首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
L. Wang  L. K. Romana    P. R. Reeves 《Genetics》1992,130(3):429-443
Salmonella enterica is highly polymorphic for the O antigen, a surface polysaccharide that is subject to intense selection by the host immune system. This polymorphism is used for serotyping Salmonella isolates. The genes encoding O antigen biosynthesis are located in the rfb gene cluster. We report here the cloning and sequence of the 19-kb rfb region from strain M32 (serovar anatum, group E1) and compare it with that of strain LT2 (serovar typhimurium, group B). Genes for biosynthetic pathways common to both strains are conserved and have very similar sequences. In contrast, the five genes for CDP-abequose synthesis, present in strain LT2, are absent in strain M32; three open reading frames (ORFs) of strain LT2, thought to include genes for transferases, are not present in strain M32 but are replaced by three different ORFs with little or low level of similarity. Both rfb gene clusters are low in G + C content, indicating that they were transferred from a common ancestral species with low G + C content to S. enterica relatively recently (in the evolutionary sense). We discuss the recombination and lateral transfer events which may have been involved in the evolution of the polymorphism.  相似文献   

2.
The rfb (O antigen) gene cluster of group C2 Salmonella differs from that of group B in a central region of 12.4 kb: we report the sequencing of this region of strain M67 (group C2) and a subsequent comparison with the central region of strain LT2 (group B). We find a block of seven open reading frames unique to group C2 which encode the O antigen polymerase (rfc) and the transferases responsible for assembly of the group C2 O antigen. The remaining rfb genes are common to strains M67 and LT2, but rfbJ (CDP-abequose synthase) and rfbM and rfbK (GDP-mannose synthesis), which are immediately adjacent to the central region, are highly divergent. All these genes have a low G+C content and appear to have been recent additions to Salmonella enterica. We discuss the evolutionary significance of the arrangement and divergence of the genes in the polymorphism of the rfb cluster.  相似文献   

3.
We report the cloning and mapping of the entire rfb gene cluster of a group C2 Salmonella strain. Comparison with the rfb region of group B strain LT2 and group D strain Ty2 reveals an 11.8 kb central region of limited similarity flanked by regions of high similarity. The genes from the central region confer a group C2 O-antigen structure on a Salmonella LT2 partial delete strain. The significance of this region in relation to function and evolutionary origin is discussed. We also report evidence for the existence of an O-antigen chain-length determinant in Escherichia coli K12 and propose a model for a possible mechanism by which a preferred chain length is determined.  相似文献   

4.
The rfb gene cluster of Salmonella LT2 has been cloned and sequenced. The genes rfbA, rfbB, rfbD, rfbF, rfbG, rfbK, rfbM and rfbP were located individually and the gene rfbL was located outside the cluster. Approximately 16 open reading frames were found in the region which is essential for the expression of O antigen. The gene products of rfbB and rfbG were found to have homology with the group of dehydrogenase and related enzymes described previously. Analysis of the G + C ratio of the rfb cluster extended the area of low-G + C composition previously found in the sequence of rfbJ to the whole rfb gene cluster. Three to five segments with discrete G + C contents and codon adaptation indices are present in the rfb region, indicating a heterogeneous origin of these segments. Potential promoters were found near the start of the rfb region, supporting the possibility that the rfb gene cluster is an operon.  相似文献   

5.
The Salmonella enterica group C1 O antigen structure has a Man-Man-Man-Man-GlcNAc backbone with a glucose branch, which differs from the S. enterica group B O antigen structure which has a Man-Rha-Gal backbone with abequose as side-chain. We have cloned the group C1 rfb (O antigen) gene cluster from serovar montevideo strain M40, using a low-copy-number cosmid vector. The restriction map of the group C1 (M40) rfb gene cluster was compared with that of group B strain LT2 by Southern hybridization and restriction enzyme analysis. The results indicate that the flanking genes are very similar in the two strains, but there is no detectable similarity in the rfb regions. We localized the mannose pathway genes rfbM and rfbK and one of the genes, rfbK, shows considerably similarity to cpsG of strain LT2, suggesting that part of the mannose pathway in the group C1 rfb cluster is derived from a gene of the M antigen (cps) cluster. The M antigen, which forms a capsule, is comprised of four sugars, including fucose. The biosynthetic pathway of GDP-fucose has steps in common with the GDP-mannose pathway, and the cps cluster has isogenes of rfbK and rfbM, presumably as part of a fucose pathway. We discuss the structure and possible evolution of the group C1 rfb gene cluster.  相似文献   

