首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A two-dimensional, finite element study was undertaken to establish the stresses in the proximal tibia before and after total knee arthroplasty. Equivalent-thickness models in a sagittal plane were created for the natural, proximal tibia and for the proximal tibia with two different types of tibial plateau components. All components simulated bony ingrowth fixation, i.e. no cement layer existed between component and bone. In addition, the interface between component and bone was assumed to be intimately connected, representing complete bony ingrowth and a rigid state of fixation. Two load cases were considered: a joint reaction force acting in conjunction with a patellar ligament force, simulating the knee at 40 degrees of flexion; and a joint reaction force directed along the long axis of the tibia. For the natural tibia model, the pattern of principal stresses for loadcase 1 more closely corresponds to the epiphyseal plate geometry and trabecular morphology than do the principal stress patterns for loadcase 2. Judging from the distribution of principal stresses, loadcase 1 represents a more severe test of implant design than does loadcase 2. The model of the component with a peg predicted that the trabecular bone near the tip of the peg will experience higher than normal stresses, while the bone stresses near the posterior aspect adjacent to the metal tray will be reduced. A component without pegs that incorporates a posterior chamfer and an anterior lip lead to stress distributions closer to those existing in the natural tibia. The interface geometry for this design is based upon the contour of the epiphyseal plate.  相似文献   

2.
Abstract

A three dimensional nonlinear finite element model was developed to investigate tibial fixation designs and friction models (Coulomb's vs nonlinear) in total knee arthroplasty in the immediate postoperative period with no biological attachment. Bi-directional measurement-based nonlinear friction constitutive equations were used for the bone-porous coated implant interface. Friction properties between the polyethylene and femoral components were measured for this study. Linear elastic isotropic but heterogeneous mechanical properties taken from literature were considered for the bone. The Tensile behaviour of polyethylene was measured and subsequently modeled by an elasto-plastic model. Based on the earlier finite element and experimental pull-out studies, pegs and screws were also realistically modeled. The geometry of every component was obtained through measurement. The PCA tibial baseplate with three different configurations was considered; one with three screws, one with one screw and two short inclined porous-coated pegs, and a third one with no fixation for the sake of comparison. The axial load of 2000N was applied through the femoral component on the medial plateau of articular insert. It was found that Coulomb's friction significantly underestimates the relative micromotion at the bone-implant interface. The lowest micromotion and lift-off were found for the design with screws. Relative micromotion and stress transfer at the bone-implant interface depended significantly on the friction model and on the baseplate anchorage configuration. Cortical and cancellous bones carried, respectively, 10–13% and 65–86% of the axial load depending on the fixation configuration used. The remaining portion was transmitted as shear force by screws and pegs. Normal and Mises stresses as well as contact area in the polyethylene insert were nearly independent of the baseplate fixation design. The Maximum Mises stress in the polyethylene exceeded yield and was found 1–2 mm below the contact surface for all designs.  相似文献   

3.
A variety of bone chambers are used in orthopedic research to study bone and tissue ingrowth in small and large animals. If different bone chambers are placed in one species, differences in bone ingrowth are observed. For instance, bone ingrowth in the bone conduction chamber (BCC) is high, but is low or absent in the repeated sampling bone chamber (RSBC). This difference may be explained by the design and fixation of these chambers. It is known that stress shielding and micromovement can influence bone formation. The objective of the study reported here was to determine whether stress shielding or soft tissue movement affected bone ingrowth in the BCC in the goat. Two types of caps were made, with fixation similar to that of the fixation plate of the RSBC. By placing the caps over the BCCs and fixating the caps directly to the tibial bone, the effect of stress shielding was studied. One cap was in direct contact with the bone chamber underneath, the other cap did not touch the chamber. This difference was used to observe whether movement of the soft tissue on top of the chamber and cap would affect bone ingrowth. Each limb received one control chamber without a cap and a chamber with a cap, either with or without contacting the BCC, yielding four implants per goat. After 12 weeks, bone and total tissue ingrowths were measured. Bone ingrowth was seen in 38 of 40 chambers. Total tissue and bone ingrowths were comparable between control chambers and BCCs with a cap, irrespective of type. Neither stress shielding, nor lack of movement of soft tissue affected bone ingrowth. Other factors in the design of the chambers were responsible for the difference in bone ingrowth between the BCC and the RSBC.  相似文献   

