首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone marrow‐derived mesenchymal stem cells (BMMSCs) exhibit degenerative changes, including imbalanced differentiation and reduced proliferation during aging, that contribute to age‐related bone loss. We demonstrate here that autophagy is significantly reduced in aged BMMSCs compared with young BMMSCs. The autophagy inhibitor 3‐methyladenine (3‐MA) could turn young BMMSCs into a relatively aged state by reducing their osteogenic differentiation and proliferation capacity and enhancing their adipogenic differentiation capacity. Accordingly, the autophagy activator rapamycin could restore the biological properties of aged BMMSCs by increasing osteogenic differentiation and proliferation capacity and decreasing adipogenic differentiation capacity. Possible underlying mechanisms were explored, and the analysis revealed that autophagy could affect reactive oxygen species and p53 levels, thus regulating biological properties of BMMSCs. In an in vivo study, we found that activation of autophagy restored bone loss in aged mice. In conclusion, our results suggest that autophagy plays a pivotal role in the aging of BMMSCs, and activation of autophagy could partially reverse this aging and may represent a potential therapeutic avenue to clinically treat age‐related bone loss.  相似文献   

2.
This study was performed to determine if a combination of previously undifferentiated bone marrow-derived mesenchymal stem cells (BMMSCs) and exogenous bone morphogenetic protein-2 (BMP-2) delivered via heparin-conjugated PLGA nanoparticles (HCPNs) would extensively regenerate bone in vivo. In vitro testing found that the HCPNs were able to release BMP-2 over a 2-week period. Human BMMSCs cultured in medium containing BMP-2-loaded HCPNs for 2 weeks differentiated toward osteogenic cells expressing alkaline phosphatase (ALP), osteopontin (OPN) and osteocalcin (OCN) mRNA, while cells without BMP-2 expressed only ALP. In vivo testing found that undifferentiated BMMSCs with BMP-2-loaded HCPNs induce far more extensive bone formation than either implantation of BMP-2-loaded HCPNs or osteogenically differentiated BMMSCs. This study demonstrates the feasibility of extensive in vivo bone regeneration by transplantation of undifferentiated BMMSCs and BMP-2 delivery via HCPNs. Sung Eun Kim and Oju Jeon equally contributed to this work  相似文献   

3.
Macrophages (Mφs) are involved in a variety of physiological and pathological events including wound healing and tissue regeneration, in which they play both positive and negative roles depending on their polarization state. In this study, we investigated the cellular behaviours of bone marrow mesenchymal stem cells (BMMSCs) after incubation in different conditioned media (CMs) generated by unpolarized Mφs (M0) or polarized Mφs (M1 and M2). Mφ polarization was induced by stimulation with various cytokines, and CMs were obtained from in vitro Mφ cultures termed CM0, CM1 and CM2 based on each Mφ phenotype. We found that CM1 supported the proliferation and adipogenic differentiation of BMMSCs, whereas CM0 had a remarkable effect on cell osteogenic differentiation. To a certain degree, CM2 also facilitated BMMSC osteogenesis; in particular, cells incubated with CM2 exhibited an enhanced capacity to form robust stem cell sheets. Although incubation with CM1 also increased production of extracellular matrix components, such as fibronectin, COL‐1 and integrin β1during sheet induction, the sheets generated by CM2‐incubated cells were thicker than those generated by CM1‐incubated cells (P < 0.001). Our data suggest that each Mφ phenotype has a unique effect on BMMSCs. Fine‐tuning Mφ polarization following transplantation may serve as an effective method to modulate the therapeutic potential of BMMSCs.  相似文献   

