首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In poliovirus-infected HeLa cells, the mechanism of protein synthesis initiation factor recognition of m7G cap groups on mRNA is impaired. Translation of capped host cell mRNAs is inhibited, whereas translation of uncapped poliovirus mRNA proceeds exclusively. The site of this defect has been localized to the cap-binding protein complex (CBPC). To elucidate the specific structural and functional defects of the CBPC following poliovirus infection, the CBPC and/or its polypeptide components were purified from uninfected and poliovirus-infected HeLa cells. The CBPC from uninfected cells consisted of tightly associated 24- and 220-kDa polypeptides; minor amounts of polypeptides of 40, 44, and 80 kDa also consistently co-purified with the p24/p220 cores. No evidence of a 50-kDa, eIF-4A-related polypeptide subunit of the CBPC was obtained. The CBPC from poliovirus-infected cells had undergone major structural alterations. The 220-kDa component was absent; antigenically related (100-130 kDa) degradation products were present instead. The 24-kDa component co-purified with the p220 degradation products, but other components were missing. The association of the infected cell CBPC components was quite labile compared with that demonstrated by the components of CBPC from uninfected cells. Differential stimulation of capped, but not uncapped mRNAs in a cell-free translation assay was demonstrated by unmodified CBPC. Conversely, modified CBPC from poliovirus-infected cells differentially stimulated in vitro translation of uncapped poliovirus mRNA but not capped mRNAs. The implications of these results for the mechanism of cap-independent translation are briefly discussed.  相似文献   

2.
Poliovirus infection of HeLa cells results in a rapid inhibition of host protein synthesis by a mechanism that does not affect the translation of poliovirus RNA. It has been suggested that this virus-induced translational control results from inactivation of the cap-binding protein complex, and it has been shown that the 220-kilodalton component(s) (p220) of the cap-binding protein complex is cleaved in infected HeLa cells to form antigenically related polypeptides of 100 to 130 kilodaltons. We have previously described an activity in infected cells that specifically restricts translation of capped mRNA in rabbit reticulocyte lysates. Here, we describe further refinements and characterization of restriction assay. We determined that the assay is a good in vitro model for study of host cell shutoff by several criteria: (i) translation was inhibited in both instances at the step involving mRNA binding to ribosomes; (ii) translation of capped mRNA was specifically inhibited, whereas translation of poliovirus RNA was not; (iii) restriction activity appeared in infected cells with kinetics which parallel host cell shutoff; and (iv) restriction activity, like the specific inhibition of host translation, appeared in cells infected in the presence of guanidine-HCl. The restricting activity was partially purified from poliovirus-infected cells and was compared with the virus-induced p220 cleavage activity. Both activities copurified through numerous cell fractionation and biochemical fractionation procedures. However, specific restriction of capped mRNA translation in reticulocyte lysates occurred without complete cleavage of the endogenous p220.  相似文献   

3.
I Edery  K A Lee  N Sonenberg 《Biochemistry》1984,23(11):2456-2462
We examined the effects of a eukaryotic mRNA cap binding protein (CBP) complex purified by cap analogue affinity chromatography [Edery, I., Humebelin, M., Darveau, A., Lee, K.A. W., Milburn, S., Hershey, J.W.B., Trachsel, H., & Sonenberg, N. (1983) J. Biol. Chem. 258, 11398 11403], on translation of several capped and naturally uncapped mRNAs in extracts prepared from poliovirus-infected or mock-infected HeLa cells. The CBP complex has activity that restores capped mRNA (globin, tobacco mosaic virus, and others) function in extracts from poliovirus-infected HeLa cells. Translation of two naturally uncapped RNAs (poliovirus and mengovirus RNAs), the translation of which is not restricted in extracts from poliovirus-infected cells, is also not stimulated by the CBP complex. Translation of several capped eukaryotic mRNAs (vesicular stomatitis virus, reovirus, and tobacco mosaic virus) in extracts from mock-infected cells is inhibited when the potassium ion concentration is increased. However, translation of capped AMV-4 RNA, which has negligible secondary structure at its 5' end, is resistant to this inhibition. Furthermore, the CBP complex reverses the high salt induced inhibition of translation of the former mRNAs. Since mRNA secondary structure is more stable at elevated salt concentrations, these data are consistent with a model in which the CBP complex has a role in melting mRNA secondary structure involving 5'-proximal sequences, to facilitate ribosome binding.  相似文献   

