particle, the PSI core of C. reinhardtii seems to be best suited to further characterize the electron transfer steps and mechanisms in the reaction center of PSI.  相似文献   

6.
Photosystem II (PSII) is a multiprotein complex that splits water and initiates electron transfer in photosynthesis. The central part of PSII, the PSII core, is surrounded by light-harvesting complex II proteins (LHCIIs). In higher plants, two or three LHCII trimers are seen on each side of the PSII core whereas only one is seen in the corresponding positions in Chlamydomonas reinhardtii, probably due to the absence of CP24, a minor monomeric LHCII. Here, we re-examined the supramolecular organization of the C. reinhardtii PSII-LHCII supercomplex by determining the effect of different solubilizing detergents. When we solubilized the thylakoid membranes with n-dodecyl-β-d-maltoside (β-DM) or n-dodecyl-α-d-maltoside (α-DM) and subjected them to gel filtration, we observed a clear difference in molecular mass. The α-DM-solubilized PSII-LHCII supercomplex bound twice more LHCII than the β-DM-solubilized supercomplex and retained higher oxygen-evolving activity. Single-particle image analysis from electron micrographs of the α-DM-solubilized and negatively stained supercomplex revealed that the PSII-LHCII supercomplex had a novel supramolecular organization, with three LHCII trimers attached to each side of the core.  相似文献   

7.
Malhotra B  Glass A 《Plant physiology》1995,108(4):1527-1536
Potassium influx and cellular [K+] were measured in the unicellular green alga Chlamydomonas reinhardtii after pretreatment in either 10 or 0 mM external K+ ([K]0). K+ (42K+ or 86Rb+) influx was mediated by a saturable, high-affinity transport system (HATS) at low [K+]0 and a linear, low-affinity transport system at high [K+]o. The HATS was typically more sensitive to metabolic inhibition (and darkness) than the low-affinity transport system. Membrane electrical potentials were determined by measuring the equilibrium distribution of tetraphenylphosphonium. These values, together with estimates of cytoplasmic [K+] (B. Malhotra and A.D.M. Glass [1995] Plant Physiol 108: 1537-1545), demonstrated that at 0.1 mM [K+]0 K+ uptake must be active. At higher [K+]0 (>0.3 mM) K+ influx appeared to be passive and possibly channel mediated. When cells were deprived of K+ for 24 h, the Vmax for the HATS increased from 50 x 10-6 to 85 x 10-6 nmol h-1 cell-1 and the Km value decreased from 0.25 to 0.162 mM. Meanwhile, cellular [K+] declined from 24 x 10-6 to 9 x 10-6 nmol cell-1. During this period influx increased exponentially, reaching its peak value after 18 h of K+ deprivation. This increase of K+ influx was not expressed when cells were exposed to inhibitors of protein synthesis. The use of 42K+ and 86Rb+ in parallel experiments demonstrated that Chlamydomonas discriminated in favor of K+ over Rb+, and this effect increased with the duration of K+ deprivation.  相似文献   

8.
Photosystem I (PSI) is a multiprotein complex consisting of the PSI core and peripheral light-harvesting complex I (LHCI) that together form the PSI-LHCI supercomplex in algae and higher plants. The supercomplex is synthesized in steps during which 12–15 core and 4–9 LHCI subunits are assembled. Here we report the isolation of a PSI subcomplex that separated on a sucrose density gradient from the thylakoid membranes isolated from logarithmic growth phase cells of the green alga Chlamydomonas reinhardtii. Pulse-chase labeling of total cellular proteins revealed that the subcomplex was synthesized de novo within 1 min and was converted to the mature PSI-LHCI during the 2-h chase period, indicating that the subcomplex was an assembly intermediate. The subcomplex was functional; it photo-oxidized P700 and demonstrated electron transfer activity. The subcomplex lacked PsaK and PsaG, however, and it bound PsaF and PsaJ weakly and was not associated with LHCI. It seemed likely that LHCI had been integrated into the subcomplex unstably and was dissociated during solubilization and/or fractionation. We, thus, infer that PsaK and PsaG stabilize the association between PSI core and LHCI complexes and that PsaK and PsaG bind to the PSI core complex after the integration of LHCI in one of the last steps of PSI complex assembly.  相似文献   

