首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Crosslinking of type I Fc epsilon receptors (Fc epsilon RI) on the surface of basophils or mast cells initiates a cascade of processes leading to the secretion of inflammatory mediators. We report here a correlation between mediator secretion and the activation of Cl- channels in rat mucosal-type mast cells (line RBL-2H3). Stimulation of RBL cells by either IgE and antigen or by a monoclonal antibody specific for the Fc epsilon RI, resulted in the activation of Cl- ion channels as detected by the patch-clamp technique. Channel activation occurred slowly, within minutes after stimulation. The channel has a slope conductance of 32 pS at potentials between 0 and -100 mV, and an increasing open-state probability with increasing depolarization. Activation of apparently the same Cl- channels could be mimicked without stimulation by isolating inside-out membrane patches in tyrode solution. Parallel inhibition of both Cl- channel activity and mediator secretion, as monitored by serotonin release, was observed by two compounds, the Cl- channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and the anti-allergic drug cromolyn. NPPB inhibited both the antigen-induced Cl- current and the serotonin release, where half-maximal inhibition occurred at similar doses, at 52 microM and 77 microM, respectively. The drug cromolyn, recently found to inhibit immunologically induced mediator secretion from RBL cells upon intracellular application, also blocks Cl- channels (IC50 = 15 microM) when applied to the cytoplasmic side of an inside-out membrane patch. The observed Cl- channel activation upon immunological stimulation and the parallel inhibition of channel current and of serotonin release suggests a functional role for this Cl- channel in mediator secretion from the mast cells studied.  相似文献   

2.
Human mast cells and basophils that express the high-affinity immunoglobulin E (IgE) receptor, Fc epsilon receptor 1 (Fc epsilon RI), have key roles in allergic diseases. Fc epsilon RI cross-linking stimulates the release of allergic mediators. Mast cells and basophils co-express Fc gamma RIIb, a low affinity receptor containing an immunoreceptor tyrosine-based inhibitory motif and whose co-aggregation with Fc epsilon RI can block Fc epsilon RI-mediated reactivity. Here we designed, expressed and tested the human basophil and mast-cell inhibitory function of a novel chimeric fusion protein, whose structure is gamma Hinge-CH gamma 2-CH gamma 3-15aa linker-CH epsilon 2-CH epsilon 3-CH epsilon 4. This Fc gamma Fc epsilon fusion protein was expressed as the predicted 140-kappa D dimer that reacted with anti-human epsilon- and gamma-chain specific antibodies. Fc gamma Fc epsilon bound to both human Fc epsilon RI and Fc gamma RII. It also showed dose- and time-dependent inhibition of antigen-driven IgE-mediated histamine release from fresh human basophils sensitized with IgE directed against NIP (4-hydroxy-3-iodo-5-nitrophenylacetyl). This was associated with altered Syk signaling. The fusion protein also showed increased inhibition of human anti-NP (4-hydroxy-3-nitrophenylacetyl) and anti-dansyl IgE-mediated passive cutaneous anaphylaxis in transgenic mice expressing human Fc epsilon RI alpha. Our results show that this chimeric protein is able to form complexes with both Fc epsilon RI and Fc gamma RII, and inhibit mast-cell and basophil function. This approach, using a Fc gamma Fc epsilon fusion protein to co-aggregate Fc epsilon RI with a receptor containing an immunoreceptor tyrosine-based inhibition motif, has therapeutic potential in IgE- and Fc epsilon RI-mediated diseases.  相似文献   

3.
Regulation of mast-cell and basophil function and survival by IgE   总被引:1,自引:0,他引:1  
Mast cells and basophils are important effector cells in T helper 2 (T(H)2)-cell-dependent, immunoglobulin-E-associated allergic disorders and immune responses to parasites. The crosslinking of IgE that is bound to the high-affinity receptor Fc epsilon RI with multivalent antigen results in the aggregation of Fc epsilon RI and the secretion of products that can have effector, immunoregulatory or autocrine effects. This response can be enhanced markedly in cells that have been exposed to high levels of IgE, which results in the increased surface expression of Fc epsilon RI. Moreover, recent work indicates that monomeric IgE (in the absence of crosslinking) can render mast cells resistant to apoptosis induced by growth-factor deprivation in vitro and, under certain circumstances, can induce the release of cytokines. So, the binding of IgE to Fc epsilon RI might influence mast-cell and basophil survival directly or indirectly, and can also regulate cellular function.  相似文献   

