首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cleavage of the 45-kDa gelatin-binding fragment of human plasma fibronectin with fibronectinase resulted in the activation of two forms of metalloproteinase with different substrate specificities. The 40-kDa FN-type-IV collagenase A degrades heat-denatured type-I collagen, laminin and also native collagen type IV. The 27-kDa FN-type-IV collagenase B degrades native collagen type IV, but it does not cleave laminin and only poorly degrades gelatin. Both enzymes begin with the same N-terminal sequence VYQPQPH- (residues 262-268 of fibronectin) but, contrary to the FN-type-IV collagenase A, the FN-type-IV collagenase B has lost the C-terminal region of type I repeats, where the major gelatin-binding determinants of fibronectin are located. The FN-type-IV collagenases A and B are sequentially similar to the middle domain (domain II) of collagenase type IV, secreted by H-ras-transformed human bronchial epithelial cells. Substrate and inhibition specificity of FN-type-IV collagenase A and B are different from those of FN-gelatinase and FN-laminase, isolated previously from the central and C-terminal fibronectin domains, respectively. The substrate specificity of both enzymes, characterized in this study, is also different from that of already known matrix-degrading metalloproteinases.  相似文献   

2.
Pepper (Capsicum annuum) serotonin N-hydroxycinnamoyltransferase (SHT) catalyzes the synthesis of N-hydroxycinnamic acid amides of serotonin, including feruloylserotonin and p-coumaroylserotonin. To elucidate the domain or the key amino acid that determines the amine substrate specificity, we isolated a tyramine N-hydroxycinnamoyltransferase (THT) gene from pepper. Purified recombinant THT protein catalyzed the synthesis of N-hydroxycinnamic acid amides of tyramine, including feruloyltyramine and p-coumaroyltyramine, but did not accept serotonin as a substrate. Both the SHT and THT mRNAs were found to be expressed constitutively in all pepper organs. Pepper SHT and THT, which have primary sequences that are 78% identical, were used as models to investigate the structural determinants responsible for their distinct substrate specificities and other enzymatic properties. A series of chimeric genes was constructed by reciprocal exchange of DNA segments between the SHT and THT cDNAs. Functional characterization of the recombinant chimeric proteins revealed that the amino acid residues 129 to 165 of SHT and the corresponding residues 125 to 160 in THT are critical structural determinants for amine substrate specificity. Several amino acids are strongly implicated in the determination of amine substrate specificity, in which glycine-158 is involved in catalysis and amine substrate binding and tyrosine-149 plays a pivotal role in controlling amine substrate specificity between serotonin and tyramine in SHT. Furthermore, the indisputable role of tyrosine is corroborated by the THT-F145Y mutant that uses serotonin as the acyl acceptor. The results from the chimeras and the kinetic measurements will direct the creation of additional novel N-hydroxycinnamoyltransferases from the various N-hydroxycinnamoyltransferases found in nature.  相似文献   

3.
The capacity for nonself recognition is a ubiquitous and essential aspect of biology. In filamentous fungi, nonself recognition during vegetative growth is believed to be mediated by genetic differences at heterokaryon incompatibility (het) loci. Filamentous fungi are capable of undergoing hyphal fusion to form mycelial networks and with other individuals to form vegetative heterokaryons, in which genetically distinct nuclei occupy a common cytoplasm. In Neurospora crassa, 11 het loci have been identified that affect the viability of such vegetative heterokaryons. The het-c locus has at least three mutually incompatible alleles, termed het-c(OR), het-c(PA), and het-c(GR). Hyphal fusion between strains that are of alternative het-c specificity results in vegetative heterokaryons that are aconidial and which show growth inhibition and hyphal compartmentation and death. A 34- to 48-amino-acid variable domain, which is dissimilar in HET-C(OR), HET-C(PA), and HET-C(GR), confers allelic specificity. To assess requirements for allelic specificity, we constructed chimeras between the het-c variable domain from 24 different isolates that displayed amino acid and insertion or deletion variations and determined their het-c specificity by introduction into N. crassa. We also constructed a number of artificial alleles that contained novel het-c specificity domains. By this method, we identified four additional and novel het-c specificities. Our results indicate that amino acid and length variations within the insertion or deletion motif are the primary determinants for conferring het-c allelic specificity. These results provide a molecular model for nonself recognition in multicellular eucaryotes.  相似文献   