4.
We have explored the optimal seeding density and timing for transplantation of the tissue‐engineered bone with BMMSCs (bone marrow mesenchymal stem cells) and PDPB (partially deproteinized bone) in vitro. Rabbit BMMSCs of different densities were seeded into PDPB generated from fresh pig vertebrates to reconstruct tissue‐engineered bone in vitro. Adhesion and proliferation of BMMSCs were analysed by MTT [3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2H‐tetrazolium bromide] assay from which growth curves of BMMSCs on the PDPB materials were generated. The data show that BMMSCs began to adhere to PDPB after 24 h of primary culture, all groups reaching peak growth on the 6th day, after which the value of A decreased gradually and reached a plateau phase. The optimal BMMSCs seeding density of 5×106/ml achieved an excellent adhesion and proliferation activity on PDPB. In summary, the best cell seeding density of constructing tissue‐engineered bone with BMMSCs in vitro is 5×106/ml, the optimal timing to transplant is the 6th day.  相似文献   

5.
Glioblastoma (GBM) continues to show a poor prognosis despite advances in diagnostic and therapeutic approaches. The discovery of reliable prognostic indicators may significantly improve treatment outcome of GBM. In this study, we aimed to explore the function of verbascoside (VB) in GBM and its effects on GBM cell biological processes via let-7g-5p and HMGA2. Differentially expressed GBM-related microRNAs (miRNAs) were initially screened. Different concentrations of VB were applied to U87 and U251 GBM cells, and 50 µmol/L of VB was selected for subsequent experiments. Cells were transfected with let-7g-5p inhibitor or mimic, and overexpression of HMGA2 or siRNA against HMGA2 was induced, followed by treatment with VB. The regulatory relationships between VB, let-7g-5p, HMGA2 and Wnt/β-catenin signalling pathway were determined. The results showed that HMGA2 was a direct target gene of let-7g-5p. VB treatment or let-7g-5p overexpression inhibited HMGA2 expression and the activation of Wnt/β-catenin signalling pathway, which further inhibited cell viability, invasion, migration, tumour growth and promoted GBM cell apoptosis and autophagy. On the contrary, HMGA2 overexpression promoted cell viability, invasion, migration, tumour growth while inhibiting GBM cell apoptosis and autophagy. We demonstrated that VB inhibits cell viability and promotes cell autophagy in GBM cells by up-regulating let-7g-5p and down-regulating HMGA2 via Wnt/β-catenin signalling blockade.  相似文献   

6.
Lewis lung carcinoma (3LL) cells were constitutively resistant to Fas-mediated apoptosis, but overexpression of Fas on 3LL cells allowed Fas-mediated apoptosis after crosslinking with agonist anti-Fas antibody (Jo2) in vitro. Surprisingly, Fas-overexpressing 3LL cells showed enhanced in vivo tumor progression, whereas no promotion of in vivo tumor growth was observed for dominant negative (DN) Fas-overexpressing 3LL transfectants in which the cytoplasmic death domain was deleted. In addition, the promotion of in vivo tumor growth by Fas-overexpression was reduced in gld (FasL-mutation) mice compared to normal mice. These data indicate that intact Fas/FasL cell signaling is required for the promotion of in vivo tumor growth by Fas overexpression in 3LL cells. In contrast to the efficient Fas-mediated killing induced in vitro by crosslinking with anti-Fas antibody, Fas-overexpressing 3LL cells were resistant in vitro to Fas-mediated apoptosis by activated T cells or transient FasL transfection. These data suggest that agonist anti-Fas antibody and natural FasL can transmit qualitatively different signals, and crosslinking of Fas with natural FasL on 3LL cells does not deliver the expected death signal. Thus, our results demonstrate that in some cases overexpression of Fas can result in a survival advantage for tumor cells in vivo.  相似文献   

7.
8.

Background

Osteoporosis is the most prevalent skeletal disorder, characterized by a low bone mineral density (BMD) and bone structural deterioration, leading to bone fragility fractures. Accelerated bone resorption by osteoclasts has been established as a principal mechanism in osteoporosis. However, recent experimental evidences suggest that inappropriate apoptosis of osteoblasts/osteocytes accounts for, at least in part, the imbalance in bone remodeling as occurs in osteoporosis. The aim of this study is to examine whether aspirin, which has been reported as an effective drug improving bone mineral density in human epidemiology studies, regulates the balance between bone resorption and bone formation at stem cell levels.