4.
Fcgamma receptors were detected on human basophil granulocytes. The mononuclear cell fraction of human peripheral blood was incubated with heat-aggregated human IgG (HGG) followed by 125I-anti-HGG. Autoradiography of the cells showed that the majority of basophil granulocytes gave a significant number of grains. Basophils were not labeled by preincubation of the same cells with monomeric HGG followed by 125I-anti-HGG. However, the binding of aggregated HGG to basophils was inhibited by the presence of a high concentration of monomeric HGG or its Fc fragment but not by the Fab fragment. Evidence was obtained that Fcgamma receptors are distinct from IgE receptors on the same cells: i) Saturation of basophils with IgE did not affect the binding of aggregated HGG to the cells. ii) Preincubation with and the presence of aggregated HGG failed to affect the binding of 125I-IgE to basophils, or to block passive sensitization of the cells with IgE antibodies. iii) The Fcgamma receptors did not co-cap with IgE receptors. Aggregated HGG failed to induce histamine release from basophils even in the presence of D2O. It was also found that the presence of aggregated HGG on basophils did not modulate IgE-mediated histamine release from the cells.  相似文献   

5.
The high affinity receptor for IgE (Fc epsilon RI) is present on mast cells and basophils, and the aggregation of IgE-occupied receptors by Ag is responsible for the release of allergic mediators. The Fc epsilon RI is composed of at least three different subunits, alpha, beta, and gamma, with the alpha subunit binding IgE. The series of biochemical events linking receptor aggregation to the release of mediators has not been fully delineated. As a step towards understanding these processes, and for the development of functional cell lines, we have transfected the human Fc epsilon RI alpha subunit into the rat mast cell line RBL 2H3. These human Fc epsilon RI alpha-transfected cell lines have been characterized with respect to the association of the human alpha subunit with endogenous rat beta and gamma subunits and the ability of aggregated Fc epsilon RI alpha subunits to mediate a variety of biochemical events. The signal transduction events monitored include phosphoinositide hydrolysis, Ca2+ mobilization, tyrosine phosphorylation, histamine release, and arachidonic acid metabolism. In all cases, the events mediated by aggregating human Fc epsilon RI alpha subunits were indistinguishable from those produced via the rat Fc epsilon RI alpha. These results demonstrate that the human Fc epsilon RI alpha subunit can functionally substitute for the rat Fc epsilon RI alpha subunit during signal transduction. The availability of this cell line will provide a means of evaluating potential Fc epsilon RI antagonists.  相似文献   

6.
The mechanism of IgE-mediated release of thromboxane A2 from human lung macrophages has been studied using a monoclonal chimeric human/mouse IgE antibody and its specific antigen. The cells could be sensitized at 37 degrees C but not at 4 degrees C by incubation with IgE, and released a significant amount of thromboxane A2 (TXA2), measured as the stable hydrolysis product TXB2, in response to an anti-chimeric IgE antibody. In contrast, stimulation of IgE-sensitized macrophages with the specific antigen produced less than 10% of this response. A similar time course for the release of TXB2 and the formation of inositol monophosphate in the presence of LiCl was observed. Cleavage of the Fc domain of the anti-chimeric IgE antibody substantially eliminated its capacity to stimulate IgE-sensitized cells. However, the weak or undetectable response to chimeric IgE plus specific antigen was substantially potentiated by an antigen-specific chimeric IgG antibody. IgG-sensitized macrophages did not respond to antigen challenge by the release of TXB2. Preincubation of the cells with a monoclonal antibody against the low affinity receptor for IgE (Fc epsilon RII/CD23) did not prevent IgE sensitization. We conclude that cell-bound IgE antibody cannot induce the release of TXB2 but has fixed antigen which then must interact with specific IgG antibody and IgG receptors to induce mediator release.  相似文献   