4.
The alpha(1)beta(1) and alpha(2)beta(1) integrins are cell surface collagen receptors. Cells expressing the alpha(1)beta(1) integrin preferentially adhere to collagen IV, whereas cells expressing the alpha(2)beta(1) integrin preferentially adhere to collagen I. Recombinant alpha(1) and alpha(2) integrin I domains exhibit the same collagen type preferences as the intact integrins. In addition, the alpha(2) integrin I domain binds echovirus 1; the alpha(1) I domain does not. To identify the structural components of the I domains responsible for the varying ligand specificities, we have engineered several alpha(1)/alpha(2) integrin I domain chimeras and evaluated their virus and collagen binding activities. Initially, large secondary structural components of the alpha(2) I domain were replaced with corresponding regions of the alpha(1) I domain. Following analysis in echovirus 1 and collagen binding assays, chimeras with successively smaller regions of alpha(1) I were constructed and analyzed. The chimeras were analyzed by ELISA with several different alpha(2) integrin monoclonal antibodies to assess their proper folding. Three different regions of the alpha(1) I domain, when present in the alpha(2) I domain, conferred enhanced collagen IV binding activity upon the alpha(2) I domain. These include the alpha3 and alpha5 helices and a portion of the alpha6 helix. Echovirus 1 binding was lost in a chimera containing the alphaC-alpha6 loop; higher resolution mapping identified Asn(289) as playing a critical role in echovirus 1 binding. Asn(289) had not been implicated in previous echovirus 1 binding studies. Taken together, these data reveal the existence of multiple determinants of ligand binding specificities within the alpha(1) and alpha(2) integrin I domains.  相似文献   

5.
Pancreatic triglyceride lipase (PNLIP) is essential for dietary fat digestion in children and adults, whereas a homolog, pancreatic lipase-related protein 2 (PNLIPRP2), is critical in newborns. The two lipases are structurally similar, yet they have different substrate specificities. PNLIP only cleaves neutral fats. PNLIPRP2 cleaves neutral and polar fats. To test the hypothesis that the differences in activity between PNLIP and PNLIPRP2 are governed by surface loops around the active site, we created multiple chimeras of both lipases by exchanging the surface loops singly or in combination. The chimeras were expressed, purified, and tested for activity against various substrates. The structural determinants of PNLIPRP2 galactolipase activity were contained in the N-terminal domain. Of the surface loops tested, the lid domain and the β5-loop influenced activity against triglycerides and galactolipids. Any chimera on PNLIP with the PNLIPRP2 lid domain or β5-loop had decreased triglyceride lipase activity similar to that of PNLIPRP2. The corresponding chimeras of PNLIPRP2 did not increase activity against neutral lipids. Galactolipase activity was abolished by the PNLIP β5-loop and decreased by the PNLIP lid domain. The source of the β9-loop had minimal effect on activity. We conclude that the lid domain and β5-loop contribute to substrate specificity but do not completely account for the differing activities of PNLIP and PNLIPRP2. Other regions in the N-terminal domain must contribute to the galactolipase activity of PNLIPRP2 through direct interactions with the substrate or by altering the conformation of the residues surrounding the hydrophilic cavity in PNLIPRP2.  相似文献   