6.
Escherichia coli K-12 has long been known not to produce an O antigen. We recently identified two independent mutations in different lineages of K-12 which had led to loss of O antigen synthesis (D. Liu and P. R. Reeves, Microbiology 140:49-57, 1994) and constructed a strain with all rfb (O antigen) genes intact which synthesized a variant of O antigen O16, giving cross-reaction with anti-O17 antibody. We determined the structure of this O antigen to be -->2)-beta-D-Galf-(1-->6)-alpha-D-Glcp- (1-->3)-alpha-L-Rhap-(1-->3)-alpha-D-GlcpNAc-(1-->, with an O-acetyl group on C-2 of the rhamnose and a side chain alpha-D-Glcp on C-6 of GlcNAc. O antigen synthesis is rfe dependent, and D-GlcpNAc is the first sugar of the biological repeat unit. We sequenced the rfb (O antigen) gene cluster and found 11 open reading frames. Four rhamnose pathway genes are identified by similarity to those of other strains, the rhamnose transferase gene is identified by assay of its product, and the identities of other genes are predicted with various degrees of confidence. We interpret earlier observations on interaction between the rfb region of Escherichia coli K-12 and those of E. coli O4 and E. coli Flexneri. All K-12 rfb genes were of low G+C content for E. coli. The rhamnose pathway genes were similar in sequence to those of (Shigella) Dysenteriae 1 and Flexneri, but the other genes showed distant or no similarity. We suggest that the K-12 gene cluster is a member of a family of rfb gene clusters, including those of Dysenteriae 1 and Flexneri, which evolved outside E. coli and was acquired by lateral gene transfer.  相似文献   

7.
The rfb (O antigen) gene cluster of a group C1 Salmonella enterica strain was sequenced; it comprised seven open reading frames which precisely replaced the 16 open reading frames of a group B strain. Two genes of the mannose biosynthetic pathway were present: rfbK (phosphomannomutase) had a G+C content of 0.61 and had only 40% identity to rfbK of group B but was very similar to cpsG of the capsular polysaccharide pathway with 96% identity, whereas rfbM [guanosine diphosphomannose (GDP-Man) pyrophosphorylase] had a G+C content of 0.39. Other genes had G+C contents ranging from 0.24 to 0.28. rfbM(C1) and rfbM(B) had 60% identity, which is much less than expected within a species, but nonetheless indicates a much more recent common ancestor than for rfbK. The other genes showed much lower or no similarity to rfb genes of other S. enterica strains. It appears that the gene cluster evolved outside of Salmonella in a species with low G+C content: the rfbM gene presumably derives from that period whereas the rfbK gene appears to have arisen after transfer of the cluster to S. enterica by duplication of the S. enterica cpsG gene, presumably replacing an rfbK gene of low G+C content.  相似文献   

8.
The sequence of part of the rfb region of Vibrio cholerae serogroup O139 and the physical map of a 35-kb region of the O139 chromosome have been determined. The O139 rfb region presented contains a number of open reading frames which show similarities to other rfb and capsular biosynthesis genes found in members of the Enterobacteriaceae family and in V. cholerae O1. The cloned and sequenced region can complement the defects in O139 antigen biosynthesis in transposon insertions within the O139 rfb cluster. Linkage is demonstrated among IS1358 of V. cholerae O139, the rfb region, and the recently reported otnA and otnB genes (E. M. Bik, A. E. Bunschoten, R. D. Gouw, and F. R. Mooi, EMBO J. 14:209-216, 1995). In addition, the whole of this region has been linked to the rfaD gene. Furthermore, determination of the sequence flanking IS1358 has revealed homology to other rfb-like genes. The exact site of insertion with respect to rfaD is defined for the novel DNAs of both the Bengal and the Argentinian O139 isolates.  相似文献   