Methods and Findings

We found that T cell-mediated bone marrow mesenchymal stem cell (BMMSC) impairment plays a crucial role in ovariectomized-induced osteoporosis. Ex vivo mechanistic studies revealed that T cell-mediated BMMSC impairment was mainly attributed to the apoptosis of BMMSCs via the Fas/Fas ligand pathway. To explore potential of using pharmacologic stem cell based intervention as an approach for osteoporosis treatment, we selected ovariectomy (OVX)-induced ostoeporosis mouse model to examine feasibility and mechanism of aspirin-mediated therapy for osteoporosis. We found that aspirin can inhibit T cell activation and Fas ligand induced BMMSC apoptosis in vitro. Further, we revealed that aspirin increases osteogenesis of BMMSCs by aiming at telomerase activity and inhibits osteoclast activity in OVX mice, leading to ameliorating bone density.

Conclusion

Our findings have revealed a novel osteoporosis mechanism in which activated T cells induce BMMSC apoptosis via Fas/Fas ligand pathway and suggested that pharmacologic stem cell based intervention by aspirin may be a new alternative in osteoporosis treatment including activated osteoblasts and inhibited osteoclasts.  相似文献   

9.
Background

Recently, more and more circular RNAs (circRNAs) have been identified in osteogenesis. In this study, we aimed to explore the effect of circ_FBLN1 on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs).

Methods

The protein levels of osteogenesis-related genes, let-7i-5p, frizzled class receptor 4 (FZD4), Ki67, Wnt6 and β-catenin were measured by western blot assay. The levels of circ_FBLN1, FBLN1 mRNA and FZD4 mRNA were determined by quantitative real-time polymerase chain reaction (qRT-PCR) assay. The feature of circ_FBLN1 was investigated by RNase R and Actinomycin D assays. Cell proliferation ability was evaluated by colony formation assay and 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The targeting relationship between let-7i-5p and circ_FBLN1 or FZD4 was verified by dual-luciferase reporter assay.

Results

Circ_FBLN1 level was enhanced during the osteogenic differentiation of hBMSCs. Silencing of circ_FBLN1 repressed cell proliferation and osteogenic differentiation in hBMSCs. For mechanism analysis, circ_FBLN1 was found to act as a sponge for let-7i-5p and FZD4 served as a direct target gene of let-7i-5p. Let-7i-5p was downregulated during the osteogenic differentiation of hBMSCs and let-7i-5p inhibition restored the effects of circ_FBLN1 knockdown on the proliferation and osteogenesis of hBMSCs. Moreover, let-7i-5p overexpression suppressed cell proliferation and osteogenesis in hBMSCs through targeting FZD4. In addition, circ_FBLN1 knockdown reduced the levels of Wnt6 and β-catenin in hBMSCs, indicating the inactivation of Wnt/β-catenin pathway.

Conclusion

Knockdown of circ_FBLN1 inhibited the proliferation and osteogenesis of hBMSCs by regulating let-7i-5p/FZD4 axis and repressing Wnt/β-catenin pathway.

