首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kumar S  Lee IH  Plamann M 《Biochimie》2000,82(3):229-236
Cytoplasmic dynein is a force-producing enzyme that, in association with dynactin, conducts minus-end directed transport of various organelles along microtubules. Biochemical analyses of cytoplasmic dynein and dynactin have been conducted primarily in vertebrate systems, whereas genetic analyses have been explored mainly in yeast and the filamentous fungi. To provide a complementary biochemical approach for the study of fungal dynein, we isolated/partially purified cytoplasmic dynein ATPase from the filamentous fungus Neurospora crassa. N. crassa dynein was partially purified by slightly modifying the existing procedures, described for mammalian cytoplasmic dynein that uses dynein-microtubule binding, followed by release with ATP and sucrose gradient fractionation. A novel approach was also used to isolate dynein-specific ATPase by gel filtration (Sepharose CL-4B). The K(m), ATP obtained by isolating dynein ATPase using gel filtration was similar to that obtained by using conventional method, suggests that contaminant proteins do not interfere with the dynein ATPase activity. Like vertebrate dynein, N. crassa dynein is a general NTPase with highest activity toward ATP, and only the ATPase activity is stimulated by microtubules. The K(m), ATP for N. crassa cytoplasmic dynein is 10- to 15-fold higher than that of the vertebrate enzyme.  相似文献   

2.
Of the actin-related proteins, Arp1 is the most similar to conventional actin, and functions solely as a component of the multisubunit complex dynactin. Dynactin has been identified as an activator of the microtubule-associated motor cytoplasmic dynein. The role of Arp1 within dynactin is two-fold: (1) it serves as a structural scaffold protein for other dynactin subunits; and (2) it has been proposed to link dynactin, and thereby dynein, with membranous cargo via interaction with spectrin. Using the filamentous fungus Neurospora crassa, we have identified genes encoding subunits of cytoplasmic dynein and dynactin. In this study, we describe a genetic screen for N. crassa Arp1 (ro-4) mutants that are defective for dynactin function. We report that the ro-4(E8) mutant is unusual in that it shows alterations in the localization of cytoplasmic dynein and dynactin and in microtubule organization. In the mutant, dynein/dynactin complexes co-localize with bundled microtubules at hyphal tips. Given that dynein transports membranous cargo from hyphal tips to distal regions, the cytoplasmic dynein and dynactin complexes that accumulate along microtubule tracts at hyphal tips in the ro-4(E8) mutant may have either reduced motor activity or be delayed for activation of motor activity following cargo binding.  相似文献   

3.
Dynactin is a multisubunit complex that regulates the activities of cytoplasmic dynein, a microtubule-associated motor. Actin-related protein 1 (Arp1) is the most abundant subunit of dynactin, and it forms a short filament to which additional subunits associate. An Arp1 filament pointed-end--binding subcomplex has been identified that consists of p62, p25, p27, and Arp11 subunits. The functional roles of these subunits have not been determined. Recently, we reported the cloning of an apparent homologue of mammalian Arp11 from the filamentous fungus Neurospora crassa. Here, we report that N. crassa ro-2 and ro-12 genes encode the respective p62 and p25 subunits of the pointed-end complex. Characterization of Delta ro-2, Delta ro-7, and Delta ro-12 mutants reveals that each has a distinct phenotype. All three mutants have reduced in vivo vesicle trafficking and have defects in vacuole distribution. We showed previously that in vivo dynactin function is required for high-level dynein ATPase activity, and we find that all three mutants have low dynein ATPase activity. Surprisingly, Delta ro-12 differs from Delta ro-2 and Delta ro-7 and other previously characterized dynein/dynactin mutants in that it has normal nuclear distribution. Each of the mutants shows a distinct dynein/dynactin localization pattern. All three mutants also show stronger dynein/dynactin-membrane interaction relative to wild type, suggesting that the Arp1 pointed-end complex may regulate interaction of dynactin with membranous cargoes.  相似文献   

