首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
IL-27 induces stronger proliferation of naive than memory human B cells and CD4(+) T cells. In B cells, this differential response is associated with similar levels of IL-27 receptor chains, IL-27Rα and gp130, in both subsets and stronger STAT1 and STAT3 activation by IL-27 in naive B cells. Here, we show that the stronger proliferative response of CD3-stimulated naive CD4(+) T cells to IL-27 is associated with lower levels of IL-27Rα but higher levels of gp130 compared with memory CD4(+) T cells. IL-27 signaling differs between naive and memory CD4(+) T cells, as shown by more sustained STAT1, -3, and -5 activation and weaker activation of SHP-2 in naive CD4(+) T cells. In the latter, IL-27 increases G0/G1 to S phase transition, cell division and, in some cases, cell survival. IL-27 proliferative effect on naive CD4(+) T cells is independent of MAPK, but is dependent on c-Myc and Pim-1 induction by IL-27 and is associated with induction of cyclin D2, cyclin D3, and CDK4 by IL-27 in a c-Myc and Pim-1-dependent manner. In BCR-stimulated naive B cells, IL-27 only increases entry in the S phase and induces the expression of Pim-1 and of cyclins A, D2, and D3. In these cells, inhibition of Pim-1 inhibits IL-27 effect on proliferation and cyclin induction. Altogether, these data indicate that IL-27 mediates proliferation of naive CD4(+) T cells and B cells through induction of both common and distinct sets of cell cycle regulators.  相似文献   

2.
3.
A mouse mAb, TS 43, which recognized the human CD5 molecule, was found to induce the proliferation of human peripheral blood T cells. TS 43 mAb precipitated from 125I-radiolabeled T cells a 67-kDa band, which comigrated with the 67-kDa band precipitated by the anti-CD5 mAb OKT1. Preclearing of cell lysates with OKT1 mAb abolished the capacity of TS 43 mAb to precipitate radiolabeled material from T cell lysates. Furthermore, a mouse T cell hybridoma transfected with human CD5 was stained by TS 43 mAb. T cell proliferation mediated by TS 43 mAb was monocyte dependent, and was accompanied by IL-2R expression and by IL-2 synthesis. T cell activation by TS 43 mAb involved a rise in intracellular calcium level (CA2+)i and was dependent on the expression of the TCR/CD3 complex because no rise in (Ca2+)i was observed in a TCR-beta-deficient Jurkat T cell mutant. This study indicates that CD5 should be added to the list of surface molecules that can signal T cells to proliferate.  相似文献   

4.
Adoptive immunotherapy using cultured T cells holds promise for the treatment of cancer and infectious disease. Ligands immobilized on surfaces fabricated from hard materials such as polystyrene plastic are commonly employed for T cell culture. The mechanical properties of a culture surface can influence the adhesion, proliferation, and differentiation of stem cells and fibroblasts. We therefore explored the impact of culture substrate stiffness on the ex vivo activation and expansion of human T cells. We describe a simple system for the stimulation of the TCR/CD3 complex and the CD28 receptor using substrates with variable rigidity manufactured from poly(dimethylsiloxane), a biocompatible silicone elastomer. We show that softer (Young's Modulus [E] < 100 kPa) substrates stimulate an average 4-fold greater IL-2 production and ex vivo proliferation of human CD4(+) and CD8(+) T cells compared with stiffer substrates (E > 2 MPa). Mixed peripheral blood T cells cultured on the stiffer substrates also demonstrate a trend (nonsignificant) toward a greater proportion of CD62L(neg), effector-differentiated CD4(+) and CD8(+) T cells. Naive CD4(+) T cells expanded on softer substrates yield an average 3-fold greater proportion of IFN-γ-producing Th1-like cells. These results reveal that the rigidity of the substrate used to immobilize T cell stimulatory ligands is an important and previously unrecognized parameter influencing T cell activation, proliferation, and Th differentiation. Substrate rigidity should therefore be a consideration in the development of T cell culture systems as well as when interpreting results of T cell activation based upon solid-phase immobilization of TCR/CD3 and CD28 ligands.  相似文献   