4.
A three dimensional nonlinear finite element model was developed to investigate tibial fixation designs and friction models (Coulomb's vs nonlinear) in total knee arthroplasty in the immediate postoperative period with no biological attachment. Bi-directional measurement-based nonlinear friction constitutive equations were used for the bone-porous coated implant interface. Friction properties between the polyethylene and femoral components were measured for this study. Linear elastic isotropic but heterogeneous mechanical properties taken from literature were considered for the bone. The Tensile behaviour of polyethylene was measured and subsequently modeled by an elasto-plastic model. Based on the earlier finite element and experimental pull-out studies, pegs and screws were also realistically modeled. The geometry of every component was obtained through measurement. The PCA tibial baseplate with three different configurations was considered; one with three screws, one with one screw and two short inclined porous-coated pegs, and a third one with no fixation for the sake of comparison. The axial load of 2000N was applied through the femoral component on the medial plateau of articular insert. It was found that Coulomb's friction significantly underestimates the relative micromotion at the bone-implant interface. The lowest micromotion and lift-off were found for the design with screws. Relative micromotion and stress transfer at the bone-implant interface depended significantly on the friction model and on the baseplate anchorage configuration. Cortical and cancellous bones carried, respectively, 10-13% and 65-86% of the axial load depending on the fixation configuration used. The remaining portion was transmitted as shear force by screws and pegs. Normal and Mises stresses as well as contact area in the polyethylene insert were nearly independent of the baseplate fixation design. The Maximum Mises stress in the polyethylene exceeded yield and was found 1-2 mm below the contact surface for all designs.  相似文献   

5.
Theoretical concerns about the use of cemented or press-fit stems in revision total knee arthroplasty (TKA) include stress shielding with adverse effects on prosthesis fixation. Revision TKA components are commonly stemmed to protect the limited autogenous bone stock remaining. Revision procedures with the use of stems can place abnormal stresses through even normal bone by their constrained design, type of materials and fixation method and may contribute for bone loss. Experimental quantification of strain shielding in the proximal synthetic tibia following TKA is the main purpose of the present study. In this study, cortical bone strains were measured experimentally with tri-axial strain gauges in synthetic tibias before and after in vitro knee surgery. Three tibias were implanted with cemented and press-fit stem augments and solely with a tibial tray (short monobloc stem) of the P.F.C. Sigma Modular Knee System. The difference between principal strains of the implanted and the intact tibia was calculated for each strain gauge position. The results demonstrated a pronounced strain-shielding effect in the proximal level, close to tibial tray with the cemented stem augment. The press-fit stem presented a minor effect of strain shielding but was more extensively throughout the stem. An increase of strains closely to the distal tip of the cemented and the press-fit stem augment was observed. This suggests for a physiological condition, a potential effect of bone resorption at the proximal region for the cemented stem augment. The localized increase of strains in stems tip can be related with the clinical finding of the pain, at the end of stem after revision TKA.  相似文献   

6.
Bone ingrowth simulation for a concept glenoid component design   总被引:5,自引:0,他引:5  
Glenoid component loosening is the major problem of total shoulder arthroplasty. It is possible that uncemented component may be able to achieve superior fixation relative to cemented component. One option for uncemented glenoid is to use porous tantalum backing. Bone ingrowth into the porous backing requires a degree of stability to be achieved directly post-operatively. This paper investigates the feasibility of bone ingrowth with respect to the influence of primary fixation, elastic properties of the backing and friction at the bone prosthesis interface. Finite element models of three glenoid components with different primary fixation configurations are created. Bone ingrowth into the porous backing is modelled based on the magnitude of the relative interface micromotions and mechanoregulation of the mesenchymal stem cells that migrated via the bonded part of the interface. Primary fixation had the most influence on bone ingrowth. The simulation showed that its major role was not to firmly interlock the prosthesis, but rather provide such a distribution of load, that would result in reduction of the peak interface micromotions. Should primary fixation be provided, friction has a secondary importance with respect to bone ingrowth while the influence of stiffness was counter intuitive: a less stiff backing material inhibits bone ingrowth by higher interface micromotions and stimulation of fibrous tissue formation within the backing.  相似文献   

