首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The Gin recombination system of phage Mu mediates inversion of the DNA sequence between two sites (gix). In addition to Gin protein and gix sites, recombination requires an enhancer bound by the host factor FIS. We analyzed mutants of Gin that function in the absence of the enhancer and FIS and mediate deletion and intermolecular fusion in addition to inversion. The linking number changes caused by inversion imply that mutant Gin alone can form the same synaptic complex and can use the same strand exchange mechanism as the complete wild-type system. However, the linking number changes also reveal that unlike wild-type Gin, mutant Gin can recombine through more than one synaptic complex and can relax DNA in the absence of synapsis. This expanded repertoire allows mutant Gin to mediate DNA rearrangements not performed by wild-type Gin. Because mutant Gin, but not wild-type Gin, unwinds gix site DNA upon binding, we postulate that FIS and the enhancer function with (-) supercoiling to promote this unwinding with wild-type Gin. The analysis of the topological changes during DNA fusion shows that both the parallel gix site configuration and the right-handed rotation of the sites during exchange of wild-type Gin are a result of the (-) supercoiling of the substrate and the number of entrapped supercoils in the synaptic complex.  相似文献   

2.
Isolation and characterization of unusual gin mutants.   总被引:19,自引:8,他引:11       下载免费PDF全文
Site-specific inversion of the G segment in phage Mu DNA is promoted by two proteins, the DNA invertase Gin and the host factor FIS. Recombination occurs if the recombination sites (IR) are arranged as inverted repeats and a recombinational enhancer sequence is present in cis. Intermolecular reactions as well as deletions between direct repeats of the IRs rarely occur. Making use of a fis- mutant of Escherichia coli we have devised a scheme to isolate gin mutants that have a FIS independent phenotype. This mutant phenotype is caused by single amino acid changes at five different positions of gin. The mutant proteins display a whole set of new properties in vivo: they promote inversions, deletions and intermolecular recombination in an enhancer- and FIS-independent manner. The mutants differ in recombination activity. The most active mutant protein was analysed in vitro. The loss of site orientation specificity was accompanied with the ability to recombine even linear substrates. We discuss these results in connection with the role of the enhancer and FIS protein in the wild-type situation.  相似文献   

3.
G inversion in bacteriophage Mu requires the product of the DNA invertase gene gin and an Escherichia coli host factor termed FIS (factor for inversion stimulation). A recombination substrate must contain two recombination sites, arranged as inverted repeats, and a recombinational enhancer sequence termed sis. FIS has been purified to homogeneity. The purified protein has a relative molecular weight of 12,000 when analyzed under denaturing conditions. The intact protein behaves as a dimer of relative molecular weight 25,000 in gel filtration analysis. The purified protein does not possess any recombinogenic activity when assayed in the absence of the DNA-invertase Gin. In the presence of purified Gin FIS is the only additional protein required for efficient inversion. By performing gel retention assays, we show that FIS is a DNA-binding protein, which specifically binds to DNA fragments containing the recombinational enhancer sis.  相似文献   

4.
The host range of bacteriophage Mu is regulated through an invertible segment. Inversion requires the presence of two properly oriented recombination sites and a recombinational enhancer sis. The reaction is catalyzed by the Mu-encoded DNA invertase Gin and a host factor termed factors for inversion stimulation (FISs). We present a novel purification scheme for Gin. Purified Gin alone catalyzes the inversion reaction at very low efficiency recombining less than 0.8% of substrate molecules. When supplemented with FIS substrates containing the recombinational enhancer are recombined efficiently. Stoichiometric amounts of Gin are required for recombination.  相似文献   

5.
Site-specific DNA inversion in phage Mu is catalysed by the phage-encoded DNA invertase Gin and a host factor FIS. We demonstrate that purified Gin protein binds specifically to 34-bp sequences that flank the G segment as inverted repeats. Each inverted repeat (IR) contains two binding sites for Gin which have to be arranged in a specific configuration to constitute a recombinogenic site. While one of these sites is bound when present alone, the other site is bound only in conjunction with the first one, suggesting cooperative binding. In addition to the sites within the IR, Gin binds with lower affinity to AT-rich sequences adjacent to the IR. We demonstrate that these sites do not participate in the inversion reaction. The IR itself can be shortened to 25 bp without effect on inversion frequency. Using gel mobility shift experiments on circular permuted fragments containing the IR we show that Gin bends DNA upon binding. We discuss the possibility that DNA bending is related to the formation of a productive synaptic complex.  相似文献   