5.
CD6 is a cell surface receptor expressed on immature thymocytes and mature T and B1a lymphocytes. The ultimate function of CD6 has not been deciphered yet, but much evidence supports a role for CD6 in T cell activation and differentiation. In this study, we show that a fraction of CD6 molecules physically associates with the TCR/CD3 complex by coimmunoprecipitation, cocapping, and fluorescence resonance energy transfer experiments. Image analysis of Ag-specific T-APC conjugates demonstrated that CD6 and its ligand, activated leukocyte cell adhesion molecule (CD166), colocalize with TCR/CD3 at the center of the immunological synapse, the so-called central supramolecular activation cluster. The addition of a soluble rCD6 form significantly reduced the number of mature Ag-specific T-APC conjugates, indicating that CD6 mediates early cell-cell interactions needed for immunological synapse maturation to proceed. This was in agreement with the dose-dependent inhibition of CD3-mediated T cell proliferation induced by soluble rCD6. Taken together, our data illustrate the important role played by the intra- and intercellular molecular interactions mediated by CD6 during T cell activation and proliferation processes.  相似文献   

6.
A mAb, 10D1, was obtained by fusing spleen cells from BALB/c mice immunized with a CD3/TCR- human T cell line, P12/ichikawa, to mouse myeloma cells, P3X63-Ag8-653. 10D1 mAb is specific for T cells in that it reacted with all the T cell lines tested, but not with B or myeloid cell lines. A small fraction of normal peripheral blood T cells, preferentially CD4+, was also reactive with 10D1 mAb. Biochemical studies revealed that 10D1 mAb recognizes a disulfide-linked homodimeric molecule composed of 90-kDa polypeptide. 10D1 mAb induced a substantial proliferation of peripheral blood T cells when cross-linked with goat anti-mouse Ig antibody. The elimination of CD4+ cells totally abrogated the proliferative response induced by 10D1 mAb, whereas the elimination of CD8+ cells rather enhanced it. The proliferative response of peripheral blood T cells induced by 10D1 mAb was almost completely inhibited after modulation of the CD3/TCR complex with anti-CD3 mAb. In addition, a prompt increase in intracellular [Ca2+] was observed in a CD3+ T cell line, Jurkat but not in its surface CD3- mutant when 10D1 mAb was added. These results indicate that the 10D1 molecule is involved in a novel pathway of human CD4+ T cell activation, which is associated with the CD3/TCR-mediated pathway.  相似文献   

7.
The role that extracellular calcium plays in activating resting cloned cytotoxic T lymphocytes (CTL) to proliferate and to produce lymphokines was examined. In these cells, stimulation with interleukin 2 (IL-2) induced a proliferative response without a concomitant production of macrophage-activating factor (MAF), whereas stimulation with antigen or lectin (in the absence of IL-2) induced MAF production but not proliferation. In the case of IL-2-induced proliferation, extracellular calcium was required to initiate proliferation as well as to prevent cellular arrest later in the G2 + M phase of the cell cycle. In MAF production extracellular calcium was required both to activate the phosphatidylinositol signal-transducing mechanism and to mobilize intracellular calcium in antigen- or lectin-stimulated cytotoxic T lymphocytes. Further, extracellular calcium was required for only 8 of the 18 hr of stimulation time which was needed to achieve maximal MAF production, indicating that both calcium-dependent and -independent events exist in the signal pathway. Additional experiments with calcium ionophores and activators of protein kinase C indicated that although both intracellular calcium mobilization and de novo protein phosphorylation are involved in MAF production, an optimal increase in the level of intracellular calcium by itself is insufficient to induce the production of this lymphokine.  相似文献   