  相似文献   

10.
Periodontal ligament width is precisely maintained throughout the lifetime of adult mammals but the biological mechanisms that inhibit ingrowth of bone into this soft connective tissue are unknown. As bone morphogenic proteins strongly stimulate osteogenesis and can induce ectopic bone formation in vivo, we tested the hypothesis that topical application of this powerful osteogenic agent will overwhelm the osteogenic inhibitory mechanisms of periodontal ligament cells and induce ankylosis. Wounds through the alveolar bone and periodontal ligament were created in 45 male Wistar rats. Defects were filled with either a collagen implant or collagen plus bone morphogenic protein (BMP-7), or were left unfilled (controls). Three animals per time period were killed on days 2, 5, 10, 21 and 60 after surgery for each wound type. Cellular proliferation and clonal growth in periodontal tissues were assessed by 3H-thymidine labeling 1 h before death, followed by radioautography. Cellular differentiation of soft and mineralizing connective tissue cell populations was determined by immunohistochemical staining of α-smooth muscle actin, osteopontin and bone sialoprotein. In regenerating periodontium, BMP-7 induced abundant bone formation by 21 days (2.5-fold greater than controls or collagen implant only; P<0.001), but by day 60 the volume of the newly formed bone had returned to baseline levels and was similar for all groups. Independent of the type of treatment, periodontal ligament width was unchanged throughout the experimental period (P>0.05). Animals treated with BMP-7 implants showed greatly increased cellular proliferation in the periodontal ligament adjacent to the wound site and in the regenerating alveolar bone at days 5 and 10 after wounding compared to the other treatment groups (P<0.005). Animals in the BMP-7 group exhibited similar spatial and temporal staining patterns for α-smooth muscle actin, osteopontin and bone sialoprotein as controls. Collectively, these data show that BMP-7 promoted the proliferation of precursor cells in the periodontal ligament but did not induce osteogenic differentiation in this compartment. Consequently a powerful osteogenic stimulus like BMP-7 cannot significantly perturb the mechanisms that regulate periodontal ligament width and maintain periodontal homeostasis. Received: 2 March 1998 / Accepted: 16 June 1998  相似文献   

11.
The osteogenesis of bone marrow stromal cells (BMSCs) is of paramount importance for the repair of large‐size bone defects, which may be compromised by the dietary‐accumulated all‐trans retinoic acid (ATRA). We have shown that heterodimeric bone morphogenetic protein 2/7 (BMP2/7) could induce bone regeneration in a significantly higher dose‐efficiency in comparison with homodimeric BMPs. In this study, we evaluated the effects of ATRA and BMP2/7 on the proliferation, differentiation, mineralization and osteogenic genes. ATRA and BMP2/7 exhibited both antagonistic and synergistic effects on the osteogenesis of BMSCs. ATRA significantly inhibited proliferation and expression of osteocalcin but enhanced the activity of alkaline phosphatase of BMSCs. On day 21, 50 ng/mL BMP2/7 could antagonize the inhibitive effects of ATRA and significantly enhance osteogenesis of BMSCs. These findings suggested a promising application potential of heterodimeric BMP2/7 in clinic to promote bone regeneration for the cases with dietary accumulated ATRA.  相似文献   

12.
Periodontal ligament fibroblasts (PDLFs) have osteogenic capacity, producing bone matrix proteins. Application of bone morphogenic proteins (BMPs) to PDLFs is a promising approach for periodontal regeneration. However, in chronic bone metabolic disorders, such as periodontitis, proper control of accompanying inflammation is essential for optimizing the effects of BMPs on PDLFs. We have previously shown that low-intensity pulsed ultrasound (LIPUS), a medical technology that induces mechanical stress using sound waves, significantly promotes osteogenesis in mesenchymal stem cells. Here, we demonstrate that LIPUS promotes the BMP9-induced osteogenic differentiation of PDLFs. In contrast, BMP2-induced osteogenic differentiation was not altered by LIPUS, probably due to the LIPUS-induced secretion of Noggin, a BMP2 antagonist, from PDLFs. To examine if LIPUS affects inflammatory responses of PDLFs to lipopolysaccharide (LPS) derived from Porphyromonas gingivalis (LPS-PG), we also simultaneously treated PDLFs with LIPUS and LPS-PG. Treatment with LIPUS significantly inhibited the phosphorylation of ERKs, TANK-binding kinase 1, and interferon regulatory factor 3 in LPS-PG-stimulated PDLFs, in addition to inhibiting the degradation of IκB. Furthermore, LIPUS treatment reduced messenger RNA (mRNA) expression of interleukin-1alpha (IL-1alpha), IL-1beta, IL-6, IL-8, C-C motif chemokine ligand 2, C-X-C motif chemokine ligand 1 (CXCL1), CXCL10 and receptor activator of nuclear factor kappa-B ligand, and also diminished IL-1ß and tumor necrosis factor a (TNFa)-induced inflammatory reactions. Phosphorylation of Rho-associated kinase 1 (ROCK1) was induced by LIPUS, while ROCK1-specific inhibitor prevented the promotive effects of LIPUS on p38 phosphorylation, mRNA expression of CXCL1 and Noggin, and osteogenesis. The suppressive effects of LIPUS on LPS-PG-stimulated inflammatory reactions were also prevented by ROCK1 inhibition. Moreover, LIPUS treatment blocked inhibitory effects of LPS-PG and IL-1ß on osteogenesis. These results indicate that LIPUS suppresses inflammatory effects of LPS-PG, IL-1ß, and TNFa and also promotes BMP9-induced osteogenesis through ROCK1 in PDLFs.  相似文献   