9.
Energy trapping in Photosystem I (PS I) was studied by time-resolved fluorescence spectroscopy of PS II-deleted Chl b-minus thylakoid membranes isolated from site-directed mutants of Chlamydomonas reinhardtii with specific amino acid substitutions of a histidine ligand to P700. In vivo the fluorescence of the PS I core antenna in mutant thylakoids with His-656 of PsaB replaced by asparagine, serine or phenylalanine is characterized by an increase in the lifetime of the fast decay component ascribed to the energy trapping in PS I (25 ps in wild type PS I with intact histidine-656, 50 ps in the mutant PS I with asparagine-656 and 70 ps in the mutant PS I with phenylalanine-656). Assuming that the excitation dynamics in the PS I antenna are trap-limited, the increase in the trapping time suggests a decrease in the primary charge separation rate. Western blot analysis showed that the mutants accumulate significantly less PS I than wild type. Spectroscopically, the mutations lead to a decrease in relative quantum yield of the trapping in the PS I core and increase in relative quantum yield of the fluorescence decay phase ascribed to uncoupled chlorophyll–protein complexes which suggests that improper assembly of PS I and LHC in the mutant thylakoids may result in energy uncoupling in PS I.  相似文献   

10.
State transitions represent a photoacclimation process that regulates the light‐driven photosynthetic reactions in response to changes in light quality/quantity. It balances the excitation between photosystem I (PSI) and II (PSII) by shuttling LHCII, the main light‐harvesting complex of green algae and plants, between them. This process is particularly important in Chlamydomonas reinhardtii in which it is suggested to induce a large reorganization in the thylakoid membrane. Phosphorylation has been shown to be necessary for state transitions and the LHCII kinase has been identified. However, the consequences of state transitions on the structural organization and the functionality of the photosystems have not yet been elucidated. This situation is mainly because the purification of the supercomplexes has proved to be particularly difficult, thus preventing structural and functional studies. Here, we have purified and analysed PSI and PSII supercomplexes of C. reinhardtii in states 1 and 2, and have studied them using biochemical, spectroscopic and structural methods. It is shown that PSI in state 2 is able to bind two LHCII trimers that contain all four LHCII types, and one monomer, most likely CP29, in addition to its nine Lhcas. This structure is the largest PSI complex ever observed, having an antenna size of 340 Chls/P700. Moreover, all PSI‐bound Lhcs are efficient in transferring energy to PSI. A projection map at 20 Å resolution reveals the structural organization of the complex. Surprisingly, only LHCII type I, II and IV are phosphorylated when associated with PSI, while LHCII type III and CP29 are not, but CP29 is phosphorylated when associated with PSII in state2.  相似文献   

11.
Neale PJ  Melis A 《Plant physiology》1990,92(4):1196-1204
The effect of strong irradiance (2000 micromole photons per square meter per second) on PSII heterogeneity in intact cells of Chlamydomonas reinhardtii was investigated. Low light (LL, 15 micromole photons per square meter per second) grown C. reinhardtii are photoinhibited upon exposure to strong irradiance, and the loss of photosynthetic functioning is due to damage to PSII. Under physiological growth conditions, PSII is distributed into two pools. The large antenna size (PSIIα) centers account for about 70% of all PSII in the thylakoid membrane and are responsible for plastoquinone reduction (Qb-reducing centers). The smaller antenna (PSIIβ) account for the remainder of PSII and exist in a state not yet able to photoreduce plastoquinone (Qb-nonreducing centers). The exposure of C. reinhardtii cells to 60 minutes of strong irradiance disabled about half of the primary charge separation between P680 and pheophytin. The PSIIβ content remained the same or slightly increased during strong-irradiance treatment, whereas the photochemical activity of PSIIα decreased by 80%. Analysis of fluorescence induction transients displayed by intact cells indicated that strong irradiance led to a conversion of PSIIβ from a Qb-nonreducing to a Qb-reducing state. Parallel measurements of the rate of oxygen evolution revealed that photosynthetic electron transport was maintained at high rates, despite the loss of activity by a majority of PSIIα. The results suggest that PSIIβ in C. reinhardtii may serve as a reserve pool of PSII that augments photosynthetic electron-transport rates during exposure to strong irradiance and partially compensates for the adverse effect of photoinhibition on PSIIα.  相似文献   