8.
Although the role of CD28 in T cell costimulation is firmly established, the mechanisms by which it exerts its costimulatory actions are less clear. In many circumstances it is difficult to distinguish the effects of CD28 from subsequent actions of cytokines, such as IL-2, on T cell proliferation. Here, we report a model of CD28 costimulation using PMA plus the natural ligand CD80 that resulted in very limited stimulation of IL-2, as evidenced by both cytokine production and IL-2 promoter stimulation. Promoter assays revealed CD28-dependent effects on both NF-kappaB and AP-1, but not on NF-AT or the intact IL-2 promoter. In addition, T cell proliferation was completely resistant to the actions of the immunosuppressant cyclosporin A (CsA). Moreover T cell proliferation was unaffected by the addition of blocking Abs to both IL-2 and the IL-2 receptor, demonstrating that this form of costimulation by CD28 was independent of IL-2. We also investigated the effects of stimulating T cell blasts with CD80 alone and found that there was a limited requirement for IL-2 in this system. We conclude that CD28 costimulation can cause substantial T cell proliferation in the absence of IL-2, which is driven by a soluble factor independent of NF-AT transactivation.  相似文献   

9.
10.
The phospholipid metabolism of cloned murine cytotoxic T lymphocytes (CTL) was examined under conditions in which the induction of proliferation by interleukin 2 (IL 2) and the stimulated production of lymphokine (macrophage-activating factor (MAF] by concanavalin A (Con A) and specific antigen occurred independently of each other. Activation of the CTL by either of the latter two stimuli resulted in changes in the metabolism of phosphatidylinositol (PI) that were early (less than 2.5 min), specific, and prolonged (6 to 8 hr). These changes were primarily characterized by an increase in phosphatidic acid (PA) and PI, with a decrease in phosphatidylinositol-4,5-bisphosphate. The duration of these phospholipid responses, particularly PA and PI, approximated the minimum time of CTL-stimulus interaction required to produce maximal titers of MAF. No changes were observed in other major classes of phospholipids during 8 hr of continuous stimulation. Stimulation with an irrelevant antigen had no effect on CTL phospholipid metabolism. In contrast to specific antigen or Con A, the T cell growth factor IL 2 failed to elicit specific and early biosynthetic responses from PA and PI. Instead, there were nonspecific biosynthetic responses from all major phospholipid classes (including phosphatidylcholine and phosphatidylethanolamine, as well as PA and PI) which occurred between 1 and 6 hr after IL 2 stimulation. Both 1,2-diacylglycerol (DAG) and inositol phosphates (IP), the hydrolytic products of PI turnover, were produced in response to MAF-inducing stimuli, but neither were detected in response to the proliferative stimulus IL 2. Together, these results indicate that the hydrolysis of PI and the concomitant production of the putative second messengers DAG and IP are involved in signaling the production of lymphokines (MAF) by CTL. On the other hand, the failure of IL 2 to elicit a full-spectrum PI response suggests that signals mediating CTL proliferation may utilize an alternate and still undefined pathway.  相似文献   

11.
The effect of monoclonal antibodies (Mab) directed at T cell and accessory cell (AC) surface molecules on OKT3-induced T4 and T8 cell proliferation was examined. Mab directed at nonpolymorphic class I (W6/32, MB40.5) and class II (L243) major histocompatibility complex (MHC)-encoded gene products, an epitope common to LFA-1, CR3, and the p150, 95 molecule (60.3), and a heterodimer present on monocytes (M phi) and activated T cells (4F2) inhibited M phi-supported OKT3-induced proliferation of both T4 and T8 cells. Moreover, an Mab directed at the CD4 molecule (66.1) inhibited OKT3-induced T4 but not T8 cell proliferation, whereas an Mab directed at the CD8 molecule (OKT8) inhibited T8 but not T4 cell responses. With the exception of 66.1, each inhibited OKT3-induced T cell proliferation when added as late as 15 hr after the initiation of culture. Inhibition could not be explained by competition for Fc receptors on the AC. A variety of other Mab including OKT11 and those directed at other HLA-DR and DQ determinants were not inhibitory. The inhibitory Mab were found to diminish T4 cell IL 2 production and IL 2 receptor expression. Consequently, IL 2 reversed some but not all of the Mab-mediated inhibition of T cell proliferation. In contrast to the effects noted with M phi-supported responses, 60.3 and 66.1 but neither L243 nor 4F2 inhibited OKT3-induced T4 cell proliferation supported by Ia- or IFN-gamma-treated Ia+ endothelial cells. None of the Mab tested inhibited T cell proliferation induced by the AC-independent stimuli OKT3 and phorbol myristate acetate (PMA) or calcium ionophore and PMA in the presence or absence of added AC. The data therefore suggest that the Mab inhibit OKT3-induced activation of T4 and T8 cells by preventing necessary interactions between AC and T cell surface proteins. Moreover, the results suggest that different arrays of interaction molecules are involved in OKT3-induced T cell proliferation depending on the nature of the AC and the responding T cell subset.  相似文献   