9.
The O antigen of Escherichia coli O111 is identical in structure to that of Salmonella enterica serovar adelaide. Another O-antigen structure, similar to that of E. coli O111 and S. enterica serovar adelaide is found in both E. coli O55 and S. enterica serovar greenside. Both O-antigen structures contain colitose, a 3,6 dideoxyhexose found only rarely in the Enterobacteriaceae. The O-antigen structure is determined by genes generally located in the rfb gene cluster. We cloned the rfb gene cluster from an E. coli O111 strain (M92), and the clone expressed O antigen in both E. coli K-12 and a K-12 strain deleted for rfb. Lipopolysaccharide analysis showed that the O antigen produced by strains containing the cloned DNA is polymerized. The chain length of O antigen was affected by a region outside of rfb but linked to it and present on some of the plasmids containing rfb. The rfb region of M92 was analysed and compared, by DNA hybridization, with that of strains with related O antigens. The possible evolution of the rfb genes in these O antigen groups is discussed.  相似文献   

10.
The rfb region of Shigella flexneri encodes the proteins required to synthesize the O-antigen component of its cell surface lipopolysaccharides (LPS). We have previously reported that a region adjacent to rfb was involved in regulating the length distribution of the O-antigen polysaccharide chains (D. F. Macpherson et al., Mol. Microbiol. 5:1491-1499, 1991). The gene responsible has been identified in Escherichia coli O75 (called rol [R. A. Batchelor et al., J. Bacteriol. 173:5699-5704, 1991]) and in E. coli O111 and Salmonella enterica serovar typhimurium strain LT2 (called cld [D. A. Bastin et al., Mol. Microbiol. 5:2223-2231, 1991]). Through a combination of subcloning, deletion, and transposon insertion analysis, we have identified a gene adjacent to the S. flexneri rfb region which encodes a protein of 36 kDa responsible for the length distribution of O-antigen chains in LPS as seen on silver-stained sodium dodecyl sulfate-polyacrylamide gels. DNA sequence analysis identified an open reading frame (ORF) corresponding to the rol gene. The corresponding protein was almost identical in sequence to the Rol protein of E. coli O75 and was highly homologous to the functionally identical Cld proteins of E. coli O111 and S. enterica serovar typhimurium LT2. These proteins, together with ORF o349 adjacent to rfe, had almost identical hydropathy plots which predict membrane-spanning segments at the amino- and carboxy-terminal ends and a hydrophilic central region. We isolated a number of TnphoA insertions which inactivated the rol gene, and the fusion end points were determined. The PhoA+ Rol::PhoA fusion proteins had PhoA fused within the large hydrophilic central domain of Rol. These proteins were located in the whole-membrane fraction, and extraction with Triton X-100 indicated a cytoplasmic membrane location. This finding was supported by sucrose density gradient fractionation of the whole-cell membranes and of E. coli maxicells expressing L-[35S]methionine-labelled Rol protein. Hence, we interpret these data to indicate that the Rol protein is anchored into the cytoplasmic membrane via its amino- and carboxy-terminal ends but that the majority of the protein is located in the periplasmic space. To confirm that rol is responsible for the effects on O-antigen chain length observed with the cloned rfb genes in E. coli K-12, it was mutated in S. flexneri by insertion of a kanamycin resistance cartridge. The resulting strains produced LPS with O antigens of nonmodal chain length, thereby confirming the function of the rol gene product. We propose a model for the function of Rol protein in which it acts as a type of molecular chaperone to facilitate the interaction of the O-antigen ligase (RfaL) with the O-antigen polymerase (Rfc) and polymerized, acyl carrier lipid-linked, O-antigen chains. Analysis of the DNA sequence of the region identified a number of ORFs corresponding to the well-known gnd and hisIE genes. The rol gene was located immediately downstream of two ORFs with sequence similarity to the gene encoding UDPglucose dehydrogenase (HasB) of Streptococcus pyogenes. The ORFs arise because of a deletion or frameshift mutation within the gene we have termed udg (for UDPglucose dehydrogenase).  相似文献   

