首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epolactaene, a neuritogenic compound in human neuroblastoma cells, showed inhibitory activities against DNA polymerases alpha and beta. The synthesis and inhibitory activities of epolactaene analogs are described. The alpha,beta-epoxy-gamma-lactam moiety in the core and the length of the side chain greatly influenced the activities. Compound 5 was the strongest inhibitor of DNA polymerase alpha and beta of all synthesized compounds with IC(50) values of 13 and 78 microM, respectively. N- and O-alkyl derivatives that had modified core moieties showed moderate inhibition.  相似文献   

2.
Epolactaene, a neuritogenic compound in human neuroblastoma SH-SY5Y, induces apoptosis in a human leukemia B-cell line, BALL-1. The apoptosis-inducing activities of 34 epolactaene derivatives, including those of the newly synthesized alpha-alkyl-alpha,beta-epoxy-gamma-lactam derivative and cyclopropane derivatives, were also tested. The structure-activity relationships of the epolactaene derivatives as an inducer of apoptosis are described. The alpha-acyl-alpha,beta-epoxy-gamma-lactam moiety as well as the hydrophobicity derived from the long alkyl side chain are both important for activity. Compound 1e displayed the strongest activity among all the synthesized compounds with an IC50 value of 0.70 microM.  相似文献   

3.
Isosteviol (ent-16-ketobeyeran-19-oic acid) is a hydrolysis product of stevioside, which is a natural sweetener produced in the leaves of Stevia rebaudiana (Bertoni) Bertoni. In this report, we prepared isosteviol and related compounds from stevioside by microbial transformation and chemical conversion and assayed the inhibitory activities toward DNA metabolic enzymes and human cancer cell growth. Among twelve compounds obtained, only isosteviol (compound 3) potently inhibited both mammalian DNA polymerases (pols) and human DNA topoisomerase II (topo II), and IC50 value for pol alpha was 64.0 microM. This compound had no inhibitory effect on higher plant (cauliflower) pols, prokaryotic pols, human topo I, and DNA metabolic enzymes such as human telomerase, T7 RNA polymerase, and bovine deoxyribonuclease I. With pol alpha, isosteviol acted non-competitively with the DNA template-primer and nucleotide substrate. Isosteviol prevented the growth of human cancer cells, with LD50 values of 84-167 microM, and 500 microg of the compound caused a marked reduction in TPA (12-O-tetradecanoylphorbol-13-acetate)-induced inflammation (inhibitory effect, 53.0%). The relationship between the structure of stevioside-based compounds and these activities were discussed.  相似文献   

4.
5.
Epolactaene, isolated from cultured Penicillium sp. BM 1689-P mycelium, induces neurite outgrowth and arrests the cell cycle of the human neuroblastoma cell line, SH-SY5Y, at the G1 phase. We have found that epolactaene and its derivatives induce apoptosis in the human leukemia B-cell line, BALL-1. In this study, we prepared fluorescent and biotinylated epolactaene derivatives. We characterized the cellular location and the identification of BALL-1 proteins that reacted with these compounds. The results obtained from the reaction of epolactaene or its derivative with N-acetylcysteine methyl ester indicate that these compounds induce the disulfide formation and the -position of the epoxylactam core is the reactive site.  相似文献   

6.
7.
A novel lipid compound, epolactaene, was isolated from the culture supernatant of Penicillium sp. 1689-P and it has already been reported that it induced neurite outgrowth in a human neuroblastoma cell line. In this study, we first investigated the effects of epolactaene on a human leukemia B-cell line, BALL-1 cells, and clarified that epolactaene induces apoptosis in BALL-1 cells in a dose- and time-dependent manner. Furthermore, we focused on the side chain structure of epolactaene, and chemically synthesized epolactaene derivatives. One derivative, which has a straight long alkyl chain as its side chain, induced apoptosis more effectively than epolactaene. On the other hand, other derivatives with a short alkyl side chain had weaker apoptosis-inducing actions. A good correlation was found between the apoptosis-inducing action of these compounds and their octanol/water partition coefficients (log P). These results suggested that the apoptosis-inducing activities of epolactaene and its derivatives were related to the hydrophobicity of these compounds; so that side chain structure of epolactaene is very important for its apoptosis-inducing activities. These apoptosis-inducing actions of epolactaene and its derivatives were also observed in various blood tumor cell lines and normal lymphocytes.  相似文献   