12.
Addition of ethylene glycol (EG) or NaCl to cells of Chlamydomonasreinhardtii induced transient non-photochemical quenching ofChl fluorescence correlated with the inhibition of photosyntheticoxygen evolution. The induction of the quenching and subsequentrecovery proceeded not only in the light but also in the dark.The quenching was almost unaffected by the protonophore nigericin,suggesting the involvement of a type of non-photochemical quenchingattributable to a state 2 transition. Higher concentrationsof EG or NaCl caused a delay of the recovery of the maximumfluorescence yield (Fm'). Dark reduction rate of P700+ afterthe application of a flash light in the presence of DCMU wasenhanced by the hyperosmotic shock, suggesting a stimulatedreduction of the intersystem electron carriers. It is proposedthat the osmotic stress stimulates electron donation from stromalcomponents via the NAD(P)H dehydrogenase, which results in thereduction of the intersystem chain and triggering of a state2 transition leading to stimulated cyclic PSI activity. (Received May 16, 1995; Accepted July 26, 1995)  相似文献   

13.
cDNA clones encoding two Photosystem I subunits of Chlamydomonas reinhardtii with apparent molecular masses of 18 and 11 kDa (thylakoid polypeptides 21 and 30; P21 and P30 respectively) were isolated using oligonucleotides, the sequences of which were deduced from the N-terminal amino acid sequences of the proteins. The cDNAs were sequenced and used to probe Southern and Northern blots. The Southern blot analysis indicates that both proteins are encoded by single-copy genes. The mRNA sizes of the two components are 1400 and 740 nucleotides, respectively. Comparison between the open reading frames of the cDNAs and the N-terminal amino acid sequences of the proteins indicates that the molecular masses of the mature proteins are 17.9 (P21) and 8.1 kDa (P30). Analysis of the deduced protein sequences predicts that both subunits are extrinsic membrane proteins with net positive charges. The amino acid sequences of the transit peptides suggest that P21 and P30 are routed towards the lumenal and stromal sides of the thylakoid membranes, respectively.Abbreviations OEE1, 2 and 3 oxygen evolution enhancer proteins 1, 2 and 3 - Rubisco ribulose bisphosphate carboxylase/oxygenase - PS photosystem - P21 and P30 C. reinhardtii thylakoid polypeptides 21 and 30  相似文献   

14.
Certain Chlamydomonas reinhardtii mutants deficient in photosystem I due to defects in psaA mRNA maturation have been reported to be capable of CO2 fixation, H2 photoevolution, and photoautotrophic growth (Greenbaum, E., Lee, J. W., Tevault, C. V., Blankinship, S. L. , and Mets, L. J. (1995) Nature 376, 438-441 and Lee, J. W., Tevault, C. V., Owens, T. G.; Greenbaum, E. (1996) Science 273, 364-367). We have generated deletions of photosystem I core subunits in both wild type and these mutant strains and have analyzed their abilities to grow photoautotrophically, to fix CO2, and to photoevolve O2 or H2 (using mass spectrometry) as well as their photosystem I content (using immunological and spectroscopic analyses). We find no instance of a strain that can perform photosynthesis in the absence of photosystem I. The F8 strain harbored a small amount of photosystem I, and it could fix CO2 and grow slowly, but it lost these abilities after deletion of either psaA or psaC; these activities could be restored to the F8-psaADelta mutant by reintroduction of psaA. We observed limited O2 photoevolution in mutants lacking photosystem I; use of 18O2 indicated that this O2 evolution is coupled to O2 uptake (i.e. respiration) rather than CO2 fixation or H2 evolution. We conclude that the reported instances of CO2 fixation, H2 photoevolution, and photoautotrophic growth of photosystem I-deficient mutants result from the presence of unrecognized photosystem I.  相似文献   

15.
The energy distribution, state transitions and photosynthetic electron flow during photoinhibition of Chlamydomonas reinhardtii cells have been studied in vivo using photoacoustics and modulated fluorescence techniques. In cells exposed to 2500 W/m2 light at 21 °C for 90 min, 90% of the oxygen evolution activity was lost while photochemical energy storage as expressed by the parameter photochemical loss (P.L.) at 710–720 nm was not impaired. The energy storage vs. modulation frequency profile indicated an endothermic step with a rate constant of 2.1 ms. The extent of the P.L. was not affected by DCMU but was greatly reduced by DBMIB. The regulatory mechanism of the state 1 to state 2 transition process was inactivated and the apparent light absorption cross section of photosystem II increased during the first 20 min of photoinhibition followed by a significant decrease relative to that of photosystem I. These results are consistent with the inactivation of the LHC II kinase and the presence of an active cyclic electron flow around photosystem I in photoinhibited cells.Abbreviations PS I, PS II Photosystem I and Photosystem II respectively - P.L. photochemical loss - DCMU 3-(3,4-dichlorophenyl-1,1-dimethyl urea - LHC II light harvesting chlorophyll a,b-protein complex of PS II - DBMIB 2,5 dibromo-3-methyl-6-isopropyl-p-benzoquinone  相似文献   