11.
Biosynthesis of the Salmonella typhimurium LT2 O antigen is encoded by genes which map in the rfb cluster. The cloning and restriction enzyme analysis of part of this cluster have been described previously (H. N. Brahmbhatt, N. B. Quigley, and P. R. Reeves, Mol. Gen. Genet. 203:172-176, 1986). The entire rfb gene cluster has now been cloned, and a detailed restriction enzyme map has been constructed which has enabled us to map the approximate positions of individual rfb genes.  相似文献   

12.
The Kauffmann-White scheme for serotyping Salmonella recognizes 46 somatic (O) antigen groups, which together with detection of the flagellar (H) antigens form the basis for serotype identification. Although serotyping has become an invaluable typing method for epidemiological investigations of Salmonella, it does have some practical limitations. We have been characterizing the genes required for O and H antigen biosynthesis with the goal of developing a DNA-based system for the determination of serotype in Salmonella. The majority of the enzymes involved in O antigen biosynthesis are encoded by the rfb gene cluster. We report the sequencing of the rfb region from S. enterica serotype Sundsvall (serogroup O:6,14). The S. enterica serotype Sundsvall rfb region is 8.4 kb in length and comprises six open reading frames. When compared with other previously characterized rfb regions, the serogroup O:6,14 sequence is most related to serogroup C(1). On the basis of DNA sequence similarity, we identified two genes from the mannose biosynthetic pathway, two mannosyl transferase genes, the O unit flippase gene and, possibly, the O antigen polymerase. The whole cluster is derived from a low-G+C-content organism. Comparative sequencing of an additional serogroup O:6,14 isolate (S. enterica serotype Carrau) revealed a highly homologous sequence, suggesting that O antigen factors O:24 and O:25 (additional O factors associated with serogroup O:6,14) are encoded outside the rfb gene cluster. We developed a serogroup O:6,14-specific PCR assay based on a region of the putative wzx (O antigen flippase) gene. This provides the basis for a sensitive and specific test for the rapid identification of Salmonella serogroup O:6,14.  相似文献   

13.
S H Xiang  M Hobbs    P R Reeves 《Journal of bacteriology》1994,176(14):4357-4365
The Salmonella enterica O antigen is a highly variable surface polysaccharide composed of a repeated oligosaccharide (the O unit). The O unit produced by serogroup D2 has structural features in common with those of groups D1 and E1, and hybridization studies had previously suggested that the D2 rfb gene cluster responsible for O-unit biosynthesis is indeed a hybrid of the two. In this study, the rfb gene cluster was cloned from a group D2 strain of S. enterica sv. Strasbourg. Mapping, hybridization, and DNA sequencing showed that the organization of the D2 rfb genes is similar to that of group D1, with the alpha-mannosyl transferase gene rfbU replaced by rfbO, the E1-specific beta-mannosyl transferase gene. The E1-specific polymerase gene (rfc) has also been acquired. Interestingly, the D1-like and E1-like rfb regions are separated by an additional sequence closely related to an element (Hinc repeat [H-rpt]) associated with the Rhs loci of Escherichia coli. The H-rpt resembles an insertion sequence and possibly mediated the intraspecific recombination events which produced the group D2 rfb gene organization.  相似文献   

14.
We recently reported a novel genetic locus located in the sbcB-his region of the chromosomal map of Escherichia coli K-12 which directs the expression of group 6-positive phenotype in Shigella flexneri lipopolysaccharide, presumably due to the transfer of O-acetyl groups onto rhamnose residues of the S. flexneri O-specific polysaccharide (Z. Yao, H. Liu, and M. A. Valvano, J. Bacteriol. 174:7500-7508, 1992). In this study, we identified the genetic region encoding group 6 specificity as part of the rfb gene cluster of E. coli K-12 strain W3110 and established the DNA sequence of most of this cluster. The rfbBDACX block of genes, located in the upstream region of the rfb cluster, was found to be strongly conserved in comparison with the corresponding region in Shigella dysenteriae type 1 and Salmonella enterica. Six other genes, four of which were shown to be essential for the expression of group 6 reactivity in S. flexneri serotypes Y and 4a, were identified downstream of rfbX. One of the remaining two genes showed similarities with rfc (O-antigen polymerase) of S. enterica serovar typhimurium, whereas the other, located in the downstream end of the cluster next to gnd (gluconate-6-phosphate dehydrogenase), had an IS5 insertion. Recently, it has been reported that the IS5 insertion mutation (rfb-50) can be complemented, resulting in the formation of O16-specific polysaccharide by E. coli K-12 (D. Liu and P. R. Reeves, Microbiology 140:49-57, 1994). We present immunochemical evidence suggesting that S. flexneri rfb genes also complement the rfb-50 mutation; in the presence of rfb genes of E. coli K-12, S. flexneri isolates express O16-specific polysaccharide which is also acetylated in its rhamnose residues, thereby eliciting group 6 specificity.  相似文献   