6.
The Staphylococcus aureus enterotoxins (S.E.) A-I, and toxic-shock syndrome toxin TSST-1 act as superantigens to cause overstimulation of the host immune system, leading to the onset of various diseases including food poisoning and toxic shock syndrome. SAgs bind as intact proteins to the DRalpha1 domain of the MHC class II receptor and the TcRVbeta domain from the T cell receptor and cause excessive release of cytokines such as IL-2, TNF-alpha, and IFN-gamma, and hyperproliferation of T cells. In addition, different SAgs bind and activate different TcRVbeta isoforms during pathogenesis of human immune cells. These two properties of SAgs prompted us to design several chimeric DRalpha1-linker-TcRVbeta proteins using different TcRVbeta isoforms to create chimeras that would specifically inhibit the pathogenesis of SAgs against which they were designed. In this study, we compare the design, interaction, and inhibitory properties of three different DRalpha1-linker-TcRVbeta chimeras targeted against three different SAgs, SEB, SEC3, and TSST-1. The inhibitory properties of the chimeras were tested by monitoring IL-2 release and T cell proliferation using a primary human cell model. We demonstrate that the three chimeras specifically inhibit the pathogenesis of their target superantigen. We performed molecular modeling to analyze the structural basis of the type specificity exhibited by different chimeras designed against their target SAgs, examine the role of the linker in determining binding and specificity, and suggest site-specific mutations in the chimera to enhance binding affinity. The fact that our strategy works equally well for SEB and TSST-1, two widely different phylogenic variants, suggests that the DRalpha1-linker-TcRVbeta chimeras may be developed as a general therapy against a broad spectrum of superantigens released during Staphylococcal infection.  相似文献   

7.
Streptomyces griseus trypsin (SGT) is a bacterial serine proteinase that is more homologous to mammalian than to other bacterial enzymes. The structure of SGT has been solved primarily by molecular replacement, though some low-resolution phase information was supplied by heavy-atom derivatives. The mammalian pancreatic serine proteinases bovine trypsin (BT) and alpha-chymotrypsin (CHT) were used as molecular replacement models. Because these proteins have low homology with SGT compared to the majority of other successful replacement models, new strategies were required for molecular replacement to succeed. The model of SGT has been refined at 1.7 A resolution to a final R-factor of 0.161 (1 A = 0.1 nm); the correlation coefficient between all observed and calculated structure factor amplitudes is 0.908. Solvent molecules located in the crystal structure play an important role in stabilizing buried charged and polar groups. An additional contribution to stability can be seen in the fact that the majority of the charged side-chains are involved in ionic interactions, sometimes linking the two domains of SGT. A comparison of SGT with BT shows that the greatest similarities are in the active-site and substrate-binding regions, consistent with their similar substrate specificities. The modeling of complexes of SGT with two inhibitors of BT, pancreatic trypsin inhibitor (PTI) and the third domain of Japanese quail ovomucoid (OMJPQ3), helps to explain why PTI inhibits SGT but OMJPQ3 does not. Like BT, but unlike other bacterial serine proteinases of known structure, SGT has a buried N terminus. SGT has also a well-defined Ca2+-binding site, but this site differs in location from that of BT.  相似文献   

8.
Streptomyces griseus trypsin (SGT) was chosen as a model scaffold for the development of serine proteases with enhanced substrate specificity. Recombinant SGT has been produced in a Bacillus subtilis expression system in a soluble active form and purified to homogeneity. The recombinant and native proteases have nearly identical enzymatic properties and structures. Four SGT mutants with alterations in the S1 substrate binding pocket (T190A, T190P, T190S, and T190V) were also expressed. The T190P mutant demonstrated the largest shift to a preference for Arg versus Lys in the P1 site. This was shown by a minor reduction in catalytic activity toward an Arg-containing substrate (k(cat) reduction of 25%). The crystal structures of the recombinant SGT and the T190P mutant in a complex with the inhibitor benzamidine were obtained at high resolution (approximately 1.9 A). The increase in P1 specificity, achieved with minimal effect on the catalytic efficiency, demonstrates that the T190P mutant is an ideal candidate for the design of additional substrate specificity engineered into the S2 to S4 binding pockets.  相似文献   