4.
The microtubule-based motor molecule cytoplasmic dynein has been proposed to be regulated by a variety of mechanisms, including phosphorylation and specific interaction with the organelle-associated complex, dynactin. In this study, we examined whether the intermediate chain subunits of cytoplasmic dynein are involved in modulation of ATP hydrolysis, and thereby affect motility. Treatment of testis cytoplasmic dynein under hypertonic salt conditions resulted in separation of the intermediate chains from the remainder of the dynein molecule, and led to a 4-fold enhancement of ATP hydrolysis. This result suggests that the accessory subunits act as negative regulators of dynein heavy chain activity. Comparison of ATPase activities of dyneins with differing intermediate chain isoforms showed significant differences in basal ATP hydrolysis rates, with testis dynein 7-fold more active than dynein from brain. Removal of the intermediate chain subunits led to an equalization of ATPase activity between brain and testis dyneins, suggesting that the accessory subunits are responsible for the observed differences in tissue activity. Finally, our preparative procedures have allowed for the identification and purification of a 1:1 complex of dynein with dynactin. As this interaction is presumed to be mediated by the dynein intermediate chain subunits, we now have defined experimental conditions for further exploration of dynein enzymatic and motility regulation.  相似文献   

5.
Kon T  Nishiura M  Ohkura R  Toyoshima YY  Sutoh K 《Biochemistry》2004,43(35):11266-11274
Cytoplasmic dynein is a microtubule-based motor protein that is responsible for most intracellular retrograde transports along microtubule filaments. The motor domain of dynein contains six tandemly linked AAA (ATPases associated with diverse cellular activities) modules, with the first four containing predicted nucleotide-binding/hydrolysis sites (P1-P4). To dissect the functions of these multiple nucleotide-binding/hydrolysis sites, we expressed and purified Dictyostelium dynein motor domains in which mutations were introduced to block nucleotide binding at each of the four AAA modules, and then examined their detailed biochemical properties. The P1 mutant was trapped in a strong-binding state even in the presence of ATP and lost its motile activity. The P3 mutant also showed a high affinity for microtubules in the presence of ATP and lost most of the microtubule-activated ATPase activity, but retained microtubule sliding activity, although the sliding velocity of the mutant was more than 20-fold slower than that of the wild type. In contrast, mutation in the P2 or P4 site did not affect the apparent binding affinity of the mutant for microtubules in the presence of ATP, but reduced ATPase and microtubule sliding activities. These results indicate that ATP binding and its hydrolysis only at the P1 site are essential for the motor activities of cytoplasmic dynein, and suggest that the other nucleotide-binding/hydrolysis sites regulate the motor activities. Among them, nucleotide binding at the P3 site is not essential but is critical for microtubule-activated ATPase and motile activities of cytoplasmic dynein.  相似文献   

6.
Dynactin is a multisubunit complex that is required for cytoplasmic dynein, a minus-end-directed, microtubule-associated motor, to efficiently transport vesicles along microtubules in vitro. p150Glued, the largest subunit of dynactin, has been identified in vertebrates and Drosophila and recently has been shown to interact with cytoplasmic dynein intermediate chains in vitro. The mechanism by which dynactin facilitates cytoplasmic dynein-dependent vesicle transport is unknown. We have devised a genetic screen for cytoplasmic dynein/dynactin mutants in the filamentous fungus Neurospora crassa. In this paper, we report that one of these mutants, ro-3, defines a gene encoding an apparent homologue of p150Glued, and we provide genetic evidence that cytoplasmic dynein and dynactin interact in vivo. The major structural features of vertebrate and Drosophila p150Glued, a microtubule-binding site at the N-terminus and two large alpha-helical coiled-coil regions contained within the distal two-thirds of the polypeptide, are conserved in Ro3. Drosophila p150Glued is essential for viability; however, ro-3 null mutants are viable, indicating that dynactin is not an essential complex in N. crassa. We show that N. crassa cytoplasmic dynein and dynactin mutants have abnormal nuclear distribution but retain the ability to organize cytoplasmic microtubules and actin in anucleate hyphae.  相似文献   

7.
动力蛋白激活蛋白(dynactin) 是一个与胞浆内动力蛋白的功能相关的多亚基复合物.动力蛋白(dynein)为向微管负端运输的马达蛋白,其多种功能包括细胞核迁移、有丝分裂纺锤体定位以及细胞间期和有丝分裂的细胞骨架再组装.Dynamitin,是一个50 kD的动力蛋白激活蛋白亚单位, 对于稳定动力蛋白激活蛋白复合物是非常重要的.为研究这种稳定性机制,分析了dynamitin的序列,并揭示dynamitin的一些DNA序列与ATP酶的Walker A 和 Walker B 序列具有同源性.纯化的谷胱甘肽巯基转移酶标签蛋白dynamitin和无此标签的蛋白dynamitin都特异性显示了ATP酶活性.DNA序列Walker A的失活突变可废除dynamitin蛋白的ATP酶活性,而Walker B 序列无此作用.因此,突变实验进一步证实dynamitin蛋白的ATP酶活性.ATP酶活性的动力学研究结果表明Km为 125.78μmol/L和 Kcat 为7.4 min-1  相似文献   