8.
Studies on DNA polymerases and topoisomerases in archaebacteria   总被引:1,自引:0,他引:1  
We have isolated DNA polymerases and topoisomerases from two thermoacidophilic archaebacteria: Sulfolobus acidocaldarius and Thermoplasma acidophilum. The DNA polymerases are composed of a single polypeptide with molecular masses of 100 and 85 kDa, respectively. Antibodies against Sulfolobus DNA polymerase did not cross react with Thermoplasma DNA polymerase. Whereas the major DNA topoisomerase activity in S. acidocaldarius is an ATP-dependent type I DNA topoisomerase with a reverse gyrase activity, the major DNA topoisomerase activity in T. acidophilum is a ATP-independent relaxing activity. Both enzymes resemble more the eubacterial than the eukaryotic type I DNA topoisomerase. We have found that small plasmids from halobacteria are negatively supercoiled and that DNA topoisomerase II inhibitors modify their topology. This suggests the existence of an archaebacterial type II DNA topoisomerase related to its eubacterial and eukaryotic counterparts. As in eubacteria, novobiocin induces positive supercoiling of halobacterial plasmids, indicating the absence of a eukaryotic-like type I DNA topoisomerase that relaxes positive superturns.  相似文献   

9.
10.
Epolactaene is a microbial metabolite isolated from the fungal strain Penicillium sp. It arrests the cell cycle at the G0/G1 phase and induces the outgrowth of neurites in human neuroblastoma SH-SY5Y cells. In this communication, we report the structure-activity relationships (SARs) of new epolactaene derivatives, including those lacking the epoxylactam moiety and having various side chains. These derivatives were evaluated for their ability to inhibit the growth of human cancer cell lines. They were also analyzed for their ability to affect human heat shock protein 60 (Hsp60), which we have already identified as a protein that binds to epolactaene. We also identified the important structural framework of epolactaene/ETB (epolactaene tertiary butyl ester) for not only binding to Hsp60 but also inhibiting Hsp60 chaperone activity.  相似文献   

11.
12.
Unsaturated long-chain fatty acids selectively bind to the DNA binding sites of DNA polymerase beta and DNA topoisomerase II, and inhibit their activities, although the amino acid sequences of these enzymes are markedly different from each other. Computer modeling analysis revealed that the fatty acid interaction interface in both enzymes has a group of four amino acid residues in common, forming a pocket which binds to the fatty acid molecule. The four amino acid residues were Thr596, His735, Leu741 and Lys983 for yeast DNA topoisomerase II, corresponding to Thr79, His51, Leu11 and Lys35 for rat DNA polymerase beta. Using three-dimensional structure model analysis, we determined the spatial positioning of specific amino acid residues binding to the fatty acids in DNA topoisomerase II, and subsequently obtained supplementary information to build the structural model.  相似文献   

13.
14.
Procaryotic DNA polymerases contain an associated 3'----5' exonuclease activity which provides a proofreading function and contributes substantially to replication fidelity. DNA polymerases of the eucaryotic herpes-type viruses contain similar associated exonuclease activities. We have investigated the fidelity of polymerases purified from wild type herpes simplex virus, as well as from mutator and antimutator strains. On synthetic templates, the herpes enzymes show greater relative exonuclease activities, and greater ability to excise a terminal mismatched base, than procaryotic DNA polymerases which proofread. On a phi X174 natural DNA template, the herpes enzymes are more accurate than purified eucaryotic DNA polymerases; the error rate is similar to E. coli polymerase I. However, conditions which abnegate proofreading by E. coli polymerase I have little effect on the herpes enzymes. We conclude that either these viral polymerases are accurate in the absence of proofreading, or the conditions examined have little effect on proofreading by the herpes DNA polymerases.  相似文献   

