共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Cross-talk between epidermal growth factor receptor and c-Met signal pathways in transformed cells 总被引:8,自引:0,他引:8
Jo M Stolz DB Esplen JE Dorko K Michalopoulos GK Strom SC 《The Journal of biological chemistry》2000,275(12):8806-8811
In rat liver epithelial cells constitutively expressing transforming growth factor alpha (TGFalpha), c-Met is constitutively phosphorylated in the absence of its ligand, hepatocyte growth factor. We proposed that TGFalpha and the autocrine activation of its receptor, epidermal growth factor receptor (EGFR), leads to phosphorylation and activation of c-Met. We found that there is constitutive c-Met phosphorylation in human hepatoma cell lines and the human epidermoid carcinoma cell line, A431 which express TGFalpha, but not in normal human hepatocytes. Constitutive c-Met phosphorylation in A431, HepG2, AKN-1, and HuH6 cells was inhibited by neutralizing antibodies against TGFalpha and/or EGFR. Exposure to exogenous TGFalpha or EGF increased the phosphorylation of c-Met in the human epidermoid carcinoma cell line, A431. The increase of c-Met phosphorylation by TGFalpha in A431 cells was inhibited by neutralizing antibodies against TGFalpha and/or EGFR and by the EGFR-specific inhibitor tyrphostin AG1478. These results indicate that constitutive c-Met phosphorylation, and the increase of c-Met phosphorylation by TGFalpha or EGF, in tumor cell lines is the result of the activation via EGFR. We found that c-Met in tumor cells co-immunoprecipitates with EGFR regardless of the existence of their ligands in tumor cells, but not in normal human hepatocytes. We conclude that c-Met associates with EGFR in tumor cells, and this association facilitates the phosphorylation of c-Met in the absence of hepatocyte growth factor. This cross-talk between c-Met and EGFR may have significant implications for altered growth control in tumorigenesis. 相似文献
6.
In this review we summarize the present status of our knowledge on the enzymes involved in the extracellular metabolism of nucleotides and the receptors involved in nucleotide signalling. We focus on the mechanism of the ATP and ADP signalling pathways in glioma C6, representative of the type of nonexcitable cells. In these cells, ATP acts on the P2Y(2) receptor coupled to phospholipase C, whereas ADP on two distinct P2Y receptors: P2Y(1) and P2Y(12). The former is linked to phospholipase C and the latter is negatively coupled to adenylyl cyclase. The possible cross-talk between the ATP-, ADP- and adenosine-induced pathways, leading to simultaneous regulation of inositol 1,4,5-trisphosphate and cAMP mediated signalling, is discussed. 相似文献
7.
Cross-talk between IL-1 and IL-6 signaling pathways in rheumatoid arthritis synovial fibroblasts. 总被引:5,自引:0,他引:5
D Deon S Ahmed K Tai N Scaletta C Herrero I H Lee A Krause L B Ivashkiv 《Journal of immunology (Baltimore, Md. : 1950)》2001,167(9):5395-5403
The balance between pro- and anti-inflammatory cytokines plays an important role in determining the severity of inflammation in rheumatoid arthritis (RA). Antagonism between opposing cytokines at the level of signal transduction plays an important role in many other systems. We have begun to explore the possible contribution of signal transduction cross-talk to cytokine balance in RA by examining the effects of IL-1, a proinflammatory cytokine, on the signaling and action of IL-6, a pleiotropic cytokine that has both pro- and anti-inflammatory actions, in RA synovial fibroblasts. Pretreatment with IL-1 suppressed Janus kinase-STAT signaling by IL-6, modified patterns of gene activation, and blocked IL-6 induction of tissue inhibitor of metalloproteases 1 expression. These results suggest that proinflammatory cytokines may contribute to pathogenesis by modulating or blocking signal transduction by pleiotropic or anti-inflammatory cytokines. The mechanism of inhibition did not require de novo gene activation and did not depend upon tyrosine phosphatase activity, but, instead, was dependent on the p38 stress kinase. These results identify a molecular basis for IL-1 and IL-6 cross-talk in RA synoviocytes and suggest that, in addition to levels of cytokine expression, modulation of signal transduction also plays a role in regulating cytokine balance in RA. 相似文献
8.
9.
10.
John Foley Nicole K. Nickerson Seungyoon Nam Kah Tan Allen Jennifer L. Gilmore Kenneth P. Nephew David J. Riese II 《Seminars in cell & developmental biology》2010,21(9):951-960
The epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases. This family includes EGFR/ErbB1/HER1, ErbB2/HER2/Neu ErbB3/HER3, and ErbB4/HER4. For many years it was believed that EGFR plays a minor role in the development and progression of breast malignancies. However, recent findings have led investigators to revisit these beliefs. Here we will review these findings and propose roles that EGFR may play in breast malignancies. In particular, we will discuss the potential roles that EGFR may play in triple-negative tumors, resistance to endocrine therapies, maintenance of stem-like tumor cells, and bone metastasis. Thus, we will propose the contexts in which EGFR may be a therapeutic target. 相似文献
11.