15.
A gene cluster associated with the biosynthesis of the serotype e-specific polysaccharide antigen (SPA) of Actinobacillus actinomycetemcomitans IDH1705 belonging to serotype e was cloned and sequenced. This cluster consisted of 18 open reading frames. Escherichia coli produced the polysaccharide that reacts with the serotype e-specific antiserum when transformed with a plasmid containing the cluster. Comparing the structure of the gene cluster with similar clusters from A. actinomycetemcomitans strains Y4 (serotype b) and NCTC9710 (serotype c) revealed that a 5.3-kb region containing the distal half of one gene and two entire genes in the cluster from strain IDH1705 replaced a 6.2-kb region containing eight genes in the cluster from strain Y4, and a 4.7-kb region containing four genes in the cluster from strain NCTC9710. These results suggest that this region is essential to the antigenic specificity of serotype e A. actinomycetemcomitans.  相似文献   

16.
In Rhodobacter sphaeroides, many of the structural genes encoding enzymes of the Calvin cycle are duplicated and grouped within two separate clusters. In this study, the nucleotide sequence of a 5627-base pair region of DNA that contains the form I Calvin cycle gene cluster has been determined. The five open reading frames are arranged in the order, fbpA prkA cfxA rbcL rbcS and are tightly linked and oriented in the same direction. The results of insertional mutagenesis studies suggest the genes are organized within an operon. Consistent with this proposal, the cfxA gene has been tentatively identified as a gene encoding the Calvin cycle enzyme, aldolase. Measurement of the activities of various Calvin cycle enzymes in the insertion mutants showed that inactivation of genes within one CO2 fixation cluster affected expression of genes within the second cluster, revealing a complex regulatory network.  相似文献   

17.
Arthrobacter chlorophenolicus A6, a previously described 4-chlorophenol-degrading strain, was found to degrade 4-chlorophenol via hydroxyquinol, which is a novel route for aerobic microbial degradation of this compound. In addition, 10 open reading frames exhibiting sequence similarity to genes encoding enzymes involved in chlorophenol degradation were cloned and designated part of a chlorophenol degradation gene cluster (cph genes). Several of the open reading frames appeared to encode enzymes with similar functions; these open reading frames included two genes, cphA-I and cphA-II, which were shown to encode functional hydroxyquinol 1,2-dioxygenases. Disruption of the cphA-I gene yielded a mutant that exhibited negligible growth on 4-chlorophenol, thereby linking the cph gene cluster to functional catabolism of 4-chlorophenol in A. chlorophenolicus A6. The presence of a resolvase pseudogene in the cph gene cluster together with analyses of the G+C content and codon bias of flanking genes suggested that horizontal gene transfer was involved in assembly of the gene cluster during evolution of the ability of the strain to grow on 4-chlorophenol.  相似文献   

18.
The nucleotide sequence of a 3.2 kb region following the hydrogenase structural operon (hupSLCDEF) in the H2-uptake gene cluster from Rhizobium leguminosarum by viciae strain 128C53 has been determined. Five closely linked genes encoding products of 16.3 (HupG), 30.5 (HupH), 8.0 (HupI), 18.4 (HupJ) and 38.7 (HupK) kDa were identified 166 bp downstream from hupF. Transposon insertions into hupG, hupH, hupJ and hupK suppress the H2-oxidizing capability of the wild-type strain. The amino acid sequence deduced from hupI contains two Cys-X-X-Cys motifs, characteristic of rubredoxins, separated by 29 amino acid residues showing strong sequence homology with other bacterial rubredoxins. The amino acid-derived sequence from hupG and hupH showed homology to products from genes hyaE and hyaF of the operon encoding hydrogenase 1 from Escherichia coli, and hupJ and hupK were related to open reading frames identified in Rhodobacter capsulatus and Azotobacter vinelandii hydrogenase gene clusters. An involvement of the hupGHIJK gene cluster in redox reactions related to hydrogenase synthesis or activity is predicted on the basis of the function as electron carrier attributed to rubredoxin.  相似文献   