8.
When 21S dynein ATPase [EC 3.6.1.3] from sea urchin sperm flagellar axonemes was mixed with the salt-extracted axonemes, the ATPase activity was much higher than the sum of ATPase activities in the two fractions, as reported previously (Gibbons, I.R. & Fronk, E. (1979) J. Biol. Chem. 254, 187-196). This high ATPase level was for the first time demonstrated to be due to the activation of the 21S dynein ATPase activity by the axonemes. The mode of the activation was studied to get an insight into the mechanism of dynein-microtubule interaction. The salt-extracted axonemes caused a 7- to 8-fold activation of the 21S dynein ATPase activity at an axoneme : dynein weight ratio of about 14 : 1. The activation was maximal at a low ionic strength (no KCl) at pH 7.9-8.3. Under these conditions, 21S dynein rebound to the salt-extracted axonemes. The maximal binding ratio of 21S dynein to the axonemes was the same as that observed in the maximal activation of 21S dynein ATPase. The sliding between the outer doublet microtubules in the trypsin-treated 21S dynein-rebound axonemes took place upon the addition of 0.05-0.1 mM ATP in the absence of KCl. During the sliding, the rate of ATP hydrolysis was at the same level as that of the 21S dynein activated by the salt-extracted axonemes. However, it decreased to the level of 21S dynein alone after the sliding. These results suggested that an interaction of the axoneme-rebound 21S dynein with B-subfibers of the adjacent outer doublet microtubules in the axoneme causes the activation of the ATPase activity.  相似文献   

9.
10.
Central to the chaperone function of Hsp70 stress proteins including Escherichia coli DnaK is the ability of Hsp70 to bind unfolded protein substrates in an ATP-dependent manner. Mg2+/ATP dissociates bound substrates and, furthermore, substrate binding stimulates the ATPase of Hsp70. This coupling is proposed to require a glutamate residue, E175 of bovine Hsc70, that is entirely conserved within the Hsp70 family, as it contacts bound Mg2+/ATP and is part of a hinge required for a postulated ATP-dependent opening/closing movement of the nucleotide binding cleft which then triggers substrate release. We analyzed the effects of dnaK mutations which alter the corresponding glutamate-171 of DnaK to alanine, leucine or lysine. In vivo, the mutated dnaK alleles failed to complement the delta dnaK52 mutation and were dominant negative in dnaK+ cells. In vitro, all three mutant DnaK proteins were inactive in known DnaK-dependent reactions, including refolding of denatured luciferase and initiation of lambda DNA replication. The mutant proteins retained ATPase activity, as well as the capacity to bind peptide substrates. The intrinsic ATPase activities of the mutant proteins, however, did exhibit increased Km and Vmax values. More importantly, these mutant proteins showed no stimulation of ATPase activity by substrates and no substrate dissociation by Mg2+/ATP. Thus, glutamate-171 is required for coupling of ATPase activity with substrate binding, and this coupling is essential for the chaperone function of DnaK.  相似文献   

11.
The kinetics of ATP-induced dissociation of dynein from the dynein-microtubule complex has been investigated by stopped flow light scattering methods. The addition of ATP to the dynein-microtubule complex induced a large, rapid decrease in light scattering followed by a smaller and much slower decrease. The fast light scattering change was shown to be a measure of the ATP-induced dissociation of dynein from the dynein-microtubule complex and was distinguished from microtubule disassembly by several criteria. (i) The fast reaction occurred over a period of milliseconds and the rate was a function of the ATP concentration, whereas, the slow reaction occurred over a period of several seconds and was independent of ATP concentration; (ii) the amplitude of the fast reaction was directly proportional to the amount of dynein bound to the microtubule lattice; and (iii) only the slow phase was inhibited by the addition of the microtubule-stabilizing drug, taxol. The rate of ATP-induced dissociation of dynein from the microtubule increased linearly with increasing ATP concentration to give an apparent second order rate constant for ATP binding equal to k1 = 4.7 X 10(6) M-1 s-1 according to the following pathway: (formula; see text) where M X D represents the dynein-microtubule complex and D represents dynein. The loss of signal amplitude at high ATP concentration provided a minimum estimate for the rate of dissociation of the ternary complex (M X D X ATP) equal to kd greater than 1000 s-1. Thus, the dynein-microtubule system is similar to actomyosin in that ATP induces an extremely rapid dissociation of dynein from the microtubule.  相似文献   