6.
Summary A mutant Gin recombinase of the phage Mu DNA inversion system was successfully expressed in Arabidopsis thaliana and tobacco protoplasts. Site-specific recombination was monitored both physically and biologically with the help of a recombination assay system in which expression of a -glucuronidase (gus) gene requires Gin-mediated recombination. We demonstrate that the wild-type Gin protein is not able to promote recombination in plant protoplasts, presumably because plant cells do not contain a protein that can substitute for the Escherichia coli FIS protein needed for full activity of wild-type Gin in E. coli. A FIS-independent Gin mutant protein on the other hand was efficient in promoting recombination on recombination substrates introduced transiently and on substrates stably integrated into the plant genome. We discuss the various advantages this system can provide for genetic manipulation of plant cells.  相似文献   

7.
The DNA invertase Gin encoded by bacteriophage Mu catalyses efficient site-specific recombination between inverted repeat sequences (IR) in vivo and in vitro in the presence of the host factor FIS and the recombinational enhancer. We demonstrate that Gin alone is able to introduce single strand breaks into duplex DNA fragments which contain the IR sequence. Strand cleavage is site-specific and can occur on either strand within the IR. Cleaved molecules contain Gin covalently attached to DNA. The covalent complex is formed through linkage of Gin to the 5' DNA phosphate at the site of the break via a phosphoserine. Extensive site-directed mutational analysis showed that all mutants altered at serine position 9 were completely recombination deficient in vivo and in vitro. The mutant proteins bind to DNA but lack topoisomerase activity and are unable to introduce nicks. This holds true even for a conservative amino acid substitution at position 9. We conclude that serine at position 9 is part of the catalytic domain of Gin. The intriguing finding that the DNA invertase Gin has the same catalytic center as the DNA resolvases that promote deletions without recombinational enhancer and host factor FIS is discussed.  相似文献   

8.
Serine recombinases, which generate double-strand breaks in DNA, must be carefully regulated to ensure that chemically active DNA complexes are assembled correctly. In the Hin-catalyzed site-specific DNA inversion reaction, two inversely oriented recombination sites on the same DNA molecule assemble into a synaptic complex that uniquely generates inversion products. The Fis-bound recombinational enhancer, together with topological constraints directed by DNA supercoiling, functions to regulate Hin synaptic complex formation and activity. We have isolated a collection of gain-of-function mutants in 22 positions within the catalytic and oligomerization domains of Hin using two genetic screens and by site-directed mutagenesis. One genetic screen measured recombination in the absence of Fis and the other assessed SOS induction as a readout of increased DNA cleavage. These mutations, together with molecular modeling, identify important sites of dynamic intrasubunit and intersubunit interactions that regulate assembly of the active tetrameric recombination complex. Of particular interest are interactions between the oligomerization helix (helix E) and the catalytic domain of the same subunit that function to hold the dimer in an inactive state in the absence of the Fis/enhancer system. Among these is a relay involving a triad of phenylalanines that are proposed to switch positions during the transition from dimers to the catalytically active tetramer. Novel Hin mutants that generate synaptic complexes that are blocked at steps prior to DNA cleavage are also described.  相似文献   

9.
Gin mutants that can be suppressed by a Fis-independent mutation.   总被引:1,自引:0,他引:1       下载免费PDF全文
The Gin invertase of bacteriophage Mu mediates recombination between two inverted gix sites. Recombination requires the presence of a second protein, Fis, which binds to an enhancer sequence. We have isolated 24 different mutants of Gin that are impaired in DNA inversion but proficient in DNA binding. Six of these mutants could be suppressed for inversion by introduction of a second mutation, which when present in the wild-type gin gene causes a Fis-independent phenotype. Only one of the six resulting double mutants shows an inversion efficiency which is comparable to that of the wild-type Gin and which is independent of Fis. The corresponding mutation, M to I at position 108 (M108I), is located in a putative alpha-helical structure, which in the homologous gamma delta resolvase has been implicated in dimerization. The properties of the M108I mutant suggest that in Gin this dimerization helix might also be the target for Fis interaction. The five other mutants that show a restored inversion after introduction of a Fis-independent mutation appear to be completely dependent on Fis for this inversion. The corresponding mutations are located in different domains of the protein. The properties of these mutants in connection with the role of Fis in inversion will be discussed.  相似文献   