16.
The sequence and kinetic properties of phosphoribulokinase purified from Chlamydomonas reinhardtii were determined and compared with the spinach (Spinacea oleracea) enzyme. Chlamydomonas phosphoribulokinase was purified to apparent homogeneity, with a specific activity of 410 micromoles per minute per milligram. Polyclonal antibodies to the purified protein were used to isolate a Chlamydomonas cDNA clone, which, upon sequencing, was found to contain the entire coding region. The transit peptide cleavage site was determined by Edman analysis of the mature protein. The precursor protein consists of a 31 amino acid transit peptide and a 344 amino acid mature polypeptide. The mature polypeptide has a calculated molecular weight of 38.5 kilodaltons and a pl of 5.75. The Vmax of the purified enzyme was 465 micromoles per minute per milligram, with apparent Km values of 62 micromolar ATP and 56 micromolar ribulose 5-phosphate. Immunoblot analysis indicated antigenic similarity and a similar subunit size for the enzyme from five higher plant species and Chlamydomonas. Southern blot analysis of Chlamydomonas genomic DNA indicated the presence of a single phosphoribulokinase gene. Comparison of the mature proteins from Chlamydomonas and spinach revealed 86 amino acid differences in primary structure (25% of the total) without a major difference in kinetic properties. The transit peptides of the spinach and Chlamydomonas proteins possessed little sequence homology.  相似文献   