4.
Following poliovirus infection of HeLa cells, the synthesis of cellular proteins is inhibited but translation of poliovirus mRNA proceeds. The defect in the recognition of host cell mRNA may be due to a change in a cap recognition complex which, when added to an infected cell lysate, restores the ability to translate capped mRNAs. We employed immunoblotting techniques to examine initiation factors in crude lysates from uninfected and poliovirus-infected HeLa cells. Using an antiserum against eucaryotic initiation factor 3, we detected an antigen of approximate molecular weight 220,000 in uninfected cell lysates but not in infected cell lysates. Antigenically related polypeptides of 100,000 to 130,000 daltons, presumably degradation products, were detected in the infected cell lysate. The time course for degradation of the 220,000-dalton polypeptide correlates with that for inhibition of cellular protein synthesis in vivo. A portion of the population of 220,000-dalton polypeptides apparently associates with initiation factor eIF3 but is readily dissociated in buffers containing high salt. Affinity-purified antibodies against the polypeptide recognize a protein of the same size in a purified preparation of a cap binding protein complex obtained by cap-affinity chromatography. We postulate that the 220,000-dalton polypeptide is an essential component of the cap recognition complex and that its degradation in poliovirus-infected cells results in the inhibition of host cell translation. These results are in the first demonstration of a specific structural defect in an initiation factor resulting from poliovirus infection.  相似文献   

5.
The adenovirus tripartite leader is a 200-nucleotide 5' noncoding region that is found on all late viral mRNAs. This segment is required for preferential translation of viral mRNAs at late times during infection. Most tripartite leader-containing mRNAs appear to exhibit little if any requirement for intact cap-binding protein complex, a property previously established only for uncapped poliovirus mRNAs and capped mRNAs with minimal secondary structure. The tripartite leader also permits the translation of mRNAs in poliovirus-infected cells in the apparent absence of active cap-binding protein complex and does not require any adenovirus gene products for this activity. The preferential translation of viral late mRNAs may involve this unusual property.  相似文献   

6.
E E Wyckoff  D E Croall  E Ehrenfeld 《Biochemistry》1990,29(43):10055-10061
Eukaryotic initiation factor 4F (eIF-4F) is a multisubunit protein that functions in the first step of the binding of capped mRNAs to the small ribosomal subunit. Its largest polypeptide component, p220, is cleaved following poliovirus infection. This is thought to inactivate eIF-4F function, thereby preventing cap-dependent initiation of translation of cellular mRNAs. In this report, we show that p220 in extracts of uninfected HeLa cells is specifically lost in the presence of calcium. The responsible activities have been partially purified and identified as the calcium-dependent, neutral, cysteine proteases calpains I and II. In addition, a third calcium-dependent activity was resolved from the calpains and also results in the loss of p220. This activity has properties similar to a transglutaminase and copurifies with tissue transglutaminase through several chromatographic steps. None of these calcium-dependent activities appears to mediate p220 cleavage in poliovirus-infected cells.  相似文献   

7.
Infection of cells with poliovirus results in the complete shutoff of host protein synthesis. It is presumed that proteolysis of the p220 component of the cap-binding protein complex that is required for the translation of host mRNAs is responsible for the shutoff phenomenon. In this paper, we show that when cells are infected with poliovirus in the presence of guanidine or 3-methylquercetin, both inhibitors of poliovirus replication, complete cleavage of p220 occurs by 3.5 h postinfection. However, under these conditions only 55 to 77% of host protein synthesis is suppressed. Results obtained with extracts prepared from poliovirus-infected cells were similar to those obtained in vivo. These results suggest that complete inhibition of host protein synthesis after poliovirus infection requires at least one event in addition to proteolysis of p220. Thus, proteolysis of p220 is probably necessary but not sufficient for total suppression of host protein synthesis after poliovirus infection.  相似文献   

8.
Extracts from poliovirus-infected HeLa cells were used to study ribosome binding of native and denatured reovirus mRNAs and translation of capped mRNAs with different degrees of secondary structure. Here, we demonstrate that ribosomes in extracts from poliovirus-infected cells could form initiation complexes with denatured reovirus mRNA, in contrast to their inability to bind native reovirus mRNA. Furthermore, the capped alfalfa mosaic virus 4 RNA, which is most probably devoid of stable secondary structure at its 5' end, could be translated at much higher efficiency than could other capped mRNAs in extracts from poliovirus-infected cells.  相似文献   

