首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Bacillus megaterium flavocytochrome P450 BM3 (BM3) is a high activity fatty acid hydroxylase, formed by the fusion of soluble cytochrome P450 and cytochrome P450 reductase modules. Short chain (C6, C8) alkynes were shown to be substrates for BM3, with productive outcomes (i.e. alkyne hydroxylation) dependent on position of the carbon-carbon triple bond in the molecule. Wild-type P450 BM3 catalyses ω-3 hydroxylation of both 1-hexyne and 1-octyne, but is suicidally inactivated in NADPH-dependent turnover with non-terminal alkynes. A F87G mutant of P450 BM3 also undergoes turnover-dependent heme destruction with the terminal alkynes, pointing to a key role for Phe87 in controlling regioselectivity of alkyne oxidation. The terminal alkynes access the BM3 heme active site led by the acetylene functional group, since hydroxylated products are not observed near the opposite end of the molecules. For both 1-hexyne and 1-octyne, the predominant enantiomeric product formed (up to ~90%) is the (S)-(-)-1-alkyn-3-ol form. Wild-type P450 BM3 is shown to be an effective oxidase catalyst of terminal alkynes, with strict regioselectivity of oxidation and potential biotechnological applications. The absence of measurable octanoic or hexanoic acid products from oxidation of the relevant 1-alkynes is also consistent with previous studies suggesting that removal of the phenyl group in the F87G mutant does not lead to significant levels of ω-oxidation of alkyl chain substrates.  相似文献   

2.
Tertiary alcohols, such as tert-butyl alcohol (TBA) and tert-amyl alcohol (TAA) and higher homologues, are only slowly degraded microbially. The conversion of TBA seems to proceed via hydroxylation to 2-methylpropan-1,2-diol, which is further oxidized to 2-hydroxyisobutyric acid. By analogy, a branched pathway is expected for the degradation of TAA, as this molecule possesses several potential hydroxylation sites. In Aquincola tertiaricarbonis L108 and Methylibium petroleiphilum PM1, a likely candidate catalyst for hydroxylations is the putative tertiary alcohol monooxygenase MdpJ. However, by comparing metabolite accumulations in wild-type strains of L108 and PM1 and in two mdpJ knockout mutants of strain L108, we could clearly show that MdpJ is not hydroxylating TAA to diols but functions as a desaturase, resulting in the formation of the hemiterpene 2-methyl-3-buten-2-ol. The latter is further processed via the hemiterpenes prenol, prenal, and 3-methylcrotonic acid. Likewise, 3-methyl-3-pentanol is degraded via 3-methyl-1-penten-3-ol. Wild-type strain L108 and mdpJ knockout mutants formed isoamylene and isoprene from TAA and 2-methyl-3-buten-2-ol, respectively. It is likely that this dehydratase activity is catalyzed by a not-yet-characterized enzyme postulated for the isomerization of 2-methyl-3-buten-2-ol and prenol. The vitamin requirements of strain L108 growing on TAA and the occurrence of 3-methylcrotonic acid as a metabolite indicate that TAA and hemiterpene degradation are linked with the catabolic route of the amino acid leucine, including an involvement of the biotin-dependent 3-methylcrotonyl coenzyme A (3-methylcrotonyl-CoA) carboxylase LiuBD. Evolutionary aspects of favored desaturase versus hydroxylation pathways for TAA conversion and the possible role of MdpJ in the degradation of higher tertiary alcohols are discussed.  相似文献   

3.
Pseudomonas aeruginosa W51D used citronellol (3,7-dimethyl-6-octen-1-ol) as sole source of carbon and oxidized it to citronellal, citronellic acid and finally to geranic acid. A mutant derived from this strain was isolated as unable to degrade citronellol and had diminished (93%) citronellal dehydrogenase activity.  相似文献   