12.
We developed a new mAb, anti-1A4, which recognizes an epitope on the CD27 molecule distinct from those recognized by several known anti-CD27 mAb. Although it has been suggested that the CD27 molecule is a T cell activation Ag, there was little direct evidence that the structure was involved in the T cell activation process. In this study, we showed that anti-1A4 inhibited anti-CD2, anti-CD3, mitogens, or soluble Ag-induced T cell proliferation as well as PWM-driven B cell IgG synthesis. Interestingly, anti-1A4 inhibited IL-2 secretion without affecting IL-2R expression. In addition, pretreatment of T cells with anti-1A4 inhibited the normally sustained intracellular calcium mobilization seen after triggering of T cells via the CD2 or CD3 pathways. Thus, binding of anti-1A4 to the CD27 molecule appears to induce a negative effect on T cell activation. This may be due to either a direct signal to T cells or the blocking of an interaction between T cells and accessory cells or both. These findings support the notion that the CD27 molecule plays an integral role in the process of T cell activation.  相似文献   

13.
The aim of this study was to determine the percentage of CD45RO+ T cells in umbilical cord blood from neonates born at less than 37 weeks of gestation. Fifty-nine patients were enrolled in this study, including 49 with preterm and 10 with term deliveries. Preterm deliveries were divided into two categories; spontaneous (Group A, n = 31) and indicated (Group B, n = 18). Perinatal infection was categorized as C-CAM, H-CAM and neonatal infection. The percentage of CD45RO+ T cells in the umbilical cord was assessed using flow cytometry. IL-6 was measured using ELISA. In Group A, the percentage of CD45RO+ T cells and concentrations of IL-6 in patients with perinatal infection ( n = 18) were significantly higher than in those without perinatal infection ( n = 13). A significant correlation between percentage of CD45RO+ T cells and IL-6 concentrations was observed in the cord blood ( r = 0.62, P = 0.001). In Group B, pink–tinged amniotic fluid was observed in seven cases. In these cases, an increase in the percentage of CD45RO+ T cells (>10%) was noted. In the cases without perinatal infection, which included all those delivered at term ( n = 32), no correlation was observed between the percentage of CD45RO+ T cells and gestational age at delivery ( r =−0.139, P = 0.448). We concluded that a high percentage of CD45RO+ cord blood T cells is observed not only in perinatal infection, but also in the presence of abnormal perinatal events such as maternal bleeding in preterm gestation.  相似文献   

14.
The T cell receptor (TcR) heterodimer of alpha/beta glycoprotein is noncovalently associated with CD3 glycoprotein forming TcR/CD3 complex. The TcR have been shown to recognize antigen, and CD3 antigen is responsible for signal transduction. In this study we compared the effects of WT31 (defining alpha/beta TcR) monoclonal antibody (MoAb) and anti-CD3 MoAb on various steps of human T cell activation. Both antibodies depolarized plasma membranes, increased cell volume, induced IL-2 production and the expression of IL-2 receptors (CD25 antigen) and induced DNA synthesis. Furthermore, the two antibodies showed no synergistic effect on any of these parameters. However, both MoAb showed synergism with phorbol ester (PMA). WT31-induced T cell activation was Ca(2+)-dependent because the addition of EGTA to the medium inhibited DNA synthesis and CD25 antigen expression. The blockers of protein kinase C (PKC), 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H7) and staurosporin, in a dose-dependent manner inhibited WT31-induced DNA synthesis. Cholera toxin but not the pertussis toxin inhibited WT31-induced T cell activation, suggesting involvement of G protein in WT31-induced T cell activation. These data indicate that WT31 antibody activates human T cells by a pathway that is similar to that of anti-CD3-induced T cell activation.  相似文献   