15.
16.
The enzymology of DNA repair is currently under active investigation. The purpose of the present study was to examine the involvement of a number of enzymes (DNA polymerase alpha and beta, DNA topoisomerase II and ribonucleotide reductase) in the repair of chemically induced DNA damage in a mammalian cell system. This was done by studying the effects of inhibitors of these enzymes on the levels of 2-acetylaminofluorene (2-AAF)-DNA adducts and on the induction of UDS in primary cultures of rat hepatocytes exposed to the carcinogen in vitro. The results obtained with aphidicolin (an inhibitor of DNA polymerase alpha) show that the binding of 2-AAF to cellular DNA was significantly higher in samples exposed to this compound. Moreover, induction of UDS by 2-AAF was completely blocked in the presence of this compound. Dideoxythymidine, a DNA polymerase beta inhibitor, led to complex results. It produced a reduced DNA-specific activity due to [3H]2-AAF adduct formation as well as a diminished but still detectable UDS response in the presence of 2-AAF. Inhibitors of DNA topoisomerase II (nalidixic acid) and ribonucleotide reductase (hydroxyurea) did not cause any statistically significant change in the accumulation of 2-AAF adducts nor did they affect the induction of UDS. The data clearly suggest that DNA polymerase alpha participates in the repair of 2-AAF adducts in hepatocytes. In addition, neither DNA topoisomerase II activity, nor limitations in the precursor nucleotide pools appear to be critical factors in this process.  相似文献   

17.
The p-n-butylphenyl- and p-n-butylanilino- substituted analogs of dGTP and dATP, respectively, were tested as inhibitors of purified human placental DNA polymerases alpha and delta. It was observed that DNA polymerase alpha activity was potently inhibited by these analogs with I0.5 values as low as the nanomolar range, whereas DNA polymerase delta activity was poorly inhibited, with I0.5 values of ca. 100 micromolar. These results argue for a distinct identity of these two enzymes, and demonstrate the usefulness of these analogs as probes of DNA polymerase structures. In addition, these analogs provide a rapid method for the discrimination of the two enzyme activities and a means for the selective assay of DNA polymerase delta. Aphidicolin inhibited both DNA polymerases.  相似文献   

18.
The induction by interleukin-2 of DNA topoisomerase I and DNA topoisomerase II activities in the human T cell line HuT 78 was investigated. HuT 78 cells were treated with 1000 U of interleukin-2/ml, and extracts of the HuT 78 nuclei were prepared over a 24 h period. The extracts were assayed quantitatively for the activities of DNA topoisomerase I and DNA topoisomerase II. Three concomitant, transient increases of 3- to 11-fold in the specific activities of both DNA topoisomerase I and DNA topoisomerase II were observed following treatment with IL-2 at 0.5, 4, and 10 h after treatment with interleukin-2. The specific activities of both enzymes returned to base-line values after each of these transient increases. These results reveal that the activities of DNA topoisomerase I and DNA topoisomerase II are highly regulated in HuT 78 cells upon treatment with IL-2.  相似文献   

19.
In the epididymis of young rats, activities of DNA polymerases alpha, beta and gamma and DNA topoisomerase I decreased after castration. DNA polymerase alpha and gamma increased with androgen administration and activity reached 81.3% and 78.0%, respectively, of the activity in the sham-operated group on day 21. Activity of DNA polymerase beta remained at the activity of day 7 during androgen administration and was almost the same as that in the sham-operated group on day 21. DNA topoisomerase I activity showed a slight increase with androgen administration and reached 50.3% of that in the sham-operated group. The activities of these enzymes were not fully restored to those in the sham-operated group. These results indicate that in young rats activities of epididymal DNA polymerase alpha and gamma and DNA topoisomerase I are partially, and that of DNA polymerase beta wholly, dependent on androgens and may provide a means of investigating the regulation of epididymal cell proliferation.  相似文献   

20.
DNA topoisomerases (topos) and DNA polymerases (pols) are involved in many aspects of DNA metabolism such as replication reactions. We reported previously that long chain unsaturated fatty acids such as polyunsaturated fatty acids (PUFA) (i.e., eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA)) inhibited the activities of eukaryotic pols in vitro. In the present study, we found that PUFA also inhibited human topos I and II activities, and the inhibitory effect of conjugated fatty acids converted from EPA and DHA (cEPA and cDHA) on pols and topos was stronger than that of normal EPA and DHA. cEPA and cDHA inhibited the activities of mammalian pols and human topos, but did not affect the activities of plant and prokaryotic pols or other DNA metabolic enzymes tested. cEPA was a stronger inhibitor than cDHA with IC(50) values for mammalian pols and human topos of 11.0-31.8 and 0.5-2.5 microM, respectively. Therefore, the inhibitory effect of cEPA on topos was stronger than that on pols. Preincubation analysis suggested that cEPA directly bound both topos I and II, but did not bind or interact with substrate DNA. This is the first report that conjugated PUFA such as cEPA act as inhibitors of pols and topos. The results support the therapeutic potential of cEPA as a leading anti-cancer compound that poisons pols and topos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号