9.
Statistical proteomes that are naturally occurring can result from mechanisms involving aminoacyl-tRNA synthetases (aaRSs) with inactivated hydrolytic editing active sites. In one case, Mycoplasma mobile leucyl-tRNA synthetase (LeuRS) is uniquely missing its entire amino acid editing domain, called CP1, which is otherwise present in all known LeuRSs and also isoleucyl- and valyl-tRNA synthetases. This hydrolytic CP1 domain was fused to a synthetic core composed of a Rossmann ATP-binding fold. The fusion event splits the primary structure of the Rossmann fold into two halves. Hybrid LeuRS chimeras using M. mobile LeuRS as a scaffold were constructed to investigate the evolutionary protein:protein fusion of the CP1 editing domain to the Rossmann fold domain that is ubiquitously found in kinases and dehydrogenases, in addition to class I aaRSs. Significantly, these results determined that the modular construction of aaRSs and their adaptation to accommodate more stringent amino acid specificities included CP1-dependent distal effects on amino acid discrimination in the synthetic core. As increasingly sophisticated protein synthesis machinery evolved, the addition of the CP1 domain increased specificity in the synthetic site, as well as provided a hydrolytic editing site.  相似文献   

10.
CYP2C19 is selective for the 4'-hydroxylation of S-mephenytoin while the highly similar CYP2C9 has little activity toward this substrate. To identify critical amino acids determining the specificity of human CYP2C19 for S-mephenytoin 4'-hydroxylation, we constructed chimeras by replacing portions of CYP2C9 containing various proposed substrate recognition sites (SRSs) with those of CYP2C19 and mutating individual residues by site-directed mutagenesis. Only a chimera containing regions encompassing SRSs 1--4 was active (30% of wild-type CYP2C19), indicating that multiple regions are necessary to confer specificity for S-mephenytoin. Mutagenesis studies identified six residues in three topological components of the proteins required to convert CYP2C9 to an S-mephenytoin 4'-hydroxylase (6% of the activity of wild-type CYP2C19). Of these, only the I99H difference located in SRS 1 between helices B and C reflects a change in a side chain that is predicted to be in the substrate-binding cavity formed above the heme prosthetic group. Two additional substitutions, S220P and P221T residing between helices F and G but not in close proximity to the substrate binding site together with five differences in the N-terminal portion of helix I conferred S-mephenytoin 4'-hydroxylation activity with a K(M) similar to that of CYP2C19 but a 3-fold lower K(cat). Three residues in helix I, S286N, V292A, and F295L, were essential for S-mephenytoin 4'-hydroxylation activity. On the basis of the structure of the closely related enzyme CYP2C5, these residues are unlikely to directly contact the substrate during catalysis but are positioned to influence the packing of substrate binding site residues and likely substrate access channels in the enzyme.  相似文献   

11.
This study identifies a natural system in Lactococcus lactis, in which a restriction modification specificity subunit resident on a 6159 bp plasmid (pAH33) alters the specificity of a functional R/M mechanism encoded by a 20.3 kb plasmid, pAH82. The new specificity was identified after phenotypic and molecular analysis of a 26.5 kb co-integrate plasmid (pAH90), which was detected after bacteriophage challenge of the parent strain. Analysis of the regions involved in the co-integration revealed that two novel hybrid hsdS genes had been formed during the co-integration event. The HsdS chimeras had interchanged the C- and N-terminal variable domains of the parent subunits, generating two new restriction specificities. Comparison of the parent hsdS genes with other type I specificity determinants revealed that the region of the hsdS genes responsible for the co-integration event is highly conserved among lactococcal type I hsdS determinants. Thus, as hsdS determinants are widespread in the genus Lactococcus, new restriction specificities may evolve rapidly after homologous recombination between these genes. This study demonstrates that, similar to previous observations in Gram-negative bacteria, a Gram-positive bacterium can acquire novel restriction specificities naturally through domain shuffling of resident HsdS subunits.  相似文献   