13.
A short half-life and low levels of growth factors in an injured microenvironment necessitates the sustainable delivery of growth factors and stem cells to augment the regeneration of injured tissues. Our aim was to investigate the ability of VEGF165 expressing bone marrow mesenchymal stem cells (BMMSCs) to differentiate into hepatocytes when cultured with hepatocyte growth factor (HGF) and epidermal growth factor (EGF) in vitro. We isolated, cultured and identified rabbit BMMSCs, then electroporated the BMMSCs with VEGF165-pCMV6-AC-GFP plasmid. G418 was used to select transfected cells and the efficiency was up to 70%. The groups were then divided as follows: Group A was electroporated with pCMV6-AC-GFP plasmid + HGF + EGF and Group B was electroporated with VEGF165-pCMV6-AC-GFP plasmid +HGF + EGF. After 14 days, BMMSCs were induced into short spindle and polygonal cells. Alpha-fetoprotein (AFP) was positive and albumin (ALB) was negative in Group A, while both AFP and ALB were positive in group B on day 10. AFP and ALB in both groups were positive on day 20, but the quantity of AFP in group B decreased with prolonged time and was about 43.5% less than group A. The quantity of the ALB gene was increased with prolonged time in both groups. However, there was no significant difference between group A and B on day 10 and 20. Our results demonstrated that VEGF165-pCMV6-AC-GFP plasmid modified BMMSCs still had the ability to differentiate into hepatocytes. The VEGF165 gene promoted BMMSCs to differentiate into hepatocyte-like cells under the induction of HGF and EGF, and reduced the differentiation time. These results have implications for cell therapies.  相似文献   

14.
In insects, 20-hydroxyecdysone (20E) limits systemic growth by triggering developmental transitions. Previous studies have shown that 20E-induced let-7 exhibits crosstalk with the cell cycle. Here, we examined the underlying molecular mechanisms and physiological functions of 20E-induced let-7 in the fat body, an organ for energy storage and nutrient mobilization which plays a critical role in the larval growth. First, the overexpression of let-7 decreased the body size and led to the reduction of both nucleolus and cell sizes in the larval fat body. In contrast, the overexpression of let-7-Sponge increased the nucleolus and cell sizes. Moreover, we found that cdc7, encoding a conserved protein kinase that controls the endocycle, is a target of let-7. Notably, the mutation of cdc7 in the fat body resulted in growth defects. Overall, our findings revealed a novel role of let-7 in the control of endoreduplication-related growth during larval-prepupal transition in Drosophila.  相似文献   