7.
Signaling in mast cells and basophils is mediated through IgE and its high affinity cell surface receptor, FcepsilonRI. Crosslinking of the receptors by a cognate multivalent antigen leads to degranulation and release of mediators of the allergic immune response. Using multicolor fluorescence confocal microscopy, we probed the spatio-temporal dynamics of early events in the IgE receptor signal cascade. We monitored the recruitment of GFP-/CFP-labeled signaling proteins by acquiring sequential images with time resolution of 3 s during stimulation of RBL-2H3 mast cells with multivalent antigen. A fluorescent tag on the antigen allowed us to visualize the plasma membrane localization of crosslinked receptors, and fluorescent cholera toxin B served as a plasma membrane marker. We developed an automated image analysis scheme to quantify the recruitment of fluorescent intracellular proteins to the plasma membrane and to assess the time-dependent colocalization of these and other membrane-associated proteins with crosslinked receptors as measured by cross-correlation between the plasma membrane distributions of the two fluorophores. This automated method permits analysis of thousands of individual images from multiple experiments for each cross-correlation pair. We systematically applied this analysis to characterize stimulated interactions of IgE receptors with several signaling proteins, including the tyrosine kinases Lyn and Syk, and the adaptor protein LAT. Notably, for Syk-CFP we observed a rapid stimulated translocation to the plasma membrane but very little colocalization with aggregated receptors. Our results demonstrate the utility of this simple, automated method to monitor protein interactions quantitatively during cell signaling.  相似文献   

8.
Rodent B cells respond to culture with IgE by increasing their IgE-specific Fc receptors (Fc epsilon R). The mechanism of this upregulation was characterized on Fc epsilon R+ murine B cell hybridoma lines. Measurements of [35S]methionine incorporated into the Fc epsilon R over time indicated that IgE did not appreciably increase the rate of Fc epsilon R synthesis. In contrast analysis of Fc epsilon R decay from surface radioiodinated B hybridoma cells demonstrated that IgE acted to slow the rate of Fc epsilon R degradation. Very little endocytosis of monomeric IgE was seen; this, combined with the observation that lysomotropic agents failed to inhibit Fc epsilon R degradation suggested that decay occurs at the cell surface. A soluble receptor immunoassay was developed, using monoclonal anti-Fc epsilon R, and this assay demonstrated that cell-bound IgE inhibited the release into the culture media of soluble immunoreactive Fc epsilon R. Examination of the soluble Fc epsilon R by SDS-PAGE after isolation with monoclonal anti-Fc epsilon R demonstrated that it was 10,000 m.w. smaller than the cell-associated Fc epsilon R. IgE affinity columns failed to bind the Fc epsilon R fragment, indicating that the ligand binding activity was largely lost. Thus this study demonstrated that IgE-dependent Fc epsilon R induction on B cells occurs because IgE upon binding to the B cell surface, inhibits the proteolytic cleavage and release of the Fc epsilon R into the surrounding medium, and it is this inhibition of degradation that causes the higher Fc epsilon R levels.  相似文献   

9.
Interfering with the binding of IgE to high-affinity IgE receptor alpha chain (Fc(epsilon)RIalpha) is a straightforward strategy for the specific prevention of the IgE-mediated allergic reaction specifically. A Fab fragment (Fab) of a humanized antibody against the membrane proximal IgE-binding domain of human Fc(epsilon)RIalpha inhibits the release of histamine from human basophils. We established an efficient expression system in which to produce directly the humanized anti-human Fc(epsilon)RIalpha Fabs without papain-digestion of the whole antibody. Four Fabs with different C-termini of CH1 were expressed directly in COS-7 cells transfected with expression vectors with or without the Fc gene downstream of a stop codon inserted within the hinge gene. The secretion of Fabs when transfected without the Fc gene was remarkably enhanced compared to that when transfected with the Fc gene. The ability of Fabs to inhibit IgE-Fc(epsilon)RIalpha binding when transfected without the Fc gene was equivalent to that of purified Fab prepared by papain-digestion of the whole antibody. No significant differences among the four Fabs were observed in secretion or activity. Clones of CHO-transfectant cells that secreted the Fabs constitutively were acclimatized to a serum-free medium. Analysis of the binding interface between the Fab and human Fc(epsilon)RIalpha will provide useful information for the design of therapeutic reagents for allergy and asthma.  相似文献   