9.
Eukaryotic mRNA cap binding proteins were purified from ribosomal salt wash in the presence of protease inhibitors by sucrose gradient sedimentation and m7GDP-Sepharose affinity chromatography. Rabbit reticulocyte and erythrocyte proteins with sedimentation constants of less than 6 S yielded a approximately 24,000-dalton cap binding protein. It stimulated capped mRNA translation in extracts of uninfected HeLa cells but did not restore capped mRNA function in extracts prepared from poliovirus-infected cells. Restoring and stimulatory activities both were associated with a larger, approximately 8-10 S complex that included the approximately 24,000-dalton polypeptide and several higher molecular mass components. The same two translational activities were also obtained in a slightly smaller approximately 5-7 S complex from uninfected HeLa cells but were absent from poliovirus-infected cell preparations.  相似文献   

10.
Crude preparations of initiation factors from mock-infected and poliovirus-infected HeLa cells were analyzed for the presence of proteins which could be cross-linked to the 5' cap group of mRNA. A protein having an apparent molecular weight of 26,000, similar to the cap-binding protein in rabbit reticulocytes described by Sonenberg and Shatkin (Proc. Natl. Acad. Sci. U.S.A. 75:4843-4847, 1978), was found in the ribosomal salt wash from both uninfected and infected cells. Cross-linking of this polypeptide was inhibited by the cap analog m7GMP. In addition, cross-linking of a protein having an approximate molecular weight of 60,000 was similarly inhibited by cap analog. The smaller cap-binding protein fractionated in a 0 to 40% ammonium sulfate precipitate of ribosomal salt wash; the larger protein was found in the 40 to 70% ammonium sulfate fraction. Although the cap-binding proteins were present in both mock-infected and poliovirus-infected ribosomal salt wash, only preparations from uninfected HeLa cells were able to restore translation of capped vesicular stomatitis virus mRNA by extracts prepared from poliovirus-infected cells.  相似文献   

11.
Inhibition of host protein synthesis after poliovirus infection has been suggested to be a consequence of the proteolytic degradation of a p220 polypeptide necessary to translate capped mRNAs. However, the synthesis of several adenovirus late proteins on capped mRNAs was resistant to poliovirus inhibition. Thus, the hexon protein was still made 8 h after poliovirus superinfection. The synthesis of other adenovirus proteins such as the fiber was much more sensitive to poliovirus-induced inhibition than the hexon, either in the absence or in the presence of guanidine. Detailed densitometric analyses clearly showed the differential behavior of several adenovirus late mRNAs to poliovirus shut-off of translation. This is striking in view of the fact that a common leader sequence in the 5' termini is present in the adenovirus late mRNAs. The use of 3-methyl quercetin, an inhibitor of poliovirus RNA synthesis (Castrillo, J. L., Vanden Berghe, D., and Carrasco, L. (1986) Virology 152, 219-227), showed that translation of several capped adenovirus mRNAs took place in poliovirus-infected cells after the synthesis of host proteins had ceased. The poliovirus mRNA and the adenovirus mRNA coding for the hexon protein are very efficient mRNAs and have a leader sequence of more than 740 and 250 nucleotides, respectively, with very rich secondary structures making it difficult to predict how the scanning model will operate on these two mRNAs.  相似文献   

12.
The rate of protein synthesis in metaphase-arrested cells is reduced as compared to interphase cells. The reduction occurs at the translation initiation step. Here, we show that, whereas poliovirus RNA translation is not affected by the mitotic translational block, the translation of vesicular stomatitis virus mRNAs is. In an attempt to elucidate the mechanism by which initiation of protein synthesis is reduced in mitotic cells, we found that the interaction of the mRNA 24-kDa cap-binding protein (CBP) with the mRNA 5' cap structure is reduced in mitotic cell extracts, consistent with their lower translational efficiency. Addition of cap-binding protein complex stimulated the translation of endogenous mRNA in extracts from mitotic but not interphase cells. In addition, we found that the 24-kDa CBP from mitotic cells was metabolically labeled with 32P to a lesser extent than the protein purified from interphase cells. These results are consistent with a hypothesis that the 24-kDa CBP is implicated in the inhibition of protein synthesis in metaphase-arrested cells. Possible mechanisms for this inhibition are offered.  相似文献   