7.
Periprosthetic bone resorption after tibial prosthesis implantation remains a concern for long-term fixation performance. The fixation techniques may inherently aggravate the "stress-shielding" effect of the implant, leading to weakened bone foundation. In this study, two cemented tibial fixation cases (fully cemented and hybrid cementing with cement applied under the tibial tray leaving the stem uncemented) and three cementless cases relying on bony ingrowth (no, partial and fully ingrown) were modelled using the finite element method with a strain-adaptive remodelling theory incorporated to predict the change in the bone apparent density after prosthesis implantation. When the models were loaded with physiological knee joint loads, the predicted patterns of bone resorption correlated well with reported densitometry results. The modelling results showed that the firm anchorage fixation formed between the prosthesis and the bone for the fully cemented and fully ingrown cases greatly increased the amount of proximal bone resorption. Bone resorption in tibial fixations with a less secure anchorage (hybrid cementing, partial and no ingrowth) occurred at almost half the rate of the changes around the fixations with a firm anchorage. The results suggested that the hybrid cementing fixation or the cementless fixation with partial bony ingrowth (into the porous-coated prosthesis surface) is preferred for preserving proximal tibial bone stock, which should help to maintain post-operative fixation stability. Specifically, the hybrid cementing fixation induced the least amount of bone resorption.  相似文献   

8.
Finite element stress analyses were conducted of the canine femoral head before and after implantation of various surface replacement-type components. The femoral head was replaced by four implant geometries; (a) shell, (b) shell with peg, (c) shell with rod, and (d) a new epiphyseal replacement design. All implants were modelled to simulate bony ingrowth along the underside of the shell and along the surfaces of the peg and rod. The results indicated that in the normal femur the forces are transferred from the articular surface through the femoral head cancellous bone to the inferior cortical shell of the femoral neck. After shell-type surface replacement, forces were transferred more distally at the rim of the shell and at the end of the peg or rod, thereby reducing the stresses in the proximal head cancellous bone. Computer simulation of bone remodelling due to proximal bone stress reduction was shown to accentuate the abnormality of the stress fields. Surface replacement with a lower modulus material created a less abnormal redistribution of bone stresses. The new epiphyseal replacement design resulted in stress distributions similar to those in the normal femoral head and minimal shear stresses at the implant/bone interface. These findings suggest that the epiphyseal replacement concept may provide better initial mechanical integrity and create a more benign milieu for adaptive bone remodelling than conventional, shell-type surface replacement components.  相似文献   

9.
Ceramic hip resurfacing may offer improved wear resistance compared to metallic components. The study is aimed at investigating the effects of stiffer ceramic components on the stress/strain-related failure mechanisms in the resurfaced femur, using three-dimensional finite element models of intact and resurfaced femurs with varying stem–bone interface conditions. Tensile stresses in the cement varied between 1 and 5 MPa. Postoperatively, 20–85% strain shielding was observed inside the resurfaced head. The variability in stem–bone interface condition strongly influenced the stresses and strains generated within the resurfaced femoral head. For full stem–bone contact, high tensile (151–158 MPa) stresses were generated at the cup–stem junction, indicating risk of fracture. Moreover, there was risk of femoral neck fracture due to elevated bone strains (0.60–0.80% strain) in the proximal femoral neck region. Stresses in the ceramic component are reduced if a frictionless gap condition exists at the stem–bone interface. High stresses, coupled with increased strain shielding in the ceramic resurfaced femur, appear to be major concerns regarding its use as an alternative material.  相似文献   

10.
The presence of a femoral prosthesis superior to a shaft fracture severely complicates fixation and treatment. This study uses two-dimensional, multithickness, plane stress finite-element models of a femur with prosthesis to investigate the stresses developed with the application of three popular fixation techniques: revision to a long stem prosthesis, lateral plating with a cortical bone allograft strut and cerclage wires, and custom plate application with proximal Parham band fixation with distal cortical screws (Ogden plate). The plate and bone contact as well as the fracture site contact were modelled by using orthotropic elements with custom-fit moduli so that only the normal stress to the interface was significant. A thermal analogy was used to model the cerclage and Parham band preloads so that representative preloads in the proximal fixation of the two types of plate treatments could be modelled. A parametric study was performed with the long-prosthesis model to show variations in stem lengths of one, two and three femoral diameters distal to the fracture site. The Ogden plate model showed a transfer of tensile stress near the proximal-most band, with the highest tensile stress being at the fracture site with evidence of stress shielding of the proximal lateral cortex. The cortical bone strut model showed a transfer of tensile stress to the bone strut but showed less shielding of the proximal cortex. The cerclage wires at the base of the bone strut showed the highest changes in load with the distalmost wire increasing to almost four times its original preload.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Effect of initial interference fit on pull-out strength in cementless fixation between bovine tibia and smooth stainless steel post was investigated in this study.Compressive behavior of bovine spongious bone was studied using mechanical testing in order to evaluate the elastic-plastic properties in different regions of the proximal tibia.Friction tests were carried out in the aim to evaluate the friction behavior of the contact between bovine spongious bone and stainless steel.A cylindrical stainless steel post inserted in a pre-drilled bovine tibia with an initial interference fit was taken as an in vitro model to assess the contribution of post fixation to the initial stability of the Total Knee Arthroplasty (TKA) tibial component.Pull-out experiments were carried out for different initial interference fits.Finite Element Models (FEM) using local elastic-plastic properties of the bovine bone were developed for the analysis of the experimental ultimate pull-out force results.At the post/bone interface,Coulomb friction was considered in the FEM calculations with pressure-dependent friction coefficient.It was found that the FEM results of the ultimate force are in good agreement with the experimental results.The analysis of the FEM interfacial stresses indicates that the micro-slip initiation depends on the local bone properties.  相似文献   