15.
CD2 is a T cell surface glycoprotein that participates in T cell adhesion and activation. These processes are dynamically interrelated, in that T cell activation regulates the strength of CD2-mediated T cell adhesion. The lateral redistribution of CD2 and its ligand CD58 (LFA-3) in T cell and target membranes, respectively, has also been shown to affect cellular adhesion strength. We have used the fluorescence photobleaching recovery technique to measure the lateral mobility of CD2 in plasma membranes of resting and activated Jurkat T leukemia cells. CD2-mediated T cell activation caused lateral immobilization of 90% of cell surface CD2 molecules. Depleting cells of cytoplasmic Ca2+, loading cells with dibutyric cAMP, and disrupting cellular microfilaments each partially reversed the effect of CD2-mediated activation on the lateral mobility of CD2. These intracellular mediators apparently influence the same signal transduction pathways, because the effects of the mediators on CD2 lateral mobility were not additive. In separate experiments, activation-associated cytoplasmic Ca2+ mobilization was found to require microfilament integrity and to be negatively regulated by cAMP. By directly or indirectly controlling CD2 lateral diffusion and cell surface distribution, cytoplasmic Ca2+ mobilization may have an important regulatory role in CD2 mediated T cell adhesion.  相似文献   

16.
Ag-experienced or memory T cells have increased reactivity to recall Ag, and can be distinguished from naive T cells by altered expression of surface markers such as CD44. Memory T cells have a high turnover rate, and CD8(+) memory T cells proliferate upon viral infection, in the presence of IFN-alphabeta and/or IL-15. In this study, we extend these findings by showing that activated NKT cells and superantigen-activated T cells induce extensive bystander proliferation of both CD8(+) and CD4(+) memory T cells. Moreover, proliferation of memory T cells can be induced by an IFN-alphabeta-independent, but IFN-gamma- or IL-12-dependent pathway. In these conditions of bystander activation, proliferating memory (CD44(high)) T cells do not derive from activation of naive (CD44(low)) T cells, but rather from bona fide memory CD44(high) T cells. Together, these data demonstrate that distinct pathways can induce bystander proliferation of memory T cells.  相似文献   

17.
The involvement of ion channels in B and T lymphocyte activation is supported by many reports of changes in ion fluxes and membrane potential after mitogen binding. Human T and B lymphocytes demonstrate an early and transient hyperpolarization after ligand binding. Inasmuch as the change in membrane potential is dependent on elevation of free cytosolic calcium, the hyperpolarization is presumably through opening of Ca(2+)-stimulated K+ channels. We have used charybdotoxin, a known inhibitor of Ca(2+)-dependent K+ channels, to study the role of these channels in lymphocyte activation and mitogenesis. We demonstrate that charybdotoxin inhibits the ligand-induced transient membrane hyperpolarization in B and T cells in a dose-dependent fashion, without affecting changes in cytosolic Ca2+. However, blockade of the Ca(2+)-activated K+ channel is not associated with changes in cell-cycle gene activation, IL-2 production, IL-2R expression or B and T cell mitogenesis. These results imply that membrane potential changes secondary to the ligand-dependent opening of Ca(2+)-activated K+ channels are not involved in B and T lymphocyte activation and mitogenesis.  相似文献   