13.
A poliovirus type I (Mahoney strain) mutant was obtained by inserting three base pairs into an infectious cDNA clone. The extra amino acid encoded by the insertion was in the amino-terminal (protein 8) portion of the P2 segment of the polyprotein. The mutant virus makes small plaques on HeLa and monkey kidney (CV-1) cells at all temperatures. It lost the ability to mediate the selective inhibition of host cell translation which ordinarily occurs in the first few hours after infection. As an apparent consequence, the mutant synthesizes far less protein than does wild-type virus. In mutant-infected CV-1 cells enough protein was produced to permit a normal course of RNA replication, but the yield of progeny virus was very low. In mutant-infected HeLa cells there was a premature cessation of both cellular and viral protein synthesis followed by a premature halt of viral RNA synthesis. This nonspecific translational inhibition was distinguishable from wild-type-mediated inhibition and did not appear to be part of an interferon or heat shock response. Because the mutant is recessive, our results imply that (at least in HeLa cells) wild-type poliovirus not only actively inhibits translation of cellular mRNAs, but also avoids early inhibition of its own protein synthesis. Cleavage of the cap-binding complex protein P220, which has been associated with the selective inhibition of capped mRNA translation, did not occur in mutant-infected cells. This result supports the hypothesis that cleavage of P220 plays an important role in normal poliovirus-mediated translational inhibition.  相似文献   

14.
Poliovirus infection is accompanied by translational control that precludes translation of 5'-capped mRNAs and facilitates translation of the uncapped poliovirus RNA by an internal initiation mechanism. Previous reports have suggested that the capped alfalfa mosaic virus coat protein mRNA (AIMV CP RNA), which contains an unstructured 5' leader sequence, is unusual in being functionally active in extracts prepared from poliovirus-infected HeLa cells (PI-extracts). To identify the cis-acting nucleotide elements permitting selective AIMV CP expression, we tested capped mRNAs containing structured or unstructured 5' leader sequences in addition to an mRNA containing the poliovirus internal ribosome entry site (IRES). Translations were performed with PI-extracts and extracts prepared from mock-infected HeLa cells (MI-extracts). A number of control criteria demonstrated that the HeLa cells were infected by poliovirus and that the extracts were translationally active. The data strongly indicate that translation of RNAs lacking an internal ribosome entry site, including AIMV CP RNA, was severely compromised in PI-extracts, and we find no evidence that the unstructured AIMV CP RNA 5' leader sequence acts in cis to bypass the poliovirus translational control. Nevertheless, cotranslation assays in the MI-extracts demonstrate that mRNAs containing the unstructured AIMV CP RNA 5' untranslated region have a competitive advantage over those containing the rabbit alpha-globin 5' leader. Previous reports of AIMV CP RNA translation in PI-extracts likely describe inefficient expression that can be explained by residual cap-dependent initiation events, where AIMV CP RNA translation is competitive because of a diminished quantitative requirement for initiation factors.  相似文献   

15.
Extracts from poliovirus-infected HeLa cells are unable to translate vesicular stomatitis virus or cellular mRNAs in vitro, probably reflecting the poliovirus-induced inhibition of host cell protein synthesis which occurs in vivo. Crude initiation factors from uninfected HeLa cells are able to restore translation of vesicular stomatitis virus mRNA in infected cell lysates. This restoring activity separates into the 0 to 40% ammonium sulfate fractional precipitate of ribosomal salt wash. Restoring activity is completely lacking in the analogous fractions prepared from poliovirus-infected cells. The 0 to 40% ammonium sulfate precipitates from both uninfected and infected cells contain eucaryotic initiation factor 3 (eIF-3), eIf-4B, and the cap-binding protein (CBP), which is detected by means of a cross-linking assay, as well as other proteins. The association of eIF-3 and cap binding protein was examined. The 0 to 40% ammonium sulfate precipitate of ribosomal salt wash from uninfected and infected cells was sedimented in sucrose gradients. Each fraction was examined for the presence of eIF-3 antigens by an antibody blot technique and for the presence of the CBP by cross-linking to cap-labeled mRNAs. From uninfected cells, a major proportion of the CBP cosedimented with eIF-3; however, none of the CBP from infected cells sedimented with eIF-3. The results suggest that the association of the CBP with eIF-3 into a functional complex may have been disrupted during the course of poliovirus infection.  相似文献   