15.
The matrix remodeling associated 7 (MXRA7) gene had been ill-studied and its biology remained to be discovered. Inspired by our previous findings and public datasets concerning MXRA7, we hypothesized that the MXRA7 gene might be involved in bone marrow mesenchymal stem cells (BMSCs) functions related to bone formation, which was checked by utilizing in vivo or in vitro methodologies. Micro-computed tomography of MXRA7-deficient mice demonstrated retarded osteogenesis, which was reflected by shorter femurs, lower bone mass in both trabecular and cortical bones compared with wild-type (WT) mice. Histology confirmed the osteopenia-like feature including thinner growth plates in MXRA7-deficient femurs. Immunofluorescence revealed less osteoblasts in MXRA7-deficient femurs. Polymerase chain reaction or western blot analysis showed that when WT BMSCs were induced to differentiate toward osteoblasts or adipocytes in culture, MXRA7 messenger RNA or protein levels were significantly increased alongside osteoblasts induction, but decreased upon adipocytes induction. Cultured MXRA7-deficient BMSCs showed decreased osteogenesis upon osteogenic differentiation induction as reflected by decreased calcium deposition or lower expression of genes responsible for osteogenesis. When recombinant MXRA7 proteins were supplemented in a culture of MXRA7-deficient BMSCs, osteogenesis or gene expression was fully restored. Upon osteoblast induction, the level of active β-catenin or phospho-extracellular signal-regulated kinase in MXRA7-deficient BMSCs was decreased compared with that in WT BMSCs, and these impairments could be rescued by recombinant MXRA7 proteins. In adipogenesis induction settings, the potency of MXRA7-deficient BMSCs to differentiate into adipocytes was increased over the WT ones. In conclusion, this study demonstrated that MXRA7 influences bone formation via regulating the balance between osteogenesis and adipogenesis in BMSCs.  相似文献   

16.
ObjectivesScavenger receptor class A, member 3 (Scara3) was involved in adipogenesis. However, the effect of Scara3 on the switch between osteogenesis and adipogenesis of bone marrow mesenchymal stem cells (BMSCs) remains elusive.Materials and MethodsThe correlations between SCARA3 with the osteogenic‐related were analysed based on the GTEx database. The effects of Scara3 on osteogenic or adipogenic differentiation of BMSCs were evaluated by qPCR, Western blot (WB) and cell staining. The mechanisms of Scara3 regulating Foxo1 and autophagy were validated by co‐expression analysis, WB and immunofluorescence. In vivo, Scara3 adeno‐associated virus was injected into intra‐bone marrow of the aged mice and ovariectomized (OVX) mice whose phenotypes were confirmed by micro‐CT, calcein double labelling and immunochemistry (HE and OCN staining).Results SCARA3 was positively correlated with osteogenic‐related genes. Scara3 expression gradually decreased during adipogenesis but increased during osteogenesis. Moreover, the deletion of Scara3 favoured adipogenesis over osteogenesis, whereas overexpression of Scara3 significantly enhanced the osteogenesis at the expense of adipogenesis. Mechanistically, Scara3 controlled the cell fate by promoting Foxo1 expression and autophagy flux. In vivo, Scara3 promoted bone formation and reduced bone marrow fat accumulation in OVX mice. In the aged mice, Scara3 overexpression alleviated bone loss as well.ConclusionsThis study suggested that Scara3 regulated the switch between adipocyte and osteoblast differentiation, which represented a potential therapeutic target for bone loss and osteoporosis.  相似文献   

17.
We have hypothesized that human bone marrow-derived mesenchymal stem cells (BMMSCs), that are not osteogenically differentiated prior to implantation, would regenerate bone extensively in vivo once exogenous bone morphogenetic protein-2 (BMP-2) was delivered to the implantation site. BMP-2 released from heparin-conjugated poly(lactic-co-glycolic acid) (HCPLGA) scaffolds stimulates osteogenic differentiation of cultured BMMSCs. Upon implantation, undifferentiated BMMSCs on BMP-2-loaded HCPLGA scaffolds induce far more extensive bone formation than either undifferentiated BMMSCs or osteogenically differentiated BMMSCs on HCPLGA scaffolds. These BMP-2-loaded HCPLGA scaffolds could prove invaluable for in vivo regeneration of bone from undifferentiated human BMMSCs.  相似文献   