12.
In Aspergillus nidulans, purine uptake is mediated by three transporter proteins: UapA, UapC and AzgA. UapA and UapC have partially overlapping functions, are 62% identical and have nearly identical predicted topologies. Their structural similarity is associated with overlapping substrate specificities; UapA is a high-affinity, high-capacity specific xanthine/uric acid transporter. UapC is a low/moderate-capacity general purine transporter. We constructed and characterized UapA/UapC, UapC/UapA and UapA/UapC/UapA chimeric proteins and UapA point mutations. The region including residues 378-446 in UapA (336-404 in UapC) has been shown to be critical for purine recognition and transport. Within this region, we identified: (i) one amino acid residue (A404) important for transporter function but probably not for specificity and two residues (E412 and R414) important for UapA function and specificity; and (ii) a sequence, (F/Y/S)X(Q/E/P) NXGXXXXT(K/R/G), which is highly conserved in all homologues of nucleobase transporters from bacteria to man. The UapC/UapA series of chimeras behaves in a linear pattern and leads to an univocal assignment of functional domains while the analysis of the reciprocal and 'sandwich' chimeras revealed unexpected inter-domain interactions. cDNAs coding for transporters including the specificity region defined by these studies have been identified for the first time in the human and Caenorhabditis elegans databases.  相似文献   

13.
Cytochrome P450s IIA1 and IIA2, encoded by the CYP2A1 and CYP2A2 genes, display 88% amino acid sequence similarities. The dissimilarities of sequence between these two enzymes are primarily localized within four discrete regions of the polypeptides that are separated by regions of absolute sequence identity. IIA1 specifically hydroxylates the prototype substrate testosterone at the 7 alpha and 6 alpha position with a predominance of 7 alpha metabolite. IIA2, on the other hand, hydroxylates this steroid at eight positions on the molecule, with one of the most abundant metabolites being 15 alpha-hydroxytestosterone. To determine those amino acids responsible for the difference in testosterone hydroxylation specificities, chimeras were constructed between IIA1 and IIA2 cDNAs and expressed in cell culture using vaccinia-virus-mediated cDNA expression. Chimeras, in which the first 355 amino acids correspond to a single enzyme, maintain the specificity associated with that enzyme. Of six chimeras which have substitutions between amino acids 161 and 276, two are inactive and the remaining four give similar metabolite profiles, in which both 7 alpha and 15 alpha hydroxylation specificities have been lost. Two of these four chimeras are diametric apposites, suggesting that modification of either the N-terminal or central regions of the enzymes results in conformational changes that prevent the specific binding interactions responsible for the narrow regioselectivity associated with IIA1 and 15 alpha-hydroxytestosterone formation associated with IIA2.  相似文献   

14.
Members of the pleiotropic drug resistance (PDR) family of ATP binding cassette (ABC) transporters consist of two homologous halves, each containing a nucleotide binding domain (NBD) and a transmembrane domain (TMD). The PDR transporters efflux a variety of hydrophobic xenobiotics and despite the frequent association of their overexpression with the multidrug resistance of fungal pathogens, the transport mechanism of these transporters is poorly understood. Twenty-eight chimeric constructs between Candida albicans Cdr1p (CaCdr1p) and Cdr2p (CaCdr2p), two closely related but functionally distinguishable PDR transporters, were expressed in Saccharomyces cerevisiae. All chimeras expressed equally well, localized properly at the plasma membrane, retained their transport ability, but their substrate and inhibitor specificities differed significantly between individual constructs. A detailed characterization of these proteins revealed structural features that contribute to their substrate specificities and their transport mechanism. It appears that most transmembrane spans of CaCdr1p and CaCdr2p provide or affect multiple, probably overlapping, substrate and inhibitor binding site(s) similar to mammalian ABC transporters. The NBDs, in particular NBD1 and/or the ~150 amino acids N-terminal to NBD1, can also modulate the substrate specificities of CaCdr1p and CaCdr2p.  相似文献   