4.
Selected strains of Pseudomonas bacteria can degrade tropane alkaloids to obtain both nitrogen and carbon for growth. In order to probe the mechanisms of the catabolic enzymes involved, the metabolic process responsible for the opening of the 8-azabicyclo[3.2.1]octan-3-ol ring of nortropane alkaloids has been explored. It is found that the bacteria contain considerable flexibility in their enzyme complement and can convert (3-endo)-8-azabicyclo[3.2.1]octan-3-ol) (nortropine (2) to (3-exo)-8-azabicyclo[3.2.1]octan-3-ol) (norpseudotropine). Both of these compounds can serve as substrates for the catalytic cascade. In order to establish the proportionation between direct and indirect pathways, metabolism has been probed by competitive substrate availability and by incorporation of stable heavy labels into substrate pools. The results indicate that, while norpseudotropine is almost entirely metabolized directly, nortropine is partitioned c. 4:1 between direct and indirect catabolism.  相似文献   

5.
1. Pseudomonas sp. N.C.I.B. 8858 grew well on d- and l-1-aminopropan-2-ol and on aminoacetone. 2. Cell-free extracts possessed high activities of inducibly formed l-1-aminopropan-2-ol-NAD(+) oxidoreductase, amino alcohol-ATP phosphotransferase, dl-1-aminopropan-2-ol O-phosphate phospho-lyase and aldehyde-NAD(+) oxidoreductase, but no 1-aminopropan-2-ol racemase or d-1-aminopropan-2-ol-NAD(+) oxidoreductase. 3. The amino alcohol kinase (activated by ADP) was non-stereospecific towards 1-aminopropan-2-ol and was one-third as active with ethanolamine. The phospho-lyase was active with l- and d-1-aminopropan-2-ol O-phosphate, but ethanolamine O-phosphate was only one-tenth as active as its higher homologues. The purified aldehyde dehydrogenase was active with propionaldehyde, acetaldehyde and also with methylglyoxal. The previously observed 2-oxo aldehyde dehydrogenase activity was considered to be due to the broadly specific aldehyde dehydrogenase. 4. Mutants of Pseudomonas sp. N.C.I.B. 8858 deficient in 1-aminopropan-2-ol kinase, 1-aminopropan-2-ol O-phosphate phospho-lyase, aldehyde dehydrogenase or an enzyme involved in propionate metabolism were incapable of growth on aminoacetone or 1-aminopropan-2-ol as carbon source, although all except the kinase- or phospho-lyasedeficient mutants could use these compounds and ethanolamine as nitrogen sources. The aldehyde dehydrogenase-deficient mutants produced copious amounts of propionaldehyde and acetaldehyde during growth on the corresponding amino alcohols. 5. The path of aminoacetone metabolism in Pseudomonas sp. N.C.I.B. 8858 was concluded to involve l-1-aminopropan-2-ol, the O-phosphate ester of this compound, propionaldehyde and propionate as obligatory intermediates. d-1-Aminopropan-2-ol was metabolized by the same route as the l-isomer, gratuitously inducing formation of the stereospecific l-1-aminopropan-2-ol dehydrogenase. 6. Extracts of the pseudomonad grown with ethanolamine as the nitrogen source were devoid of 1-aminopropan-2-ol dehydrogenase, the kinase and the phospho-lyase, but exhibited cobamide coenzyme-dependent deaminase activity. Mutants deficient in kinase or phospho-lyase (deaminating) grew well on ethanolamine as the nitrogen source. Ethanolamine deaminase was inactive with, but inhibited by, 1-aminopropan-2-ol.  相似文献   