12.
13.

Background  

One of few persisting problems of cemented total knee arthroplasty (TKA) is aseptic loosening of tibial component due to degradation of the interface between bone cement and metallic tibial shaft component, particularly for surface cemented tibial components. Surface cementation technique has important clinical meaning in case of revision and for avoidance of stress shielding. Degradation of the interface between bone cement and bone may be a secondary effect due to excessive crack formation in bone cement starting at the opposite metallic surface.  相似文献   

14.
Aseptic loosening of tibial components due to degradation of the interface between bone cement and metallic tibial shaft component is still a persistent problem, particularly for surface-cemented tibial components. The surface cementation technique has important clinical meaning in case of revision and for avoidance of stress shielding. This study was done to prove crack formation in the bone cement near the metallic surface when this is not coated. We propose a newly developed coating process by SiOx-PVD layering to avoid crack formation. A biomechanical model for a vibration fatigue test was done to prove that crack formation can be significantly reduced in the case of coated surfaces. It was found that coated tibial components showed a highly significant reduction of cement cracking near the metal/bone cement interface (p < 0.01) and a significant reduction of gap formation in the metal-to-bone cement interface (p < 0.05). Coating dramatically reduces hydrolytic- and stress-related crack formation at the prosthesis metal/bone cement interface. This leads to a more homogenous load transfer into the cement mantle which should reduce the frequency of loosening in the metal/bone cement/bone interfaces. With surface coating of the tibial component it should become possible that surface-cemented TKAs reveal similar loosening rates as TKAs both surface- and stem-cemented. This would be an important clinical advantage since it is believed that surface cementing reduces metaphyseal bone loss in the case of revision and stress shielding for a better bone health.  相似文献   

15.
Hip resurfacing arthroplasty is an alternative to traditional hip replacement that can conserve proximal bone stock and has gained popularity but bone resorption may limit implant survival and remains a clinical concern. The goal of this study was to analyze bone remodelling patterns around an uncemented resurfacing implant and the influence of ingrowth regions on resorption. A computed tomography-derived finite element model of a proximal femur with a virtually implanted resurfacing component was simulated under peak walking loads. Bone ingrowth was simulated by six interface conditions: fully bonded; fully friction; bonded cap with friction stem; a small bonded region at the stem-cup intersection with the remaining surface friction; fully frictional, except for a bonded band along the distal end of the cap and superior half of the cap bonded with the rest frictional. Interface condition had a large influence on remodelling patterns. Bone resorption was minimized when no ingrowth occurred at the bone-implant interface. Bonding only the superior half of the cap increased bone resorption slightly but allowed for a large ingrowth region to improve secondary stability.  相似文献   

16.
The stress distribution within the components and the micromotion of the interface significantly influence the long-term function of the taper lock joint in a modular segmental bone replacement prosthesis. Bending-induced gap opening between the cone and the sleeve can lead to an inflow of biological fluids, and thus accelerate implant corrosion. Local areas of high stress can also accelerate the corrosive processes and initiate local yielding, which may lead to a fracture in one of the components. In this study, a 3-D finite element (FE) model of a modular segmental bone replacement prosthesis was developed to study the interface micromotion and component stress distribution under the maximum loads applied during gait for a taper lock joint with multiple material combinations. Bending was the main cause of the local high stresses and interface separation within the taper joint. For Ti6A14V components, cortical bone bridging and ingrowth across the taper lock gap reduced the peak stress by 45% and reduced the contact interface separation by 55%. Such tissue formation around the taper lock joint could also form a closed capsule to restrict the migration of potential wear particles and thus prevent the biologic process of bone resorption induced by metal debris.  相似文献   