17.
The remarkable capability of photosystem II (PSII) to oxidize water comes along with its vulnerability to oxidative damage. Accordingly, organisms harboring PSII have developed strategies to protect PSII from oxidative damage and to repair damaged PSII. Here, we report on the characterization of the THYLAKOID ENRICHED FRACTION30 (TEF30) protein in Chlamydomonas reinhardtii, which is conserved in the green lineage and induced by high light. Fractionation studies revealed that TEF30 is associated with the stromal side of thylakoid membranes. By using blue native/Deriphat-polyacrylamide gel electrophoresis, sucrose density gradients, and isolated PSII particles, we found TEF30 to quantitatively interact with monomeric PSII complexes. Electron microscopy images revealed significantly reduced thylakoid membrane stacking in TEF30-underexpressing cells when compared with control cells. Biophysical and immunological data point to an impaired PSII repair cycle in TEF30-underexpressing cells and a reduced ability to form PSII supercomplexes after high-light exposure. Taken together, our data suggest potential roles for TEF30 in facilitating the incorporation of a new D1 protein and/or the reintegration of CP43 into repaired PSII monomers, protecting repaired PSII monomers from undergoing repeated repair cycles or facilitating the migration of repaired PSII monomers back to stacked regions for supercomplex reassembly.Oxygenic photosynthesis is essential for almost all life on Earth, as it provides the reduced carbon and the oxygen required for respiration. A key enzyme in oxygenic photosynthesis is PSII, which catalyzes the light-driven oxidation of water. The core of PSII in algae and land plants contains D1 (PsbA), D2 (PsbD), CP43 (PsbC), CP47 (PsbB), the α-subunit (PsbE) and β-subunit (PsbF) of cytochrome b559, as well as several intrinsic low-molecular-mass subunits. The core monomer is associated with the extrinsic oxygen-evolving complex (OEC) consisting of OEE1 (PSBO), OEE2 (PSBP), and OEE3 (PSBQ), which stabilize the inorganic Mn4O5Ca cluster required for water oxidation (for review, see Pagliano et al., 2013). PSII core monomers assemble into dimers to which, at both sides, light-harvesting proteins (LHCII) bind to form PSII supercomplexes. In land plants, each PSII dimer binds two each of the monomeric minor LHCII proteins CP24, CP26, and CP29 in addition to up to four major LHCII trimers (Caffarri et al., 2009; Kouřil et al., 2011). Biochemical evidence suggests that, in the thylakoid membrane, up to eight LHCII trimers can be present per PSII core dimer, presumably because of the existence of a pool of extra LHCII (Kouřil et al., 2013). In Chlamydomonas reinhardtii, lacking CP24, each PSII dimer binds two each of the CP26 and CP29 monomers as well as up to six major LHCII trimers (Tokutsu et al., 2012). The reaction center proteins D1 and D2 bind all the redox-active cofactors required for PSII electron transport (Umena et al., 2011). Light captured by the internal antenna proteins CP43 and CP47 and the outer antenna induces charge separation in PSII, which in turn enables the OEC to oxidize water and provide electrons to the electron transfer chain. In land plants and green algae, PSII supercomplexes are localized to stacked regions of the thylakoid membranes, while the synthesis of PSII cores is considered to take place in stroma lamellae.A particular feature of PSII is its vulnerability to light, with the D1 protein being a target of light-induced damage and the damage being proportional to the photon flux density (PFD) applied (Tyystjärvi and Aro, 1996). To cope with this damage, an elaborate, highly conserved repair mechanism has evolved termed the PSII repair cycle, during which damaged PSII complexes are partially disassembled and the defective D1 protein is replaced by a de novo synthesized copy (for review, see Nixon et al., 2010; Komenda et al., 2012; Mulo et al., 2012; Nath et al., 2013a; Nickelsen and Rengstl, 2013; Tyystjärvi, 2013; Järvi et al., 2015). Photodamage occurs at all light intensities, but when the rate of