6.
1. The kinetics of oxidation of butan-1-ol and propan-2-ol by NAD+, catalysed by yeast alcohol dehydrogenase, were studied at 25 degrees C from pH 5.5 to 10, and at pH 7.05 from 14 degrees to 44 degrees C, 2. Under all conditions studied the results are consistent with a mechanism whereby some dissociation of coenzyme from the active enzyme-NAD+-alcohol ternary complexes occurs, and the mechanism is therefore not strictly compulsory order. 3. A primary 2H isotopic effect on the maximum rates of oxidation of [1-2H2]butan-1-ol and [2H7]propan-2-ol was found at 25 degrees C over the pH range 5.5-10. Further, in stopped-flow experiments at pH 7.05 and 25 degrees C, there was no transient formation of NADH in the oxidation of butan-1-ol and propan-2-ol. The principal rate-limiting step in the oxidation of dependence on pH of the maximum rates of oxidation of butan-1-ol and propan-2-ol is consisten with the possibility that histidine and cysteine residues may affect or control catalysis.  相似文献   

7.
Abstract. Antennal movement responses of male Glossina morsitans morsitans Westwood to twelve analogues of the tsetse olfactory attractant 1-octen-3-ol were investigated to determine their structure-activity relationships. The results indicate that the chemoreceptors which perceive this set of kairomones may not be highly specific. Activity is dependent on the length of the alkyl chain; also homologues with odd alkyl chains such as 3-buten-2-ol, 1-hexen-3-ol and 1-octen-3-ol evoked higher antennal responses than homologues with even alkyl chains such as l-nonen-3-ol, 1-hepten-3-ol and 1-penten-3-ol. Comparison of the activities of eight carbon structural variants of 1-octen-3-ol showed that the structural requirements for activity of the functional end of the molecule may not be rigid; thus, 1-octyn-3-ol elicited relatively high responses. However, low responses to 1-octene and 3-octanol showed that both the π electron system as well as the oxygen function are important for activity. Laboratory bioassay findings indicate that compounds such as 1-octyn-3-ol, 3-buten-2-ol, allyl alcohol and 1-octen-3-one which evoke antennal responses 2–3 times greater than the control have attractive properties and preliminary field investigations show that 3-buten-2-ol and allyl alcohol significantly increase trap catches.  相似文献   

8.
1. Some aspects of the substrate specificities of liver and yeast alcohol dehydrogenases have been investigated with pentan-3-ol, heptan-4-ol, (+)-butan-2-ol, (+/-)-butan-2-ol, (+/-)-hexan-3-ol and (+/-)-octan-2-ol as potential substrates. The liver enzyme is active with all substrates tested, including both isomers of each optically active alcohol. In contrast, the yeast enzyme is completely inactive towards those secondary alcohols where both alkyl groups are larger than methyl and active with only the (+)-isomers of butan-2-ol and octan-2-ol. 2. The absence of stereospecificity of liver alcohol dehydrogenase towards optically active secondary alcohols and its broad specificity towards secondary alcohols in general are explained in terms of an alkyl-binding site that will react with a variety of alkyl groups and the ability of the enzyme to accommodate a fairly large unbound alkyl group in an active enzyme-NAD(+)-secondary alcohol ternary complex. The absolute optical specificity of the yeast enzyme towards n-alkylmethyl carbinols and its unreactivity towards pentan-3-ol, hexan-3-ol and heptan-4-ol are explained by its inability to accept alkyl groups larger than methyl in the unbound position in a viable ternary complex. 3. Comparison of the known configurations of the n-alkylmethyl carbinols and [1-(2)H]ethanol and [1-(3)H]geraniol, which have been used in stereospecificity studies with these enzymes by other workers, provides strong evidence for which alkyl group of the substrate is bound to the enzyme in the oxidation of n-alkylmethyl carbinols. The conclusions reached are, for butan-2-ol oxidation with the liver enzyme, confirmed by deductions from kinetic data obtained with (+)-butan-2-ol and a sample of butan-2-ol containing 66% of (-)-butan-2-ol. 4. Initial-rate parameters for the oxidations of (+)-butan-2-ol, 66% (-)-butan-2-ol and pentan-3-ol by NAD with liver alcohol dehydrogenase are presented. The data are completely consistent with a general mechanism of catalysis previously proposed for this enzyme.  相似文献   