10.
The degranulation of mast cells in an allergic response is initiated by the aggregation of high-affinity IgE receptors (Fc epsilon RI) by IgE and antigen. Recently it has been shown that such degranulation can be inhibited by cross-linking Fc epsilon RI and low-affinity IgG receptors (Fc gamma RII) which are also expressed by mast cells. The ability of various monoclonal antibodies to block the degranulation of rat basophil leukaemia (RBL) cells sensitized with IgE antidinitrophenyl (DNP) antibodies has been investigated. Sensitized cells were challenged with immune complexes formed using varying concentrations of antigen, and of both high- and low-valency antigen. It is reported here that rat IgG1 antibodies, which are associated in the rat with a Th1-type response, act as highly effective blocking antibodies over a wide concentration range. Rat IgG2a antibodies, which are associated with a Th2-type response, were able only to inhibit degranulation when immune complexes were formed with very low concentrations of high-valency antigen (DNP32-HSA). Under these conditions, some inhibitory activity was seen with high-affinity murine IgA anti-DNP but not with low-affinity rat IgG2b anti-DNP antibody-containing immune complexes. In addition to this inhibitory activity, IgG2a antibodies were shown to be capable of inducing degranulation of cells via unoccupied Fc epsilon RI. These results demonstrate that blocking activity may arise via both inhibitory receptors and by masking of antigen.  相似文献   

11.
Studies of IgE-dependent histamine releasing factors: heterogeneity of IgE   总被引:18,自引:0,他引:18  
Nasal lavage fluids from unstimulated individuals contain a histamine-releasing factor (HRF) similar to those which we have previously described from macrophages, platelets, and from blister fluids obtained during the late cutaneous reaction. The nasal HRF was partially purified by ion-exchange chromatography and gel filtration. Although some m.w. heterogeneity was observed, the majority of the HRF eluted at an apparent m.w. range of 15,000 to 30,000. This partially purified HRF induced histamine release from basophils of certain individuals. Histamine release occurred via a mechanism which is IgE-dependent in that: basophils desensitized by exposure to anti-IgE in the absence of calcium no longer respond to HRF, and desensitization with HRF reduces responsiveness to anti-IgE; and removal of IgE from the basophil surface by using lactic acid renders cells unresponsive to HRF. We have further defined this IgE dependence and have shown that the reason that only selected basophil donors respond to HRF is due to a previously unrecognized, functional heterogeneity of IgE. Thus, passive sensitization using sera from responders restored the responsiveness of acid-stripped basophils and conferred responsiveness to basophils of a nonresponder with naturally unoccupied IgE receptors. Sera from nonresponders failed to do this even though similar numbers of IgE molecules were put onto the basophil surface in each case. This property of responder sera was due to IgE because both heating sera at 56 degrees C for 2 hr and passage of sera over anti-IgE-Sepharose (which removes greater than 90% of the IgE) markedly reduced the ability of sera to induce responsiveness, and because an excess of either purified IgE myeloma or purified penicillin-specific IgE antibody from a nonresponder competitively inhibited the ability of IgE from responder sera to induce responsiveness to HRF. We conclude that nasal lavage fluids contain an HRF which induces basophil histamine release in a specific, IgE-dependent fashion but only from individuals with the appropriate type of IgE. Because we have shown that basophils are recruited into the nose during the late-phase reaction, we suggest that nasal HRF may induce these cells to release histamine and other mediators which could contribute to the symptomatology of the late-phase reaction.  相似文献   

12.
Although Fc epsilon R have been detected on human eosinophils, levels varied from moderate to extremely low or undetectable depending on the donor and methods used. We have attempted to resolve the conflicting data by measuring levels of IgE, Fc epsilon RI, and Fc epsilon RII in or on human eosinophils from a variety of donors (n = 26) and late-phase bronchoalveolar lavage fluids (n = 5). Our results demonstrated little or no cell surface IgE or IgE receptors as analyzed by immunofluorescence and flow cytometry. Culture of eosinophils for up to 11 days in the presence or absence of IgE and/or IL-4 (conditions that enhance Fc epsilon R on other cells) failed to induce any detectable surface Fc epsilon R. However, immunoprecipitation and Western blot analysis of eosinophil lysates using mAb specific for Fc epsilon RI alpha showed a distinct band of approximately 50 kDa, similar to that found in basophils. Western blotting also showed the presence of FcR gamma-chain, but no Fc epsilon RI beta. Surface biotinylation followed by immunoprecipitation again failed to detect surface Fc epsilon RI alpha, although surface FcR gamma was easily detected. Since we were able to detect intracellular Fc epsilon RI alpha, we examined its release from eosinophils. Immunoprecipitation and Western blotting demonstrated the release of Fc epsilon RI alpha into the supernatant of cultured eosinophils, peaking at approximately 48 h. We conclude that eosinophils possess a sizable intracellular pool of Fc epsilon RI alpha that is available for release, with undetectable surface levels in a variety of subjects, including those with eosinophilia and elevated serum IgE. The biological relevance of this soluble form of Fc epsilon RI alpha remains to be determined.  相似文献   