damage exceeds the capacity for repair, photoinhibition is manifested as a decrease in the proportion of active PSII reaction centers (Aro et al., 1993). While PSII photodamage occurs in the supercomplexes in the stacked membrane regions, the replacement of damaged D1 takes place in stroma lamellae (Aro et al., 2005). Thus, the PSII repair cycle requires the lateral migration of PSII complexes, which is impaired by the macromolecular crowding in stacked thylakoid membranes (Kirchhoff, 2014). Lateral migration of damaged PSII complexes is facilitated by thylakoid membrane unfolding and PSII supercomplex disassembly. Both processes are enhanced by the phosphorylation of the PSII core subunits D1, D2, CP43, and PsbH, which is mainly mediated by the protein kinase STATE TRANSITION8 (STN8; Tikkanen et al., 2008; Fristedt et al., 2009; Herbstová et al., 2012; Nath et al., 2013b; Wunder et al., 2013). Efficient PSII supercomplex disassembly also requires the THYLAKOID FORMATION1 (THF1)/NON-YELLOW COLORING4 (NYC4)/Psb29 protein (Huang et al., 2013; Yamatani et al., 2013). After the migration of PSII monomers to unstacked thylakoid regions, PSII core subunits are dephosphorylated by the PSII core phosphatase PBCP (Samol et al., 2012), which is required for the efficient degradation of D1 (Koivuniemi et al., 1995; Rintamäki et al., 1996; Kato and Sakamoto, 2014). Degradation of D1 is subsequently realized by the membrane-integral FtsH protease (Lindahl et al., 2000; Silva et al., 2003) and by lumenal and stromal Deg proteases (Haussühl et al., 2001; Kapri-Pardes et al., 2007; Sun et al., 2010). Degradation is assisted by the THYLAKOID LUMEN PROTEIN18.3 (TLP18.3), presumably by its phosphatase activity and ability to interact with lumenal Deg1 (Sirpiö et al., 2007; Wu et al., 2011; Zienkiewicz et al., 2012). D1 proteolysis follows the partial disassembly of the PSII complex, during which CP43 and low-molecular-mass subunits are released to generate a CP43-free PSII monomer (Aro et al., 2005). Thereafter, a newly synthesized D1 copy is cotranslationally inserted from a plastidial 70S ribosome into the thylakoid membrane and processed by the CARBOXYL TERMINAL PEPTIDASE A (CTPA; Zhang et al., 1999, 2000; Che et al., 2013). In Arabidopsis (Arabidopsis thaliana), the D1 synthesis rate appears to be negatively regulated by the PROTEIN DISULFIDE ISOMERASE6 (PDI6; Wittenberg et al., 2014). Moreover, yet unknown steps during PSII repair require the stromal cyclophilin ROTAMASE CYP4 and stromal HEAT SHOCK PROTEIN70 (Schroda et al., 1999; Yokthongwattana et al., 2001; Cai et al., 2008). The PSII repair cycle is completed by the reassembly of the CP43 protein, ligation of the OEC, back migration of PSII to stacked membrane regions, and supercomplex formation. Except for CtpA, all mentioned factors appear to be specific for PSII repair, while many more auxiliary factors play roles in PSII de novo synthesis and repair (for review, see Järvi et al., 2015).In this study, we report on the functional characterization of the THYLAKOID ENRICHED FRACTION30 (TEF30) protein in C. reinhardtii. In this organism, TEF30 was first identified in a proteomics study on isolated thylakoid membranes (Allmer et al., 2006). TEF30 attracted our attention because its abundance increased 1.7-fold in membrane-enriched fractions of C. reinhardtii cells that had been shifted from 41 to 145 µmol photons m−2 s−1 for 8 h (Mettler et al., 2014; Supplemental Fig. S1). The TEF30 ortholog in Arabidopsis M-ENRICHED THYLAKOID PROTEIN1 (MET1; where M stands for mesophyll cells) was functionally characterized only recently (Bhuiyan et al., 2015). Both MET1 and TEF30 interact quantitatively with monomeric PSII core particles at the stroma side of the thylakoid membranes and play a role in the assembly of PSII monomers and/or their migration to stacked membrane regions for supercomplex assembly. While MET1 appears to exert this function during PSII de novo biogenesis and during the PSII repair cycle in Arabidopsis, TEF30 appears to function exclusively during PSII repair in C. reinhardtii.  相似文献   