12.
Zhang X Tan F Brovkovych V Zhang Y Skidgel RA 《The Journal of biological chemistry》2011,286(21):18547-18561
G protein-coupled receptor (GPCR) signaling is affected by formation of GPCR homo- or heterodimers, but GPCR regulation by other cell surface proteins is not well understood. We reported that the kinin B1 receptor (B1R) heterodimerizes with membrane carboxypeptidase M (CPM), facilitating receptor signaling via CPM-mediated conversion of bradykinin or kallidin to des-Arg kinin B1R agonists. Here, we found that a catalytically inactive CPM mutant that still binds substrate (CPM-E264Q) also facilitates efficient B1R signaling by B2 receptor agonists bradykinin or kallidin. This response required co-expression of B1R and CPM-E264Q in the same cell, was disrupted by antibody that dissociates CPM from B1R, and was not found with a CPM-E264Q-B1R fusion protein. An additional mutation that reduced the affinity of CPM for C-terminal Arg and increased the affinity for C-terminal Lys inhibited the B1R response to bradykinin (with C-terminal Arg) but generated a response to Lys(9)-bradykinin. CPM-E264Q-mediated activation of B1Rs by bradykinin resulted in increased intramolecular fluorescence resonance energy transfer (FRET) in a B1R FRET construct, similar to that generated directly by a B1R agonist. In cytokine-treated human lung microvascular endothelial cells, disruption of B1R-CPM heterodimers inhibited B1R-dependent NO production stimulated by bradykinin and blocked the increased endothelial permeability caused by treatment with bradykinin and pyrogallol (a superoxide generator). Thus, CPM and B1Rs on cell membranes form a critical complex that potentiates B1R signaling. Kinin peptide binding to CPM causes a conformational change in the B1R leading to intracellular signaling and reveals a new mode of GPCR activation by a cell surface peptidase. 相似文献
13.
14.
15.
Krohn M Hildebrandt JP 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2004,174(6):461-470
In many bird species, the nasal glands secrete excess salt ingested with drinking water or food. In ducks (Anas platyrhynchos), osmotic stress results in adaptive cell proliferation and differentiation in the gland. Using naive nasal gland cells isolated from animals that had never ingested excess salt or differentiated cells from animals fed with a 1% NaCl solution for 48 h, we investigated the allocation of metabolic energy to salt excretory processes and to other cellular activities. Activation of muscarinic acetylcholine receptors (carbachol) or -adrenergic receptors (isoproterenol) in nasal gland cells resulted in a transient peak in metabolic rate followed by an elevated plateau level that was maintained throughout the activation period. Activation of cells using vasoactive intestinal peptide, however, had only marginal effects on metabolic rate. In differentiated cells, sequential stimulation with carbachol and isoproterenol resulted in additive changes in metabolic rate during the plateau phase. Naive cells, however, developed supra-additive plateau levels in metabolic rates indicating cross-talk of both signaling pathways. Using bumetanide, TEA or barium ions to block different components of the ion transport machinery necessary for salt secretion, the relative proportion of energy needed for processes related to ion transport or other cellular processes was determined. While differentiated cells in the activated state allocated virtually all metabolic energy to processes related to salt secretion, naive cells reserved a significant amount of energy for other processes, possibly sustaining cellular signaling and regulating biosynthetic mechanisms related to adaptive growth and differentiation.Communicated by G. Heldmaier 相似文献
16.
In the present paper, we describe multiple levels of cross-talk between the PI3K (phosphoinositide 3-kinase)/Akt and Ras/MAPK (mitogen-activated protein kinase) signalling pathways. Experimental data and computer simulations demonstrate that cross-talk is context-dependent and that both pathways can activate or inhibit each other. Positive influence of the PI3K pathway on the MAPK pathway is most effective at sufficiently low doses of growth factors, whereas negative influence of the MAPK pathway on the PI3K pathway is mostly pronounced at high doses of growth factors. Pathway cross-talk endows a cell with emerging capabilities for processing and decoding signals from multiple receptors activated by different combinations of extracellular cues. 相似文献
17.
18.