13.
Polymorphonuclear neutrophils (PMNs) are important effector cells in host defense and the inflammatory response to antigen. The involvement of PMNs in inflammation is mediated mainly by the Fc receptor family, including IgE receptors. Recently, PMNs were shown to express two IgE receptors (CD23/Fc epsilon RII and galectin-3). In allergic diseases, the dominant role of IgE has been mainly ascribed to its high-affinity receptor, Fc epsilon RI. We have examined the expression of Fc epsilon RI by PMNS: mRNA and cell surface expression of Fc epsilon RI alpha chain was identified on PMNs from asthmatic subjects. Furthermore, preincubation with human IgE Fc fragment blocks completely the binding of anti-Fc epsilon RI alpha chain (mAb15--1) to human PMNS: Conversely, preincubation of PMNs with mAb15--1 inhibits significantly the binding of IgE Fc fragment to PMNs, indicating that IgE bound to the cell surface of PMNs mainly via the Fc epsilon RI. Peripheral blood and bronchoalveolar lavage (BAL) PMNs from asthmatic subjects also express intracellular Fc epsilon RI alpha and beta chain immunoreactivity. Engagement of Fc epsilon RI induces the release of IL-8 by PMNS: Collectively, these observations provide new evidence that PMNs express the Fc epsilon RI and suggest that these cells may play a role in allergic inflammation through an IgE-dependent activation mechanism.  相似文献   

14.
Human basophils release approximately 90 pmol of LTC4/micrograms histamine when challenged with anti-IgE antibody, but donor to donor variation produces a 1000-fold range of response. There is little conversion to LTC4 to LTE4 in purified preparations of basophils, but conversion to LTE4 does occur if cell densities are high during incubation. Like histamine release, leukotriene release is calcium and temperature dependent and is complete in 20 min, with a t1/2 of approximately 8 min. The process of desensitization also ablates leukotriene release, but there is a distinct two phase process where leukotriene release is enhanced after 5 min of desensitization, whereas histamine release is inhibited and total ablation of leukotriene release occurs only after 45 min of desensitization. Human basophils respond well to stimulation with covalently cross-linked trimeric IgE myeloma but respond poorly to dimeric IgE. This differential sensitivity to the two forms of cross-linked IgE is most exaggerated in the context of leukotriene release, where dimer is 30-fold less efficacious and 100- to 1000-fold less potent than trimer on some donors' basophils. This dichotomy of response is also observed in antigen-challenged cells, where the bivalent hapten, BPO2, also poorly induces leukotriene release in accord with the fact that it predominantly induces dimeric cross-links of penicillin-specific IgE. Anti-IgE dose-response curves reveal a region of dimeric cross-link dominance that may explain the peculiar differences observed in pharmacologic studies of basophil release induced with antigen vs anti-IgE. In addition, there is a continuum of "releasability," where some donors' basophils display no response (histamine or leukotriene release) to dimeric IgE, and others' basophils are essentially equally responsive to both dimeric and trimeric IgE. This releasability difference manifests itself by conferring increased sensitivity to antigenic challenge in those donors' basophils capable of responding to dimeric cross-links such that these donors' basophils are capable of releasing histamine upon antigen challenge while possessing only 50 molecules of cell surface antigen-specific IgE; other dimer-insensitive donors' basophils require 6 to 10-fold greater IgE densities for equal histamine release.  相似文献   