18.
19.
We report a structural characterization by electron microscopy and image analysis of a supramolecular complex consisting of photosystem I and light-harvesting complex I from the unicellular green alga Chlamydomonas reinhardtii. The complex is a monomer, has longest dimensions of 21.3 and 18.2 nm in projection, and is significantly larger than the corresponding complex in spinach. Comparison with photosystem I complexes from other organisms suggests that the complex contains about 14 light-harvesting proteins, two or three of which bind at the side of the PSI-H subunit. We suggest that special light-harvesting I proteins play a role in the binding of phosphorylated light-harvesting complex II in state 2.  相似文献   

20.
In oxygenic photosynthesis, light energy is stored in the form of chemical energy by converting CO2 and water into carbohydrates. The light-driven oxidation of water that provides the electrons and protons for the subsequent CO2 fixation takes place in photosystem II (PSII). Recent studies show that in higher plants, HCO3 increases PSII activity by acting as a mobile acceptor of the protons produced by PSII. In the green alga Chlamydomonas reinhardtii, a luminal carbonic anhydrase, CrCAH3, was suggested to improve proton removal from PSII, possibly by rapid reformation of HCO3 from CO2. In this study, we investigated the interplay between PSII and CrCAH3 by membrane inlet mass spectrometry and x-ray crystallography. Membrane inlet mass spectrometry measurements showed that CrCAH3 was most active at the slightly acidic pH values prevalent in the thylakoid lumen under illumination. Two crystal structures of CrCAH3 in complex with either acetazolamide or phosphate ions were determined at 2.6- and 2.7-Å resolution, respectively. CrCAH3 is a dimer at pH 4.1 that is stabilized by swapping of the N-terminal arms, a feature not previously observed in α-type carbonic anhydrases. The structure contains a disulfide bond, and redox titration of CrCAH3 function with dithiothreitol suggested a possible redox regulation of the enzyme. The stimulating effect of CrCAH3 and CO2/HCO3 on PSII activity was demonstrated by comparing the flash-induced oxygen evolution pattern of wild-type and CrCAH3-less PSII preparations. We showed that CrCAH3 has unique structural features that allow this enzyme to maximize PSII activity at low pH and CO2 concentration.Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes, which catalyze the interconversion of carbon dioxide (CO2) and bicarbonate (HCO3), a reaction that otherwise proceeds slowly at physiological pH. CAs belong to three evolutionary distinct classes, α, β, and γ, which share no significant amino acid sequence identity and are thought to be the result of convergent evolution (Hewett-Emmett and Tashian, 1996; Supuran, 2008; Ferry, 2010; Rowlett, 2010). Animals have only the α-CA type, but as multiple isoforms. By contrast, higher plants, algae, and cyanobacteria may contain members of all three CA families. In algae, CAs has been found in mitochondria and chloroplasts and in the cytoplasm and apoplasm.Many fresh-water and soil-living microalgae face limiting concentrations of inorganic carbon (Ci) in their environments. To overcome this, the green microalga Chlamydomonas reinhardtii, as well as most other unicellular algae and cyanobacteria, actively accumulate Ci inside the cells. This mechanism is known as the carbon-concentrating mechanism (CCM; Raven, 1997; Wang et al., 2011; Meyer and Griffiths, 2013). CCM allows the algae to maintain a high concentration of CO2 around the carboxylating enzyme, Rubisco, even under limiting external Ci. The increased concentration of CO2 in the chloroplast increases the CO2/O2 specificity for Rubisco that leads to a decreased oxygenation reaction, and hence carboxylation becomes more efficient.CCM can be induced in C. reinhardtii cultures by bubbling air containing CO2 at ambient or concentrations (≤0.04%; Vance and Spalding, 2005). Full metabolic adaptation is usually reached within 10 to 12 h after transfer to air CO2 conditions (Renberg et al., 2010). Already within the first few hours after induction, several genes are either up- or down-regulated (Miura et al., 2004; Yamano et al., 2008; Fang et al., 2012). Surprisingly, the global changes in protein expression do not correspond to those in the gene expression; only few proteins are either up- or down-regulated during CCM induction (Manuel and Moroney, 1988; Spalding and Jeffrey, 1989). CAs are important components of the CCM. In C. reinhardtii, 12 genes are expressed that encode for CA isoforms (Moroney et al., 2011). Among the many genes that are significantly up-regulated during CCM induction, there is one encoding for an apoplastic CA (CrCAH1) and two encoding for mitochondrial CAs (CrCAH4 and CrCAH5; Fujiwara et al., 1990; Eriksson et al., 1996).An α-type CA (CrCAH3) located in the thylakoid lumen in C. reinhardtii has also been identified as important at low CO2 levels (Karlsson et al., 1998). The sequence indicates that it is transported through the thylakoid membrane via the Twin Arg Translocation pathway (Albiniak et al., 2012). A mutant not expressing CrCAH3 (knockout of the cah3 gene) shows no or poor growth under air CO2 levels (Spalding et al., 1983; Moroney et al., 1986) and has a severely impaired photosynthetic capacity under low Ci conditions. This mutant, called CrCIA3, has been a valuable tool for resolving the CrCAH3 function.It is also established that CrCAH3 is associated with PSII (Stemler, 1997; Villarejo et al., 2002; Blanco-Rivero et al., 2012). Using isolated PSII membranes from C. reinhardtii, Shutova et al. (2008) presented data suggesting that CrCAH3 is important for efficient water oxidation by facilitating the removal of protons that are produced when water is oxidized by PSII. This is in line with recent studies (Zaharieva et al., 2011; Klauss et al., 2012) showing that it is crucial to have alternating electron and proton removals from the oxygen-evolving complex (OEC) during the five-state catalytic cycle, i.e. the Kok cycle (Kok et al., 1970), of photosynthetic water oxidation. If proton removal is slow, this leads to less efficient O2 production and consequently may lead to donor side photoinhibition (Minagawa et al., 1996). That HCO3 acts as a mobile proton carrier has been recently demonstrated for spinach (Spinacia oleracea) PSII membrane fragments using membrane inlet mass spectrometry (MIMS; Koroidov et al., 2014). These results show that PSII possesses a light- and HCO3-dependent CO2 production for up to 50% of the O2 produced.Taken together, these data suggest that CrCAH3 plays an important role in regulating PSII reactions. In this work, we present further evidence for its function in PSII primary reactions, in particular at low Ci concentrations. We determined crystal structures of CrCAH3 at 2.6 to 2.7 Å resolution in complex with acetazolamide (AZM) or phosphate ions. Our results support a zinc-hydroxide catalytic mechanism of CrCAH3 similar to that of other α-CAs. CrCAH3 has, however, an activity optimum at lower pH values than CAs of the same type, which normally operate at pH 7.0 and higher (Demir et al., 2000). The activity optimum of CrCAH3 makes it more suitable for CO2/HCO3 interconversion at the pH levels present in the thylakoid lumen under light exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号