9.
Abstract. Electroantennograms (EAGs) were recorded from laboratory-reared male and female Stomoxys calcitrans (L.) in response to a range of synthetic chemicals known to be electrophysiologically-active for other biting flies. Of the eight compounds initially tested, only two - 1-octen-3-ol and 3-methylphenol - consistently elicited larger electroantennograms (EAGs) than did control treatments; 1-octen-3-ol was the most potent. EAG recovery time was inversely correlated with EAG amplitude. EAGs recorded with primary C2-C12 carbon chain-length primary aliphatic alcohols peaked at octan-1–ol with pentan-1-ol, hexan-1-ol and heptan-1-ol also eliciting EAG responses significantly larger than the controls. When different C8 carbon chain compounds and nonane were tested: 1-octen-3-ol elicited the largest EAGs followed by, in decreasing activity, octan-1-ol, 1-bromooctane, octan-3-ol, octanal, 2-octanone, octanoic acid and nonane. The EAG response of 1-octen-3-ol increased sigmoidally with dose, with the threshold at between 2 and 20 ng, and the peak response at 200 μg on filter paper. EAGs larger than control were also elicited by entrained ox odour and ox breath. The behavioural implications are discussed.  相似文献   

10.
Phosphatidyl-1-aminopropane-2-ol has been detected in rat liver after intraperitoneal administration of 1-aminopropane-2-ol hydrochloride. The new glycerophospholipid was chromatographically identified by comparison with chemically and enzymatically synthesized phosphatidyl-1-aminopropane-2-ol and by gas-liquid chromatography of the polar group as trifluoroacetyl derivative.  相似文献   

11.
Yu Y  Wang CL  Cui Y  Fan YZ  Liu J  Shao X  Liu HM  Wang R 《Peptides》2006,27(1):136-143
Endomorphin1-ol (Tyr-Pro-Trp-Phe-ol, EM1-ol) and endomorphin2-ol (Tyr-Pro-Phe-Phe-ol, EM2-ol), with C-terminal alcohol (-ol) containing, have been shown to exhibit higher affinity and lower intrinsic efficacy in vitro than endomorphins. In the present study, in order to investigate the alterations of systemic hemodynamic effects induced by C-terminal amide to alcohol conversion, responses to intravenous (i.v.) or intracerebroventricular (i.c.v.) injection of EM1-ol, EM2-ol and their parents were compared in the system arterial pressure (SAP) and heart rate (HR) of anesthetized rats. Both EM1-ol and EM2-ol induced dose-related decrease in SAP and HR when injected in doses of 3-100 nmol/kg, i.v. In terms of relative vasodepressor activity, it is interesting to note that EM2-ol was more potent than endomorphin2 [the dose of 25% decrease in SAP (DD25) = 6.01+/-3.19 and 13.99+/-1.56 nmol/kg, i.v., respectively] at a time when responses to EM1-ol were less potent than endomorphin1. Moreover, decreases in SAP in response to EM1-ol and EM2-ol were reduced by naloxone, atropine sulfate, L-NAME and bilateral vagotomy. It indicated that the vasodepressor responses were possibly mediated by a naloxone-sensitive, nitric oxide release, vagus-activated mechanism. It is noteworthy that i.c.v. injections of -ol derivatives produced dose-related decreases in SAP and HR, which were significantly less potent than endomorphins and were attenuated by naloxone and atropine sulfate. In summary, the results of the present study indicated that the C-terminal amide to alcohol conversion produced different effects on the vasodepressor activity of endomorphin1 and endomorphin2 and endowed EM2-ol distinctive hypotension characters in peripheral (i.v.) and central (i.c.v.) tissues. Moreover, these results provided indirect evidence that amidated C-terminus might play an important role in the regulation of the cardiovascular system.  相似文献   