15.
Voltage-dependent calcium channels are classified into low voltage-activated and high voltage-activated channels. We have investigated the molecular basis for this difference in voltage dependence of activation by constructing chimeras between a low voltage-activated channel (Ca(V)3.1) and a high voltage-activated channel (Ca(V)1.2), focusing on steady-state activation properties. Wild type and chimeras were expressed in oocytes, and two-electrode voltage clamp recordings were made of calcium channel currents. Replacement of domains I, III, or IV of the Ca 3.1 channel with the corresponding domain of Ca(V)1.2 led (V)to high voltage-activated channels; for these constructs the current/voltage (I/V) curves were similar to those for Ca(V)1.2 wild type. However, replacement of domain II gave only a small shift to the right of the I/V curve and modulation of the activation kinetics but did not lead to a high voltage-activating channel with an I/V curve like Ca 1.2. We also investigated the role of the voltage sensor (V)S4 by replacing the S4 segment of Ca(V)3.1 with that of Ca 1.2. For domain I, there was no shift in the I/V curve (V)as compared with Ca(V)3.1, and there were relatively small shifts to the right for domains III and IV. Taken together, these results suggest that domains I, III, and IV (rather than domain II) are apparently critical for channel opening and, therefore, contribute strongly to the difference in voltage dependence of activation between Ca 3.1 and Ca(V)1.2. However, the S4 segments in domains I, (V)III, and IV did not account for this difference in voltage dependence.  相似文献   

16.
Streptomyces griseus leucine aminopeptidase (SGAP), which has two zinc atoms in its active site, is clinically important as a model for understanding the structure and mechanism of action of other metallopeptidases. SGAP is a calcium-activated and calcium-stabilized enzyme, and its activation by calcium correlates with substrate specificity. In our previous study, we found a non-calcium-modulated leucine aminopeptidase secreted by Streptomyces septatus, the primary structure of which showed 71% identity with SGAP. In this study, we constructed chimeras of SGAP and S. septatus aminopeptidase by using an in vivo DNA shuffling system and several mutant enzymes by site-directed mutagenesis to identify the key residues in this modulation by calcium. We identified the key residues Asp-173 and Asp-174 of SGAP associated with both SGAP activation and stabilization by calcium. We also showed that the known calcium-binding site, which is composed of Asp-3, Ile-4, Asp-262, and Asp-266 of SGAP, only contributes to SGAP stabilization by calcium. Furthermore, we identified an important residue, Glu-196, that functions in cooperation with Asp-173, Asp-174, and calcium to increase the catalytic activity of SGAP.  相似文献   

17.
Plant sucrose transporters (SUTs) are H(+)-coupled uptake transporters. Type I and II (SUTs) are phylogenetically related but have different substrate specificities. Type I SUTs transport sucrose, maltose, and a wide range of natural and synthetic α- and β-glucosides. Type II SUTs are more selective for sucrose and maltose. Here, we investigated the structural basis for this difference in substrate specificity. We used a novel gene shuffling method called synthetic template shuffling to introduce 62 differentially conserved amino acid residues from type I SUTs into OsSUT1, a type II SUT from rice. The OsSUT1 variants were tested for their ability to transport the fluorescent coumarin β-glucoside esculin when expressed in yeast. Fluorescent yeast cells were selected using fluorescence-activated cell sorting (FACS). Substitution of five amino acids present in type I SUTs in OsSUT1 was found to be sufficient to confer esculin uptake activity. The changes clustered in two areas of the OsSUT1 protein: in the first loop and the top of TMS2 (T80L and A86K) and in TMS5 (S220A, S221A, and T224Y). The substrate specificity of this OsSUT1 variant was almost identical to that of type I SUTs. Corresponding changes in the sugarcane type II transporter ShSUT1 also changed substrate specificity, indicating that these residues contribute to substrate specificity in type II SUTs in general.  相似文献   