12.
Oxidative phosphorylation, ATP-32Pi exchange, ATP-dependent quenching of acridine-dye fluorescence, ATP-dependent transhydrogenase and ATP-dependent transport of thiomethyl beta-D-galactoside are shown to be experimentally equivalent tools to study the functional state of the ATPase complex in Escherichia coli wild-type and mutant strains defective in oxidative phosphorylation. According to these criteria ten mutants in the ATPase complex were classified having lesions in the unc A,B region of the chromosome. The first mutant type lacks ATPase activity, but the membrane-integrated part of the complex remains functional (class I). The second mutant type lacks a functional membrane-integrated part, but retains ATPase activity (class II). The third mutant type is shown to be defective in both parts of the ATPase complex (class III).  相似文献   

13.
Cytoplasmic dynein supports long-range intracellular movements of cargo in vivo but does not appear to be a processive motor protein by itself. We show here that the dynein activator, dynactin, binds microtubules and increases the average length of cytoplasmic-dynein-driven movements without affecting the velocity or microtubule-stimulated ATPase kinetics of cytoplasmic dynein. Enhancement of microtubule binding and motility by dynactin are both inhibited by an antibody to dynactin's microtubule-binding domain. These results indicate that dynactin acts as a processivity factor for cytoplasmic-dynein-based motility and provide the first evidence that cytoskeletal motor processivity can be affected by extrinsic factors.  相似文献   

14.
Transport of cellular and neuronal vesicles, organelles, and other particles along microtubules requires the molecular motor protein dynein (Mallik and Gross, 2004). Critical to dynein function is dynactin, a multiprotein complex commonly thought to be required for dynein attachment to membrane compartments (Karki and Holzbaur, 1999). Recent work also has found that mutations in dynactin can cause the human motor neuron disease amyotrophic lateral sclerosis (Puls et al., 2003). Thus, it is essential to understand the in vivo function of dynactin. To test directly and rigorously the hypothesis that dynactin is required to attach dynein to membranes, we used both a Drosophila mutant and RNA interference to generate organisms and cells lacking the critical dynactin subunit, actin-related protein 1. Contrary to expectation, we found that apparently normal amounts of dynein associate with membrane compartments in the absence of a fully assembled dynactin complex. In addition, anterograde and retrograde organelle movement in dynactin deficient axons was completely disrupted, resulting in substantial changes in vesicle kinematic properties. Although effects on retrograde transport are predicted by the proposed function of dynactin as a regulator of dynein processivity, the additional effects we observed on anterograde transport also suggest potential roles for dynactin in mediating kinesin-driven transport and in coordinating the activity of opposing motors (King and Schroer, 2000).  相似文献   

15.
The Escherichia coli cold shock protein CsdA is a member of the DEAD box family of ATP-dependent RNA helicases, which share a core of nine conserved motifs. The DEAD (Asp-Glu-Ala-Asp) motif for which this family is named has been demonstrated to be essential for ATP hydrolysis. We show here that CsdA exhibits in vitro ATPase and helicase activities in the presence of short RNA duplexes with either 3' or 5' extensions at 15 degrees C. In contrast to wild-type CsdA, a DQAD variant of CsdA (Glu-157-->Gln) had no detectible helicase or ATPase activity at 15 degrees C in vitro. A plasmid encoding the DQAD variant was also unable to suppress the impaired growth of the csdA null mutant at 15 degrees C. Plasmid-encoded CsdADelta444, which lacks most of the carboxy-terminal extension, enhanced the growth of a csdA null mutant at 25 degrees C but not at 15 degrees C; this truncated protein also has limited in vitro activity at 15 degrees C. These results support the physiological function of CsdA as a DEAD box ATP-dependent RNA helicase at low temperature.  相似文献   

16.
Escherichia coli mutants defective in the uncH gene.   总被引:17,自引:14,他引:3       下载免费PDF全文
Plasmids carrying cloned segments of the unc operon of Escherichia coli have been used in genetic complementation analyses to identify three independent mutants defective in the uncH gene, which codes for the delta subunit of the ATP synthetase. Mutations in other unc genes have also been mapped by this technique. ATPase activity was present in extracts of the uncH mutants, but the enzyme was not as tightly bound to the membrane as it was in the parental strain. ATP-dependent membrane energization was absent in membranes isolated from the uncH mutants and could not be restored by adding normal F1 ATPase from the wild-type strain. F1 ATPase prepared from uncH mutants could not restore ATP-dependent membrane energization when added to wild-type membranes depleted of F1. Membranes of the uncH mutants were not rendered proton permeable as a result of washing with low-ionic-strength buffer.  相似文献   