12.
基于GC-MS的异翅亚目臭腺分泌物化学分类学分析   总被引:1,自引:0,他引:1  
张嫣  夏炎  陈企发  卜文俊 《昆虫学报》1950,63(7):870-888
【目的】探讨异翅亚目(Heteroptera)昆虫不同类群间臭腺分泌物化学组分的差异,为该类昆虫寻找新的分类特征并为各类群间的相互关系提供新的证据。【方法】我们采用固相微萃取(solid phase microextraction, SPME)偶联气相色谱-质谱仪(GC-MS)对采自中国的异翅亚目8个总科32个种的臭腺分泌物进行了测定分析;采用典型判别分析法、非参数多元方差分析法、典型变量分析法进行了高级阶元分泌物的化学分类学分析。【结果】典型判别分析结果表明,异翅亚目,尤其是蝽次目中不同总科间的臭腺分泌物具显著差异性,可作为总科间的分类特征;非参数多元方差分析结果支持臭腺分泌物在总科间的显著差异性;结合典型判别分析结果和典型变量分析的结果找到划分异翅亚目8个总科32个种的主要特征性化合物有6类共30种,包括酸类[己酸(hexanoic acid)、丁酸(butanoic acid)、2-己烯酸(2-hexenoic acid)],醇类{2-丁基-1-辛醇(2-butyl-octan-1-ol)、2-己基-1-辛醇(2-hexyl-octan-1-ol)、2-己炔-1-醇(2-hexyn-1-ol)、3,7-二甲基-2-辛烯-1-醇(3,7-dimethyl-2-octen-1-ol)、4,8-二甲基-1-壬醇(4,8-dimethyl-1-nonanol)、2-癸烯-1-醇(2-decen-1-ol)、1-己醇(1-hexanol)、高蒎醇(cis-pinene hydrate)、2-茨醇(borneol)、冰片(2-bornanol)、丙二醇甲醚(1-methoxy-propan-2-ol)、2-乙基1-己醇(2-ethyl-hexan-1-ol)、(6Z, 9Z)-十五烷-1-醇[(6Z, 9Z)-pentadecadien-1-ol]、(E)-9-十六碳烯-1-醇[(E)-9-hexadecen-1-ol]、(S)-3-乙基-4-甲基-1-戊醇[(S)-3-ethyl-4-methyl-pentan-1-ol]、异葑醇(isofenchol)、斯巴醇(spathulenol)},醛类{(E)-2-辛烯醛[(E)-2-octenal]、十二醛(dodecanal)、(Z)-3-己烯醛[(Z)-3-hexenal]、(E)-2-癸烯醛[(E)-2-decenal]、(E, E)-2,4-癸二烯醛[(E, E)-2,4-decadienal]},烷类[2-甲基己烷(2-methyl-hexane)、2,21-二甲基二十二烷(2,21-dimethyl-docosane)],环类[糠醛(furfural)]和萜类[二氢香芹醇(neodihydrocarveol)、二氢松油醇(dihydroterpineol)]。【结论】本研究从异翅亚目8个总科32个物种臭腺分泌物中鉴定的30种特征性化合物在一定程度上可作为异翅亚目总科级阶元的分类特征并为其相互关系提供依据。  相似文献   