Hashimoto K Cohen RN Yamada M Markan KR Monden T Satoh T Mori M Wondisford FE 《The Journal of biological chemistry》2006,281(1):295-302
Hypercholesterolemia is found in patients with hypothyroidism and resistance to thyroid hormone. In this study, we examined cholesterol metabolism in a thyroid hormone receptor beta (TR-beta) mutant mouse model of resistance to thyroid hormone. Whereas studies of cholesterol metabolism have been reported in TR-beta knock-out mice, generalized expression of a non-ligand binding TR-beta protein in this knock-in model more fully recapitulates the hypothyroid state, because the hypothyroid effect of TRs is mediated by the unliganded receptor. In the hypothyroid state, a high cholesterol diet increased serum cholesterol levels in wild-type animals (WT) but either did not change or reduced levels in mutant (MUT) mice relative to hypothyroidism alone. 7alpha-Hydroxylase (CYP7A1) is the rate-limiting enzyme in cholesterol metabolism and mRNA levels were undetectable in the hypothyroid state in all animals. triiodothyronine replacement restored CYP7A1 mRNA levels in WT mice but had minimal effect in MUT mice. In contrast, a high cholesterol diet markedly induced CYP7A1 levels in MUT but not WT mice in the hypothyroid state. Elevation of CYP7A1 mRNA levels and reduced hepatic cholesterol content in MUT animals are likely because of cross-talk between TR-beta and liver X receptor alpha (LXR-alpha), which both bind to a direct repeat + 4 (DR+4) element in the CYP7A1 promoter. In transfection studies, WT but not MUT TR-beta antagonized induction of this promoter by LXR-alpha. Electromobility shift analysis revealed that LXR/RXR heterodimers bound to the DR+4 element in the presence of MUT but not WT TR-beta. A mechanism for cross-talk, and potential antagonism, between TR-beta and LXR-alpha is proposed. 相似文献
19.
Cross-talk between jasmonate and salicylate plant defense pathways: effects on several plant parasites 总被引:14,自引:0,他引:14
Jennifer S. Thaler Richard Karban Diane E. Ullman Karina Boege Richard M. Bostock 《Oecologia》2002,131(2):227-235
Plants are often attacked by many herbivorous insects and pathogens at the same time. Two important suites of responses to attack are mediated by plant hormones, jasmonate and salicylate, which independently provide resistance to herbivorous insects and pathogens, respectively. Several lines of evidence suggest that there is negative cross-talk between the jasmonate and salicylate response pathways. This biochemical link between general plant defense strategies means that deploying defenses against one attacker can positively or negatively affect other attackers. In this study, we tested for cross-talk in the jasmonate and salicylate signaling pathways in a wild tomato and examined the effects of cross-talk on an array of herbivores of cultivated tomato plants. In the wild cultivar, induction of defenses signaled by salicylate reduced biochemical expression of the jasmonate pathway but did not influence performance of S. exigua caterpillars. This indicates that the signal interaction is not a result of agricultural selection. In cultivated tomato, biochemical attenuation of the activity of a defense protein (polyphenol oxidase) in dual-elicited plants resulted in increased of performance of cabbage looper caterpillars, but not thrips, spider mites, hornworm caterpillars or the bacteria Pseudomonas syringae pv. tomato. In addition, we tested the effects of jasmonate-induced resistance on the ability of thrips to vector tomato spotted wilt virus. Although thrips fed less on induced plants, this did not affect the level of disease. Thus, the negative interaction between jasmonate and salicylate signaling had biological consequences for two lepidopteran larvae but not for several other herbivores tested or on the spread of a disease. 相似文献
20.
Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells 总被引:9,自引:0,他引:9
下载免费PDF全文

Itoh F Itoh S Goumans MJ Valdimarsdottir G Iso T Dotto GP Hamamori Y Kedes L Kato M ten Dijke Pt P 《The EMBO journal》2004,23(3):541-551
Notch and bone morphogenetic protein signaling pathways are important for cellular differentiation, and both have been implicated in vascular development. In many cases the two pathways act similarly, but antagonistic effects have also been reported. The underlying mechanisms and whether this is caused by an interplay between Notch and BMP signaling is unknown. Here we report that expression of the Notch target gene, Herp2, is synergistically induced upon activation of Notch and BMP receptor signaling pathways in endothelial cells. The synergy is mediated via RBP-Jkappa/CBF-1 and GC-rich palindromic sites in the Herp2 promoter, as well as via interactions between the Notch intracellular domain and Smad that are stabilized by p/CAF. Activated Notch and its downstream effector Herp2 were found to inhibit endothelial cell (EC) migration. In contrast, BMP via upregulation of Id1 expression has been reported to promote EC migration. Interestingly, Herp2 was found to antagonize BMP receptor/Id1-induced migration by inhibiting Id1 expression. Our results support the notion that Herp2 functions as a critical switch downstream of Notch and BMP receptor signaling pathways in ECs. 相似文献