18.
The Goodpasture (GP) autoantigen has been identified as the alpha3(IV) collagen chain, one of six homologous chains designated alpha1-alpha6 that comprise type IV collagen (Hudson, B. G., Reeders, S. T., and Tryggvason, K. (1993) J. Biol. Chem. 268, 26033-26036). In this study, chimeric proteins were used to map the location of the major conformational, disulfide bond-dependent GP autoepitope(s) that has been previously localized to the noncollagenous (NC1) domain of alpha3(IV) chain. Fourteen alpha1/alpha3 NC1 chimeras were constructed by substituting one or more short sequences of alpha3(IV)NC1 at the corresponding positions in the non-immunoreactive alpha1(IV)NC1 domain and expressed in mammalian cells for proper folding. The interaction between the chimeras and eight GP sera was assessed by both direct and inhibition enzyme-linked immunosorbent assay. Two chimeras, C2 containing residues 17-31 of alpha3(IV)NC1 and C6 containing residues 127-141 of alpha3(IV)NC1, bound autoantibodies, as did combination chimeras containing these regions. The epitope(s) that encompasses these sequences is immunodominant, showing strong reactivity with all GP sera and accounting for 50-90% of the autoantibody reactivity toward alpha3(IV)NC1. The conformational nature of the epitope(s) in the C2 and C6 chimeras was established by reduction of the disulfide bonds and by PEPSCAN analysis of overlapping 12-mer peptides derived from alpha1- and alpha3(IV)NC1 sequences. The amino acid sequences 17-31 and 127-141 in alpha3(IV)NC1 have thus been shown to contain the critical residues of one or two disulfide bond-dependent conformational autoepitopes that bind GP autoantibodies.  相似文献   

19.
Renal basement membranes are believed to contain five distinct type IV collagens. An understanding of the specific roles of these collagens and the specificities of their interactions will be aided by knowledge of their comparative structures. Genes for alpha 1(IV), alpha 2(IV), alpha 3(IV), and alpha 5(IV) have been cloned and the deduced peptide sequences compared. A fifth chain, alpha 4(IV), has been identified in glomerular and other basement membranes. Using a polymerase chain reaction-based strategy and short known peptide sequences from the noncollagenous domain (NC1), we have cloned and characterized partial bovine cDNAs of alpha 4(IV). Sequence analysis shows that this molecule has characteristic features of type IV collagens including an NH2-terminal Gly-X-Y domain which is interrupted at several points and a COOH-terminal NC1 domain with 12 cysteine residues in positions identical to those of other type IV collagens. Within the NC1 domain bovine alpha 4(IV) has 70, 59, 58, and 53% amino acid identity with human alpha 2(IV), alpha 1(IV), alpha 5(IV), and alpha 3(IV), respectively. Alignment of the peptides also shows that alpha 4(IV) is most closely related to alpha 2(IV). Nevertheless, in the extreme COOH-terminal region of the NC1 domain there are structural features that are unique to alpha 4(IV). Cloning of the region of alpha 4(IV) that encodes the NC1 domain allows comparison of all five type IV collagens and highlights certain regions that are likely to be important in the specificities of NC1-NC1 interactions and in other discriminant functions of these molecules.  相似文献   

20.
The Flp and Cre recombinases are members of the integrase family of tyrosine recombinases. Each protein consists of a 13 kDa NH(2)-terminal domain and a larger COOH-terminal domain that contains the active site of the enzyme. The COOH-terminal domain also contains the major determinants for the binding specificity of the recombinase to its cognate DNA binding site. All family members cleave the DNA by the attachment of a conserved nucleophilic tyrosine residue to the 3'-phosphate group at the sites of cleavage. In order to gain further insights into the determinants of the binding specificity and modes of cleavage of Flp and Cre, we have made chimeric proteins in which we have fused the NH(2)-terminal domain of Flp to the COOH-terminal domain of Cre ("Fre") and the NH(2)-terminal domain of Cre to the COOH-terminal domain of Flp ("Clp"). These chimeras have novel binding specificities in that they bind strongly to hybrid sites containing elements from both the Flp and Cre DNA targets but poorly to the native target sites.In this study we have taken advantage of the unique binding specificities of Fre and Clp to examine the mode of cleavage by Cre, Flp, Fre and Clp. We find that the COOH-terminal domain of the recombinases determines their mode of cleavage. Thus Flp and Clp cleave in trans whereas Cre and Fre cleave in cis. These results agree with the studies of Flp and with the cocrystal structure of Cre bound to its DNA target site. They disagree with our previous findings that Cre could carry out trans cleavage. We discuss the variations in the experimental approaches in order to reconcile the different results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号