13.
Naphthol derivatives, 2-(3'-hydroxypropyl)-naphthalen-1-ol (2), 2-(3'-hydroxy-2'-methylpropyl)-naphthalen-1-ol (3) and 2-(3'-hydroxy-2',2'-dimethylpropyl)-naphthalen-1-ol (7) were synthesized and already reported by our group. Therefore in this paper we described further synthesis of their ether derivatives, 3-(1-methoxy-naphthalen-2-yl)-propan-1-ol (4), 3-(1-methoxy-naphthalen-2-yl)-2methyl-propan-1-ol (5), 3-(1-methoxy-naphthalen-2-yl)-2,2-dimethyl-propan-1-ol (8), 2-(3-methoxy-propyl)-naphthalen-1-ol (10) and 2-(3-methoxy-2,2-dimethyl-propyl)-naphthalen-1-ol (13). Compounds 4, 5 and 8 were prepared by methylation of compounds 2, 3 and 7, respectively while compounds 10 and 13 were prepared in good yield from naphthols 2 and 7, respectively. When tested for inhibitory activity, five compounds (2, 3, 7, 10 and 13) showed preferential inhibition of COX-2 over COX-1, while compounds 4, 5 and 8 lacked inhibitory effect on either the COX-1 or COX-2 isozyme. The structure-activity relationships of these naphthols analyzed by docking experiments, indicated that the presence of hydroxyl group at C-1 position on the naphthalene nucleus enhanced the anti-inflammatory activity towards COX-2 via hydrogen bonding to the COX-2 Val 523 side chain. When this hydroxyl group was replaced by methoxy group, there was no inhibition. C-2' Dimethyl substituents on the propyl chain also increased the inhibitory activity. All active compounds have the C-1 hydroxyl group aligned so as to form hydrogen bond with Val 523. The results provide a model for the binding of the naphthol derivatives to COX-2 and facilitate the design of more potent or selective analogs prior to synthesis.  相似文献   

14.
The partial mu-opioid receptor pool inactivation strategy in isolated mouse vas deferens was used to determine partial agonism of endomorphins and their analogs (endomorphin-1-ol, 2',6'-dimethyltyrosine (Dmt)-endomorphin-1, endomorphin-2-ol and (D-Met2)-endomorphin-2) using morphine, normorphine, morphiceptin, (D-Ala2,MePhe4,Gly5-ol)-enkephalin (DAMGO) and its amide (DAMGA) as reference opioid agonists. Agonist affinities (KA) and efficacies were assessed both by the "null" and the "operational" method. The KA values determined by the two methods correlated significantly with each other and also with the displacing potencies against 3H-naloxone in the receptor binding assay in the presence of Na+. DAMGO and DAMGA were full agonist prototypes, morphine, endomorphin-1, endomorphin-1-ol, Dmt-endomorphin-1, endomorphin-2-ol and (D-Met2)-endomorphin-2 were found by both methods to be partial agonists whereas the parameters for normorphine, morphiceptin and endomorphin-2 were intermediate.  相似文献   

15.
Steroidal allenes, stigmasta-5,24(28),28-trien-3β-ol (allene-I) and cholesta-5,23,24-trien-3β-ol (allene-II), were tested for their inhibitory effects on growth, development, and steroid metabolism in the silkworm, Bombyx mori. The allenic analogue (I) of stigmasta-5,24(28)-dien-3β-ol (2) was found to be a specific inhibitor for the conversion of stigmast-5-en-3β-ol (1) to stigmasta-5, 24(28)-dien-3β-ol (2) and/or stigmasta-5,24(28)-dien-3β-ol (2) to 24,28-epoxy-stigmast-5-en-3β-ol (3) This inhibitor held the larvae in the second instar for more than 20 days without developing to the third instar, when administered alone or with the dietary sterols of stigmast-5-en-3β-ol (1) or stigmasta-5,24(28)-dien-3β-ol (2). The second allene (II) with a similar structure to cholesta-5,24-dien-3β-ol (4) was also found to be an inhibitor for insect growth and development, but it appeared not to be acting via inhibition of sterol dealkylation.  相似文献   