16.
17.
Addition of monensin or nigericin after poliovirus entry into HeLa cells prevents the inhibition of host protein synthesis by poliovirus. The infected cells continue to synthesize cellular proteins at control levels for at least 8 h after infection in the presence of the ionophore. Cleavage of p220 (gamma subunit of eukaryotic initiation factor 4 [eIF-4 gamma]), a component of the translation initiation factor eIF-4F, occurs to the same extent in poliovirus-infected cells whether or not they are treated with monensin. Two hours after infection there is no detectable intact p220, but the cells continue to translate cellular mRNAs for several hours at levels similar to those in uninfected cells. Nigericin or monensin prevented the arrest of host translation at all the multiplicities of poliovirus infection tested. At high multiplicities of infection, an unprecedented situation was found: cells synthesized poliovirus and cellular proteins simultaneously. Superinfection of vesicular stomatitis virus-infected HeLa cells with poliovirus led to a profound inhibition of vesicular stomatitis virus protein synthesis, while nigericin partially prevented this blockade. Drastic inhibition of translation also took place in influenza virus-infected Vero cells treated with nigericin and infected with poliovirus. These findings suggest that the translation of newly synthesized mRNAs is dependent on the integrity of p220, while ongoing cellular protein synthesis does not require an intact p220. The target of ionophore action during the poliovirus life cycle was also investigated. Addition of nigericin at any time postinfection profoundly blocked the synthesis of virus RNA, whereas viral protein synthesis was not affected if nigericin was added at 4 h postinfection. These results agree well with previous findings indicating that inhibitors of phospholipid synthesis or vesicular traffic interfere with poliovirus genome replication. Therefore, the action of nigericin on the vesicular system may affect poliovirus RNA synthesis. In conclusion, monensin and nigericin are potent inhibitors of poliovirus genome replication that prevent the shutoff of host translation by poliovirus while still permitting cleavage of p220.  相似文献   

18.
A drastic inhibition of protein synthesis occurs in HeLa cells treated with human lymphoblastoid interferon and infected with poliovirus. At the time when this inhibition has been established no degradation of 32P-labelled ribosomal RNA can be detected. Isolation of the mRNAs from poliovirus-infected cells plus or minus interferon treatment, followed by translation in a reticulocyte lysate indicates that cellular mRNAs remain active. These results suggest that gross degradation of cellular RNA does not occur in interferon-treated poliovirus-infected HeLa cells and that a non-specific nuclease induced by 2′–5′ A is not responsible for the inhibition of protein synthesis observed.  相似文献   

19.
Poliovirus infection of HeLa cells results in cleavage of the p220 subunit of eukaryotic initiation factor eIF-4F and inhibits cap-dependent initiation of protein synthesis. To examine the effect of virus-induced inhibition on the structure of initiation factor complexes involved in cap binding, the polypeptide compositions of cap affinity-purified complexes from uninfected and poliovirus-infected HeLa cells were analyzed. Monoclonal antibodies directed against p220 and an eIF-3 subunit, p170, were utilized to locate eIF-3 and eIF-4F on sucrose gradients and in fractions eluting from cap analog columns. This approach resulted in the purification of several different cap-binding complexes from different cellular subfractions and revealed significant differences in their composition after infection. The results indicate that eIF-3 and eIF-4F bind to the cap structure, possibly in the form of a complex, and that a modified form of eIF-3 alone has some cap-binding activity in the complete absence of p220, eIF-4A, and eIF-4E. Ribosome-derived complexes containing cleaved p220 are no longer associated with eIF-3 or eIF-4A, and a significant amount of cleaved p220 is associated with a unique cytoplasmic cap-binding complex. The cytoplasmic complex also contains Mr = 170,000 and 80,000 polypeptides, neither of which are major components of eIF-4F. These results demonstrate significant variation in the composition of cap-binding complexes from both infected and uninfected cells. They indicate that eIF-3 might play a direct role in cap binding and suggest that poliovirus-induced cleavage of p220 results in the release of the eIF-4A subunit from eIF-4F and abolishes an association between eIF-4F and eIF-3 which may function during the multifactor steps involved in initiation of cap-mediated translation.  相似文献   

20.
Suppression of host protein synthesis in cells infected by poliovirus and certain other picornaviruses involves inactivation of the cap-binding protein complex. Inactivation of this complex has been correlated with the proteolytic cleavage of p220, a component of the cap-binding protein complex. Since picornaviral RNA is not capped, it continues to be translated as the cap-binding protein complex is inactivated. The cleavage of p220 can be induced to occur in vitro, catalyzed by extracts from infected cells or by reticulocyte lysates translating viral RNA. Expression of polioviral protease 2A is sufficient to induce p220 cleavage, and the presence in 2A of an 18-amino-acid sequence representing a putative cysteine protease active site correlates with the ability of different picornaviruses to induce p220 cleavage. Foot-and-mouth disease virus (FMDV) infection induces complete cleavage of p220, yet the FMDV genome codes for a 2A protein of only 16 amino acids, which does not include the putative cysteine protease active site. Using cDNA plasmids encoding various regions of the FMDV genome, we have determined that the leader protein is required to initiate p220 cleavage. This is the first report of a function for the leader protein, other than that of autocatalytic cleavage from the FMDV polyprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号