15.
Selective growth of human basophilic granulocytes was obtained in suspension cultures of mononuclear cells from umbilical cord blood. Approximately 50 to 80% of nonadherent cells recovered from 2- to 3-wk-old cultures contained metachromatic granules, and these cells were identified as human basophilic granulocytes by electron microscopy. Histamine content of cultured human basophils was comparable to that in peripheral blood basophils. Cultured basophils bear 2.7 to 3.7 X 10(5) IgE receptors per cell that bind both human IgE and rodent IgE with comparable affinity. Average equilibrium constants of the receptors for human IgE and mouse IgE were 2.56 +/- 0.88 X 10(9) M-1 and 1.85 +/- 0.86 X 10(9) M-1, respectively. The cell-surface component of the IgE receptors on cultured basophils has a m.w. of 64,000. Cultured basophils could be passively sensitized with human IgE and mouse IgE monoclonal antibody, and sensitized basophils released characteristic cytoplasmic granules and both histamine and arachidonate upon challenge with either anti-human IgE or antigen. Incubation of cultured basophils with ionophore A23187 or F-Met-Leu-Phe resulted in histamine release. However, compound 48/80 failed to induce histamine release from the cells.  相似文献   

16.
NK cells express Fc gamma RIII (CD16), which is responsible for IgG-dependent cell cytotoxicity and for production of several cytokines and chemokines. Whereas Fc gamma RIII on NK cells is composed of both Fc gamma RIII alpha and FcR gamma chains, that on mast cells is distinct from NK cells and made of Fc gamma RIII alpha, FcR beta, and FcR gamma. Mast cells show degranulation and release several mediators, which cause anaphylactic responses upon cross-linking of Fc gamma RIII as well as Fc epsilon RI with aggregated IgE. In this paper, we examined whether IgE activates NK cells through Fc gamma RIII on their cell surface. We found that NK cells produce several cytokines and chemokines related to an allergic reaction upon IgE stimulation. Furthermore, NK cells exhibited cytotoxicity against IgE-coated target cells in an Fc gamma RIII-dependent manner. These effects of IgE through Fc gamma RIII were not observed in NK cells from FcR gamma-deficient mice lacking Fc gamma RIII expression. Collectively, these results demonstrate that NK cells can be activated with IgE through Fc gamma RIII and exhibit both cytokine/chemokine production and Ab-dependent cell cytotoxicity. These data imply that not only mast cells but also NK cells may contribute to IgE-mediated allergic responses.  相似文献   

17.
Interaction of secretory IgE with FcepsilonRI is the prerequisite for allergen-driven cellular responses, fundamental events in immediate and chronic allergic manifestations. Previous studies reported the binding of soluble FcepsilonRIalpha to membrane IgE exposed on B cells. In this study, the functional interaction between human membrane IgE and human FcepsilonRI is presented. Four different IgE versions were expressed in mouse B cell lines, namely: a truncation at the Cepsilon2-Cepsilon3 junction of membrane IgE isoform long, membrane IgE isoform long (without Igalpha/Igbeta BCR accessory proteins), and both epsilonBCRs (containing membrane IgE isoforms short and long). All membrane IgE versions activated a rat basophilic leukemia cell line transfected with human FcepsilonRI, as detected by measuring the release of both preformed and newly synthesized mediators. The interaction led also to Ca(2+) responses in the basophil cell line, while membrane IgE-FcepsilonRI complexes were detected by immunoprecipitation. FcepsilonRI activation by membrane IgE occurs in an Ag-independent manner. Noteworthily, human peripheral blood basophils and monocytes also were activated upon contact with cells bearing membrane IgE. In humans, the presence of FcepsilonRI in several cellular entities suggests a possible membrane IgE-FcepsilonRI-driven cell-cell dialogue, with likely implications for IgE homeostasis in physiology and pathology.  相似文献   