16.
1. A wide range of intermediary metabolites and substrate analogues have no effect on the oxidation of dl-1-aminopropan-2-ol to aminoacetone by washed-cell suspensions of Escherichia coli. Only dl-2-hydroxy-2-phenylethylamine, dl-1,3-diaminopropan-2-ol, dl-serine and l-1-(3,4-dihydroxyphenyl)-2-aminoethanol act as inhibitors. 2. Dialysed cell-free extracts of E. coli exhibit an NAD(+)-dependent dl-1-aminopropan-2-ol-dehydrogenase activity of approx. 8mmumoles of aminoacetone formed/mg. of protein/min. at the pH optimum of approx. 10. The K(m) values for the coenzyme and dl-amino alcohol are approx. 0.4 and 10.0mm respectively. A smaller peak of activity occurs at pH7.0-7.2, the K(m) for NAD(+) at pH7 being approx. 0.05mm. 3. Enzyme activity in cell-free extracts is inhibited by dl-2-hydroxy-2-phenylethylamine, dl-1-aminopropane-2,3-diol and dl-serine. dl-Phenylserine and dl-1-aminobutan-2-ol are oxidized to compounds reacting as amino ketones. 4. In fresh cell-free extracts l(+)-1-aminopropan-2-ol preparations are oxidized more rapidly than racemic or laevo-rotatory material, the d(-)-enantiomorph appearing to act as a competitive inhibitor. The K(m) for l(+)-1-aminopropan-2-ol appears to be approx. 1.5mm when highly resolved substrate preparations are used, either in the free base form or as the l(+)-tartrate salt. 5. l(+)-1-Aminopropan-2-ol dehydrogenase is a labile enzyme, and in appropriately treated extracts activity towards the d-enantiomorph is detectable and relatively higher than that towards the l-enantiomorph. 6. Optimum activity of l-threonine-dehydrogenase in cell-free extracts is exhibited at pH9.6 in the presence of NAD(+). The K(m) values for coenzyme and amino acid substrate are approx. 0.08 and 5.0mm respectively. This enzyme is distinct from 1-aminopropan-2-ol dehydrogenases on the basis of kinetic evidence, and the separation of activities by gel filtration. 7. Both l-threonine and dl-1-aminopropan-2-ol dehydrogenases are markedly inhibited by 8-hydroxyquinoline and p-chloromercuribenzoate, but only slightly by other chelating and thiol reagents. 8. E. coli is incapable of growth on simple synthetic media, containing a variety of carbon sources, when dl-1-aminopropan-2-ol is supplied as the sole source of nitrogen. It appears unlikely that the micro-organism can deaminate aminoacetone. 9. The metabolic roles of l-threonine dehydrogenase, aminoacetone and 1-aminopropan-2-ol dehydrogenases are discussed.  相似文献   

17.
A series of nine 3-arylamino-1-chloropropan-2-ols 2a-2i were synthesized and their anti-fungal activity against pathogenic strains of Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger and Candida albicans, and antibacterial activity against four pathogenic bacterial strains of Salmonella typhi, Pseudomonas aeruginosa, Streptococcus pneumonae and Staphylococcus aureus were evaluated using different assay systems. 1-Chloro-3-(4'-chlorophenylamino)-propan-2-ol was found to be the most active anti-fungal compound against three pathogenic strains under study, i.e., A. fumigatus, A. flavus and A. niger; the compound showed more than 90% inhibition of growth of A. fumigatus at a concentration of 5.85 microg/ml in disc diffusion assay. Interestingly, 1-chloro-3-(4'-chlorophenylamino)-propan-2-ol did not show any toxicity up to a concentration of 4000 microg/ml. Although 1-chloro-3-(4'-chlorophenylamino)-propan-2-ol was about 8 times less active than the standard compound amphotericin B, its toxicity was many more fold less than the toxicity of amphotericin B. Further, 1-chloro-3-(2',6'-dichlorophenylamino)-propan-2-ol and 1-chloro-3-(3',5'-dichlorophenylamino)-propan-2-ol were found to be the most active compounds against C. albicans. In the anti-microbial assay, 1-chloro-3-(2',4'-dichlorophenylamino)-propan-2-ol and 1-chloro-3-(3',5'-dichlorophenylamino)-propan-2-ol were found to be the most active compounds against Salmonella typhi and 1-chloro-3-(3',4'-dichlorophenylamino)-propan-2-ol was found to be the most active compound against P. aeruginosa. Although, the activities of 1-chloro-3-(2',4'-dichlorophenylamino)-propan-2-ol and 1-chloro-3-(3',5'-dichlorophenylamino)-propan-2-ol are about half the activity of the standard anti-bacterial compound tetracycline, these compounds also were many fold less toxic than the standard drug.  相似文献   