18.
Activation of human PBL T cells with solid phase anti-CD3 mAb or during the course of an MLR response gives rise to the association of CD4 or CD8 molecules with the protein tyrosine phosphatase, CD45, on the cell surface. This paired association of cell-surface molecules occurs late in the activation cycle and appears to be dependent upon Ti-CD3-mediated signaling because mitogen-driven activation does not induce formation of the complex. Maximal association occurred 72 to 96 h after exposure to anti-CD3 mAb on both CD4+ and CD8+ T cells. In contrast, association between CD8 and CD45 during an MLR response did not occur until day 6 of a MLR whereas CD4-CD45 association was detected by 72 h of culture. The kinetics of association between CD4 or CD8 and CD45 was measured by fluorescence resonance energy transfer and confirmed by immunoprecipitation of dithiobis succinimidylpropionate or disuccinimidyl suberate cross-linked 125I-labeled resting or activated T cells. The molecules that co-precipitated with either CD4 or CD8 and had an apparent kDa of 180 to 205 could be immunodepleted with anti-CD45 mAb. Furthermore, CD4 or CD8 immunoprecipitates from 96-h activated T cells contained significant levels of protein tyrosine phosphatase activity whereas corresponding immunoprecipitates from resting or recently activated T cells showed little protein tyrosine phosphatase activity. This association may allow CD45 to engage and dephosphorylate lck or another CD4- or CD8-associated substrate in order to reset the receptor complex to receive a new set of stimuli. Our observations suggest that synergistic signaling provided as a consequence of CD4 or CD8 association with the TCR after antigenic stimulation may develop on a different temporal scale than that observed after soluble anti-CD4+ anti-CD3 heteroconjugate antibody cross-linking.  相似文献   

19.
In granulomatous inflammatory lung diseases such as sarcoidosis, the balance of cytokine production by activated T cells in the lungs may influence clinical disease outcome. To investigate the potential of T lymphocytes to produce cytokines and contribute to this process, T cells from bronchoalveolar lavage (BAL) and PB from 19 patients with active lung disease were stimulated, stained, and analysed by flow cytometry for intracellular production of cytokines and expression of the activation marker CD69. Higher proportions of BAL cells expressed CD69 compared with PB, in the absence of in vitro stimulation. The expression of IFN-γ was similar in unstimulated BAL and PB T cells, and there was no association between the expression of CD69 and IFN-γ. Following stimulation, there were increased numbers of IFN-γ+ T cells. A similar trend was found with IL-2+ T cells, but there were lower levels of IL-4+ T cells in BAL compared with PB, and similar levels of IL-10+ T cells. The presence of activated T lymphocytes in BAL samples from patients with sarcoidosis, with the potential to produce Th1 type 1 cytokines may contribute to the inflammatory processes in this granulomatous lung disease. The use of intracellular flow cytometry to investigate cytokine production by BAL T cells could help to indicate potential targets for future therapy.  相似文献   

20.
CD59 functions as a signal-transducing molecule for human T cell activation.   总被引:16,自引:0,他引:16  
The CD59 Ag is a 20-kDa protein that is widely expressed on most leukocytes and RBC, is coupled to the membrane by a phosphatidylinositol-glycan anchoring structure, plays a role in cell interaction between monocytes and T cells, and also functions as an inhibitor of cytolysis by the terminal C components C5b-9. Because this molecule is structurally related to the murine Ly-6 family of Ag, we have investigated whether anti-CD59 mAb might be capable of activating human T lymphocytes in a manner similar to that described for antibodies to the murine Ly-6 Ag. In the presence of the appropriate co-stimulators, mAb to one of the two epitopes on CD59 were capable of inducing both a rise in intracytoplasmic free Ca2+, inositol phosphate production, IL-2 production, and T cell proliferation. Anti-CD59-induced inositol phosphate turnover and IL-2 production were dependent on co-expression of the CD3/TCR complex. CD59-loss mutants of the Jurkat cell line were completely responsive to stimulation by anti-CD3 thereby demonstrating that CD59 does not play a role as a signal transducer downstream from the TCR. Taken together, these results demonstrate that the CD59 Ag can play multiple distinct roles in the regulation of the immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号