18.
In the present study a gamma 1 kappa monoclonal antibody, Mab 25, specific for the receptor for the Fc fragment of IgE on lymphocytes (Fc epsilon RL) was established. This antibody was generated after fusion of spleen cells from mice immunized with the EBV-transformed lymphoblastoid cell line RPMI 8866, which is known to express Fc epsilon RL at high density. Mab 25 inhibits strongly the binding of IgE to RPMI 8866 cells and to other Fc epsilon RL-positive EBV-transformed lymphoblastoid cell lines. A 50% inhibition of IgE binding was observed at a Mab 25 concentration of 10 ng/ml. The binding of IgE was also inhibited by Fab fragments of Mab 25, suggesting that the inhibition is not simply due to steric hindrance or to an eventual binding through its Fc portion. Mab 25 only binds to cell lines expressing Fc epsilon RL. Mab 25 immunoprecipitated a single polypeptide with an apparent m.w. of 42 Kd, pI 4.9. The membrane molecule bound to and eluted from a Mab 25 immunoabsorbent had the same apparent m.w. and pI as the Fc epsilon RL purified from an IgE immunoabsorbent. Additionally, when RPMI 8866 cell lysates were cleared with Mab 25, no Fc epsilon RL could be bound to or eluted from an IgE immunoabsorbent. Mab 25 was found to weakly bind to a minor proportion of blood (1 to 4%), tonsil (2 to 9%) and spleen (4 to 5%) mononuclear cells with a low intensity. By double fluorescence analysis, most of the Fc epsilon RL-positive cells were found to be CD 20-positive B lymphocytes. The staining pattern of Mab 25 and the biochemical characteristics of the antigen detected by Mab 25 were comparable to those of the CD 23 Mab. The four CD 23 Mab MHM 6, PL 13, HD 50, and Tü 1 were found to inhibit the binding of IgE. PL 13 was found to totally inhibit the binding of Mab 25 to RPMI 8866 cells, whereas Tü 1 and MHM 6 only partially inhibited Mab 25 binding. HD 50 was unable to block the binding of Mab 25. The finding that different CD 23/Fc epsilon RL-specific monoclonal antibodies recognizing distinct epitopes have in common the capacity of inhibiting the binding of IgE suggests that upon binding they induce a conformational alteration of the Fc epsilon RL resulting in a loss of the IgE binding capacity. In conclusion, our data demonstrate that the CD 23 antigen is a low affinity receptor for IgE on lymphocytes.  相似文献   

19.
We have produced three different mAb specific for human IgE-Fc. Their binding pattern to either heat-denatured IgE or a family of overlapping IgE-derived recombinant peptides and their ability to affect interaction of IgE with its low affinity receptor Fc epsilon R2/CD23 demonstrate that they recognize distinct epitopes on the IgE molecule. All three mAb were able to induce basophil degranulation as measured by the induction of histamine release. mAb 173 recognizes a thermolabile epitope in the CH4 domain. It does not affect the binding of IgE to Fc epsilon R2/CD23. mAb 272 recognizes a thermostable epitope that maps to a sequence of 36 amino acids (AA) spanning part of the CH2 and CH3 domain and it does not affect the binding of IgE to Fc epsilon R2/CD23. mAb 27 recognizes a thermolabile epitope located on a 10 AA stretch (AA 367-376) in the CH3 domain. This area contains one N-linked oligosaccharide (Asn-371), but the antibody is not directed against carbohydrate because it binds to Escherichia coli-derived IgE peptides. mAb 27 inhibits the binding of IgE to Fc epsilon R2/CD23 but is still capable of reacting with IgE already bound to Fc epsilon R2/CD23. These data suggest that upon binding to Fc epsilon R2/CD23, the IgE molecule engages one of two equivalent-binding sites close to the glycosylated area of the CH3 domain.  相似文献   

20.
Recent mathematical models of bivalent hapten-induced histamine release from basophils predict that under appropriate conditions histamine release is maximum when cross-link formation is maximum, at a hapten concentration equal to 1/(2Ka), where Ka is the average affinity constant of the hapten for a single IgE binding site. To test this prediction we sensitized human basophils with a monoclonal anti-dinitrophenol IgE and generated histamine release dose-response curves with a bivalent hapten, alpha, epsilon-DNP-lysine. The monoclonal IgE has a published affinity constant of 7.1 X 10(7) M-1 for epsilon-DNP-lysine as determined by equilibrium dialysis. From the position of the maximum of the histamine dose-response curves, both in the presence and in the absence of monovalent DNP hapten, we determine that the sensitizing IgE has an intrinsic affinity constant of 6.9 +/- 0.5 X 10(7) M-1 for epsilon-DNP-lysine and 1.2 +/- 0.6 X 10(6) M-1 for alpha-DNP-lysine. The agreement between the two estimates of the epsilon-DNP-lysine affinity constant, one from histamine release experiments involving surface bound IgE and one from binding experiments involving IgE free in solution, 1) is consistent with a central prediction of the theory of cross-linking and 2) indicates that the hapten-binding properties of the IgE are unaffected by its being bound to Fc epsilon receptors on the basophil surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号