17.
Unlike the case with total knee arthroplasty, the femorotibial angle (FTA) after unicompartmental knee arthroplasty (UKA) does not directly depend on the inclination of the tibial component when the height of the joint line is maintained. This study analyzed the effects of the inclination of the tibial component in the coronal plane on the contact pressure of the implant-bone surface and the stresses on the proximal tibia. A two-dimensional, coronal plane model of the proximal tibia was subjected to finite-element analysis. Sixteen patterns of finite-element models of equal FTA were developed in which the inclination of tibial components ranged from 5 degrees valgus to 10 degrees varus in increments of 1 degrees. Stress concentration at the proximal medial diaphyseal cortex gradually increased as the inclination changed from valgus to varus. Maximum contact pressure on the metal-bone interface similarly changed and shifted from the lateral edge to the medial edge of the implant as the inclination changed to varus. It was found that even without changing FTA, the inclination of the tibial component might affect stress concentration and contact pressure in the proximal tibia after UKA. The results suggested that slight valgus inclination of the tibial component might be preferable to varus and even to 0 degrees (square) inclination so far as the stress distribution is concerned.  相似文献   

18.
Bone ingrowth into a porous surface is one of the primary methods for fixation of orthopaedic implants. Improved understanding of bone formation and fixation of these devices should improve their performance and longevity. In this study predictions of bone ingrowth into an implant porous coating were investigated using mechano-reculatory models. The mechano-regulatory tissue differentiation algorithm proposed by Lacroix et al., and a modified version that enforces a tissue differentiation pathway by transitioning from differentiation to bone adaptation were investigated. The modified algorithm resulted in nearly the same behavior as the original algorithm when applied to a fracture-healing model. The algorithms were further compared using micromechanical finite element model of a beaded porous scaffold. Predictions of bone and fibrous tissue formation were compared between the two algorithms and to clinically observed phenomena. Under loading conditions corresponding to a press-fit hip stem, the modified algorithm predicted bone ingrowth into approximately 25% of the pore space, which is similar to that reported in experimental studies, while the original algorithm was unstable. When micromotion at the bone-implant interface was simulated, 20 mum of transverse displacement resulted in soft tissue formation at the bone-implant interface and minimal bone ingrowth. In contrast, 10 and 5 mum of micromotion resulted in bone filling 40% of the pore space and a stable interface, again consistent with clinical and experimental observations.  相似文献   

19.
Failure of total knee arthroplasty is relatively often caused by problems of the patellofemoral replacement. The purpose of this study was to analyze the distribution of stresses within an anatomical patella and the changes in stress distribution after patellar resurfacing with a Miller-Galante I patellar implant using two- and three dimensional finite element models (FEM). To assess validity, FEM results were compared with morphological findings from contact radiographs and densitographs. Internal orientation of bone trabeculae is in good agreement with the orientation of theoretically calculated principal stresses. Almost unchanged principal tensile stresses after implantation, together with the lack of extreme stress peaks within the cancellous bone ensure stress compatibility of the implant. In the case of a firmly seated implant with good bone ingrowth, increased von Mises stresses are found near the fixation peg/plate junction. Their relevance for improved bone ingrowth near this part of the interface is emphasized. At the same time, material failure at the peg/plate junction can be better understood. An analysis of the early postoperative period assuming nonlinear interface conditions failed to demonstrate an uniform distribution of normal and tangential interface forces.  相似文献   

20.
The success of a total hip arthroplasty is strongly related to the initial stability of the femoral component and to the stress shielding effect. In fact, for cementless stems, initial stability is essential to promote bone ingrowth into the stem coating. An inefficient primary stability is also a cause of thigh pain. In addition, the bone adaptation after the surgery can lead to an excessive bone loss and, consequently, can compromise the success of the implant. These factors depend on prosthesis design, namely on material, interface conditions and shape. Although, surgeons use stems with very different geometries, new computational tools using structural optimization methods have been used to achieve a better design in order to improve initial stability and therefore, the implant durability. In this work, a multi-criteria shape optimization process is developed to study the relationship between implants performance and geometry. The multi-criteria objective function takes into account the initial stability of the femoral stem and the effect of stress shielding on bone adaptation after the surgery. Then, the optimized stems are tested using a concurrent model for bone remodeling and osseointegration to evaluate long-term performance. Additionally, the sensitivity to misalignments is analyzed, since femoral stems are often placed in varus or valgus position. Results show that the different criteria are contradictory resulting in different characteristics for the hip stem. However, the multi-criteria formulation leads to compromise solutions, with a combination of the geometric characteristics obtained for each criterion separately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号