19.
A sequence of 10,621 base-pairs from the alpha-like globin gene cluster of rabbit has been determined. It includes the sequence of gene zeta 1 (a pseudogene for the rabbit embryonic zeta-globin), the functional rabbit alpha-globin gene, and the theta 1 pseudogene, along with the sequences of eight C repeats (short interspersed repeats in rabbit) and a J sequence implicated in recombination. The region is quite G + C-rich (62%) and contains two CpG islands. As expected for a very G + C-rich region, it has an abundance of open reading frames, but few of the long open reading frames are associated with the coding regions of genes. Alignments between the sequences of the rabbit and human alpha-like globin gene clusters reveal matches primarily in the immediate vicinity of genes and CpG islands, while the intergenic regions of these gene clusters have many fewer matches than are seen between the beta-like globin gene clusters of these two species. Furthermore, the non-coding sequences in this portion of the rabbit alpha-like globin gene cluster are shorter than in human, indicating a strong tendency either for sequence contraction in the rabbit gene cluster or for expansion in the human gene cluster. Thus, the intergenic regions of the alpha-like globin gene clusters have evolved in a relatively fast mode since the mammalian radiation, but not exclusively by nucleotide substitution. Despite this rapid mode of evolution, some strong matches are found 5' to the start sites of the human and rabbit alpha genes, perhaps indicating conservation of a regulatory element. The rabbit J sequence is over 1000 base-pairs long; it contains a C repeat at its 5' end and an internal region of homology to the 3'-untranslated region of the alpha-globin gene. Part of the rabbit J sequence matches with sequences within the X homology block in human. Both of these regions have been implicated as hot-spots for recombination, hence the matching sequences are good candidates for such a function. All the interspersed repeats within both gene clusters are retroposon SINEs that appear to have inserted independently in the rabbit and human lineages.  相似文献   

20.
The rfb gene cluster of Escherichia coli O9 directs the synthesis of the O9-specific polysaccharide which has the structure -->2-alpha-Man-(1-->2)-alpha-Man-(1-->2)-alpha-Man-(1-->3)-alpha- Man-(1-->. The E. coli O9 rfb cluster has been sequenced, and six genes, in addition to the previously described rfbK and rfbM, were identified. They correspond to six open reading frames (ORFs) encoding polypeptides of 261, 431, 708, 815, 381, and 274 amino acids. They are all transcribed in the counter direction to those of the his operon. No gene was found between rfb and his. A higher G+C content indicated that E. coli O9 rfb evolved independently of the rfb clusters from other E. coli strains and from Shigella and Salmonella spp. Deletion mutagenesis, in combination with analysis of the in vitro synthesis of the O9 mannan in membranes isolated from the mutants, showed that three genes (termed mtfA, -B, and -C, encoding polypeptides of 815, 381, and 274 amino acids, respectively) directed alpha-mannosyl transferases. MtfC (from ORF274), the first mannosyl transferase, transfers a mannose to the endogenous acceptor. It critically depended on a functional rfe gene (which directs the synthesis of the endogenous acceptor) and initiates the growth of the polysaccharide chain. MtfB (from ORF381) then transfers two mannoses into the 3 position of the previous mannose, and MtfA (from ORF815) transfers three mannoses into the 2 position. Further chain growth needs only the two transferases MtfA and MtfB. Thus, there are fewer transferases needed than the number of sugars in the repeating unit. Analysis of the predicted amino acid sequence of the ORF261 and ORF431 proteins indicated that they function as components of an ATP-binding cassette transport system. A possible correlation between the mechanism of polymerization and mode of membrane translocation of the products is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号