10.
11.
A series of recombinational enhancer mutants was constructed by manipulating the ClaI site between the two FIS binding sites of the Hin enhancer. These mutants include insertions from two to 12 base-pairs and two deletions of one or two base-pairs. Recombinational enhancer activity was found only with four mutants carrying either a four base-pair substitution, ten base-pair insertions or a one base-pair deletion, respectively; two other ten base-pair insertion mutants, however, were inactive, although FIS protein binding was unaffected. So, besides binding of FIS protein to its specific sites within the enhancer sequence and the correct helical positioning of these sites on the DNA, another criterion for enhancer activity must be fulfilled. DNA bending assays identify this requirement as a change of the enhancer DNA conformation, which FIS protein is able to induce and to stabilize. This conformational change of the DNA can be blocked by mutations in the central segment between the two FIS binding sites of the Hin enhancer. This sequence has special functions for the recombinational enhancer activity.  相似文献   

12.
An Escherichia coli chromosomally coded factor termed FIS (Factor for Inversion Stimulation) stimulates the Cin protein-mediated, site-specific DNA inversion system of bacteriophage P1 more than 500-fold. We have purified FIS and the recombinase Cin, and studied the inversion reaction in vitro. DNA footprinting studies with DNase I showed that Cin specifically binds to the recombination site, called cix. FIS does not bind to cix sites but does bind to a recombinational enhancer sequence that is required in cis for efficient recombination. FIS also binds specifically to sequences outside the enhancer, as well as to sequences unrelated to Cin inversion. On the basis of these data, we discuss the possibility of additional functions for FIS in E. coli.  相似文献   

13.
14.
The Gin DNA invertase of bacteriophage Mu carries out processive recombination in which multiple rounds of exchange follow synaptic complex formation. The stereostructure of the knotted products determined by electron microscopy establishes critical features of site synapsis and DNA exchange. Surprisingly, the invertase knots substrates with directly repeated sites as well as those with inverted sites. The results suggest that the Gin synaptic complex contains three mutually perpendicular dyads; one is the axis of site rotation during exchange, and they cause inverted and direct site substrates to form a similar synaptic complex. The extensive knotting by Gin has implications for the energetics of recombination and shows that the enhancer for recombination is required only at an early stage, and thus may normally operate in a hit-and-run fashion.  相似文献   

15.
DNA inversions in phages and bacteria   总被引:3,自引:0,他引:3  
In certain phages and bacteria, there is a recombination system that specifically promotes the inversion of a DNA fragment. These inversion events appear to act as genetic switches allowing the alternate expression of different sets of genes which in general code for surface proteins. The mechanism of inversion in one class of inversion systems (Gin/Hin) has been studied in detail. It involves the formation of a highly specific nucleoprotein complex in which not only the two recombination sites and the DNA invertase participate but also a recombinational enhancer to which the DNA-bending protein Fis is bound.  相似文献   

16.
Using a recently developed inhomogeneous, macroscopic model for long DNA bound to proteins, we examine topological and geometric aspects of DNA/protein structures and dynamics on various stages of the Hin inversion pathway. This biological reaction involves exchange of DNA in a synaptic complex that brings together several DNA sites bound to Hin dimers as well as Fis enhancers. Brownian dynamics simulations in the millisecond timescale allow us to follow and analyze the DNA/protein dynamics trajectories and to examine the effects of DNA superhelicity and protein binding on various reaction steps. Analysis of the generated kinetic pathways helps explain mechanistic aspects regarding the process by which two or three protein-bound DNA sites come to close spatial proximity and show that how topological selectivity (two trapped supercoils), enhancer binding, and properties of supercoiled DNA play critical roles in regulating the inversion reaction. Specifically, a critical amount of DNA superhelicity (e.g., |sigma| > 0.02) leads to an optimal interplay for the first reaction step-two-site juxtaposition-between large-scale random rearrangements of Hin-bound DNA and local slithering within branches of plectonemes. The three-site juxtaposition, the second step, is significantly accelerated by the presence of an enhancer protein that, due to severe local bending, also alters juxtaposition mechanisms, especially for superhelical density magnitude greater than around 0.04.  相似文献   