17.
Movement and distribution of nuclei in fungi has been shown to be dependent on microtubules and the microtubule-associated motor cytoplasmic dynein. Neurospora crassa mutants known as ropy are defective in nuclear distribution. We have shown that three of the ro genes, ro-1, ro-3, and ro-4, encode subunits of either cytoplasmic dynein or the dynein activator complex, dynactin. Three other ro genes, ro-7, ro-10, and ro-11, are required for the integrity or localization of cytoplasmic dynein or dynactin. In this report, we describe a microscopic analysis of N. crassa ro mutants. Our results reveal that defects in germination of conidia, placement of septa, and mitochondrial morphology are typical of ro mutants. Two classes of cytoplasmic microtubules are identified in wild-type and ro mutants. One class of microtubules has no obvious association with nuclei while the other class of microtubules connects spindle pole bodies of adjacent nuclei. The possible role of internuclear microtubule tracts in the movement and distribution of nuclei is discussed.  相似文献   

18.
J D Moore  H Song  S A Endow 《The EMBO journal》1996,15(13):3306-3314
Non-claret disjunctional (Ncd) is a kinesin-related microtubule motor protein in Drosophila that functions in meiotic spindle assembly in oocytes and spindle pole maintenance in early embryos. The partial loss-of-function mutant ncdD retains mitotic, but not meiotic, function. The predicted NcdD mutant protein contains a V556-->F mutation in the putative microtubule binding region of the Ncd motor domain. Here we report an analysis of the properties of recombinant Ncd and NcdD proteins. A GST-NcdD fusion protein translocated microtubules approximately 10-fold more slowly than the corresponding wild-type protein in gliding assays. The maximum microtubule-stimulated ATPase activity of an NcdD motor domain protein was reduced approximately 3-fold and an approximately 3-fold greater concentration of microtubules was required for half-maximal stimulation of ATPase activity, compared with the corresponding wild-type protein. The Km for ATP and basal rate of ATP turnover were, in contrast, similar for the NcdD mutant and wild-type Ncd motor domain proteins. Pelleting assays demonstrated that the binding of the mutant NcdD motor protein to microtubules was reduced in the absence of nucleotide, relative to wild-type. The reduced velocity of NcdD translocation on microtubules is therefore correlated with reductions in microtubule-stimulated ATPase activity and affinity of the mutant motor for microtubules. The characteristics of the NcdD motor explain its meiotic loss of function, and are consistent with partial motor activity of Ncd being sufficient for its mitotic, but not its meiotic, role.  相似文献   

19.
The dynactin complex contains proteins including p150 that interacts with cytoplasmic dynein and an actin-related protein Arp1 that forms a minifilament. Proteins including Arp11 and p62 locate at the pointed end of the Arp1 filament, but their biochemical functions are unclear (Schroer TA. Dynactin. Annu Rev Cell Dev Biol 2004;20:759–779). In Aspergillus nidulans , loss of Arp11 or p62 causes the same nu clear d istribution (nud) defect displayed by dynein mutants, indicating that these pointed-end proteins are essential for dynein function. We constructed a strain with S-tagged p150 of dynactin that allows us to pull down components of the dynactin and dynein complexes. Surprisingly, while the ratio of pulled-down Arp1 to S-p150 in Arp11-depleted cells is clearly lower than that in wild-type cells, the ratio of pulled-down dynein to S-p150 is significantly higher. We further show that the enhanced dynein–dynactin interaction in Arp11-depleted cells is also present in the soluble fraction and therefore is not dependent upon the affinity of these proteins to the membrane. We suggest that loss of the pointed-end proteins alters the Arp1 filament in a way that affects the conformation of p150 required for its proper interaction with the dynein motor.  相似文献   

20.
Dynein is a minus-end-directed microtubule motor with critical roles in mitosis, membrane transport and intracellular transport. Several proteins regulate dynein activity, including dynactin, LIS1 (refs 2, 3) and NudEL (NudE-like). Here, we identify a NUDEL homologue in budding yeast and name it Ndl1. The ndl1delta null mutant shows decreased targeting of dynein to microtubule plus ends, an essential element of the model for dynein function. We find that Ndl1 regulates dynein targeting through LIS1, with which it interacts biochemically, but not through CLIP170, another plus-end protein involved in dynein targeting. Ndl1 is found at far fewer microtubule ends than are LIS1 and dynein. However, when Ndl1 is present at a plus end, the molar amount of Ndl1 approaches that of LIS1 and dynein. We propose a model in which Ndl1 binds transiently to the plus end to promote targeting of LIS1, which cooperatively recruits dynein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号