18.
A culture of Aspergillus flavus grown on moistened wheat meal was homogenized with a blendor, and the resulting slurry was vacuum-distilled at 5 mm of Hg and 35 C. The aqueous distillate was collected in traps cooled to -10 to -80 C. The culture volatiles were extracted from the distillate with CH(2)Cl(2), and, after removal of the bulk of the solvent, the concentrated volatiles were examined by packed-column gas chromatography. Nineteen peaks were observed, and coupled gas chromatography-mass spectrometry was employed to identify the larger components. The compounds identified were: 3-methyl-butanol, 3-octanone, 3-octanol, 1-octen-3-ol, 1-octanol, and cis-2-octen-1-ol. The two octenols were the predominant compounds, and sufficient sample was trapped from the gas chromatograph for infrared analyses; this confirmed the mass spectral identifications and permitted the assignment of the cis designation to 2-octen-1-ol. Both oct-1-en-3-ol and cis-2-octen-1-ol are thought to be responsible for the characteristic musty-fungal odor of certain fungi; the latter compound may be a useful chemical index of fungal growth.  相似文献   

19.
When Chlorella sorokiniana was cultured in the presence of 1 mg/1 triparanol succinate, there was a 42% reduction in total sterol concentration. Algal biomass was reduced by approximately the same amount. In addition to the cycloartenol, cyclolaudenol, 24-methyl-pollinastanol, ergosta-5, 7-dien-3β-ol, and ergosterol that occur in control culture, pollinastanol, 14α-methyl-5α-ergost-8-en-3β-ol, 5α-ergosta-8, 14, 22-trien-3β-ol, 5α-ergosta-8(14), 22-dien-3β-ol, 5α-ergosta-8(9), 22-dien-3β-ol, 5α-ergosta-8, 14-dien-3β-ol, 5α-ergost-8(9)-3n-3β-ol, 5α-ergost-8(14)-en-3β-ol, 5α-ergosta-7, 22-dien-3β-ol, and 5α-ergost-7-en-3β-ol were isolated and identified from triparanol succinate-treated cells. A biosynthetic pathway for sterol biosynthesis in this organism is postulated based on all the sterols that were isolated and identified in triparanol-treated cultures of C. sorokiniana. Cyclolaudenol appears to be the product of the first alkylation at C-24 in this organism rather than the more common 24-methylene cycloartanol. Since 24-methylene sterols are needed for the second alkylation reaction, this would explain the absence of C-29 sterols in C. sorokiniana. Four of the sterols identified in C. sorokiniana are reported for the first time in a living organism. They are: 24-methyl pollinastanol, 5α-ergosta-8, 14, 22-trien-3β-ol, 5α-ergosta-8(14), 22-dien-3β-ol and 5α-ergost-8(14)-en-3β-ol.  相似文献   

20.
A rapid simple method for the assay of renin in rabbit plasma   总被引:5,自引:4,他引:1       下载免费PDF全文
1. EDTA (10mm), 2,3-dimercaptopropan-1-ol (10mm) and chlorhexidine gluconate (0.005%, w/v) cause complete inactivation of plasma enzymes that degrade angiotensin I, but have no effect on the reaction of renin with its substrate. The reagents were termed the selective inhibitors. 2. Thus it is possible to measure renin in plasma by its ability to catalyse the release of angiotensin I. 3. Sterile plasma, treated with the selective inhibitors, is incubated with renin substrate (500-1000ng. of angiotensin content/ml.) at pH6 at 42 degrees for 6hr. 4. Under these conditions the reaction obeys first-order kinetics. Renin activity is calculated in terms of the percentage release of the angiotensin content/hr. 5. As described, the assay is sufficiently sensitive to measure renin in the plasma of all normal rabbits. By extending the length of the incubation, much lower activities can be measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号