17.
The Gin DNA-inversion system of bacteriophage Mu normally requires a substrate containing two inverted recombination sites (gix) and an enhancer sequence on the same supercoiled DNA molecule. The reaction mechanism was investigated by separating these sites on catenated rings. Catenanes with the gix sites on one circle and the enhancer on the other recombined efficiently. Thus, the enhancer was fully functional even though it was located in trans to the gix sites. Multiple links between the rings are required for recombination. Multiply linked catenanes with gix sites on separate circles, one of which contained the enhancer, were also efficient substrates. Knotted constructs carrying directly repeated gix sites were recombined. Catenated and knotted substrates must also be supercoiled. These experiments eliminate simple tracking or looping models as explanations for why the enhancer and gix sites must be in cis with standard substrates. Rather, the Gin synaptic complex requires the three sites to be mutually intertwined in a right-handed fashion with a unique polarity of the gix sites. This geometry is achieved by branching of the DNA substrate and requires the energy and structure of supercoiling, catenation, or knotting.  相似文献   

18.
The Escherichia coli chromosomal origin contains several bindings sites for factor for inversion stimulation (FIS), a protein originally identified to be required for DNA inversion by the Hin and Gin recombinases. The primary FIS binding site is close to two central DnaA boxes that are bound by DnaA protein to initiate chromosomal replication. Because of the close proximity of this FIS site to the two DnaA boxes, we performed in situ footprinting with 1, 10-phenanthroline-copper of complexes formed with FIS and DnaA protein that were separated by native gel electrophoresis. These studies show that the binding of FIS to the primary FIS site did not block the binding of DnaA protein to DnaA boxes R2 and R3. Also, FIS appeared to be bound more stably to oriC than DnaA protein, as deduced by its reduced rate of dissociation from a restriction fragment containing oriC . Under conditions in which FIS was stably bound to the primary FIS site, it did not inhibit oriC plasmid replication in reconstituted replication systems. Inhibition, observed only at high levels of FIS, was due to absorption by FIS binding of the negative superhelicity of the oriC plasmid that is essential for the initiation process.  相似文献   

19.
The serine family of site-specific DNA recombination enzymes accomplishes strand cleavage, exchange and religation using a synaptic protein tetramer. A double-strand break intermediate in which each protein subunit is covalently linked to the target DNA substrate ensures that the recombination event will not damage the DNA. The previous structure of a tetrameric synaptic complex of γδ resolvase linked to two cleaved DNA strands had suggested a rotational mechanism of recombination in which one dimer rotates 180° about the flat exchange interface for strand exchange. Here, we report the crystal structure of a synaptic tetramer of an unliganded activated mutant (M114V) of the G-segment invertase (Gin) in which one dimer half is rotated by 26° or 154° relative to the other dimer when compared with the dimers in the synaptic complex of γδ resolvase. Modeling shows that this rotational orientation of Gin is not compatible with its being able to bind uncleaved DNA, implying that this structure represents an intermediate in the process of strand exchange. Thus, our structure provides direct evidence for the proposed rotational mechanism of site-specific recombination.  相似文献   

20.
The site-specific DNA inversion system Cin encoded by the bacteriophage P1 consists of a recombinase, two inverted crossing-over sites and a recombinational enhancer. The latter approximately 75 bp long genetic element is bifunctional due to its location within the 5' part of the cin gene encoding the recombinase. In order to determine the essential nucleotides for each of its two biological functions we randomly mutated the recombinational enhancer sequence sis(P1) and analysed both functions of the mutants obtained. Three distinct regions of this sequence were found to be important for the enhancer activity. One of them occupies the middle third of the enhancer sequence and it can suffer a number of functionally neutral base substitutions, while others are detrimental. The other two regions occupy the two flanking thirds of the enhancer. They coincide with binding sites of the host-coded protein FIS (Factor for Inversion Stimulation) needed for efficient DNA inversion in vitro. These sequences appear to be highly evolved allowing only a few mutations without affecting either of the biological functions. Taking the effect of mutations within these FIS binding sites into account a consensus sequence for the interaction with FIS was compiled. This FIS consensus implies a palindromic structure for the recombinational enhancer. This is in line with the orientation independence of enhancer action with respect to the crossing-over sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号