18.
Chen  Yunsheng  Wu  Yaohong  Chen  Rongchun  Xu  Canhua  Chen  Qin 《Molecular and cellular biochemistry》2021,476(5):1995-2000
Background

It has been reported that long intergenic non-protein-coding RNA 324 (LINC00324) promotes liver cancer by upregulating Fas ligand (FasL), which is a major player in intervertebral disk degeneration (IDD), indicating the involvement of LINC00324 in IDD. This study was carried out to investigate the interaction between LINC00324 and FasL in IDD.

Methods

Plasma samples were collected from both IDD (n?=?60) and healthy controls (n?=?60). The expression of LINC00324 and FasL in plasma was determined by RT-qPCR. The interactions between LINC00324 and FasL in nucleus pulposus (NP) cells were analyzed by overexpression experiments.

Results

LINC00324 and FasL were upregulated in IDD patients, and they were positively correlated. After treatment, the expression levels of FasL and LINC00324 were significantly decreased. In NP cells, overexpression of LINC00324 increased the expression of FasL at both mRNA and protein levels, while overexpression of FasL did not affect the expression of LINC00324.

Conclusion

LINC00324 may upregulate FasL in IDD to promote disease progression.

  相似文献   

19.
Fas/Fas ligand (FasL)-mediated cell apoptosis involves a variety of physiological and pathological processes including chronic hepatic diseases, and hepatocytes apoptosis contributes to the development of liver fibrosis following various causes. However, the mechanism of the Fas/FasL signaling and hepatocytes apoptosis in liver fibrogenesis remains unclear. The Fas/FasL signaling and hepatocytes apoptosis in liver samples from both human sections and mouse models were investigated. NF-κBp65 wild-type mice (p65f/f), hepatocytes specific NF-κBp65 deletion mice (p65Δhepa), p53-upregulated modulator of apoptosis (PUMA) wild-type (PUMA-WT) and PUMA knockout (PUMA-KO) littermate models, and primary hepatic stellate cells (HSCs) were also used. The mechanism underlying Fas/FasL-regulated hepatocytes apoptosis to drive HSCs activation in fibrosis was further analyzed. We found Fas/FasL promoted PUMA-mediated hepatocytes apoptosis via regulating autophagy signaling and NF-κBp65 phosphorylation, while inhibition of autophagy or PUMA deficiency attenuated Fas/FasL-modulated hepatocytes apoptosis and liver fibrosis. Furthermore, NF-κBp65 in hepatocytes repressed PUMA-mediated hepatocytes apoptosis via regulating the Bcl-2 family, while NF-κBp65 deficiency in hepatocytes promoted PUMA-mediated hepatocytes apoptosis and enhanced apoptosis-linked inflammatory response, which contributed to the activation of HSCs and liver fibrogenesis. These results suggest that Fas/FasL contributes to NF-κBp65/PUMA-modulated hepatocytes apoptosis via autophagy to enhance liver fibrogenesis, and this network could be a potential therapeutic target for liver fibrosis.Subject terms: Apoptosis, Extracellular signalling molecules  相似文献   

20.
The ubiquitin protease pathway plays important role in human bone marrow-derived mesenchymal stem cell (hBMSC) differentiation, including osteogenesis. However, the function of deubiquitinating enzymes in osteogenic differentiation of hBMSCs remains poorly understood. In this study, we aimed to investigate the role of ubiquitin-specific protease 53 (USP53) in the osteogenic differentiation of hBMSCs. Based on re-analysis of the Gene Expression Omnibus database, USP53 was selected as a positive regulator of osteogenic differentiation in hBMSCs. Overexpression of USP53 by lentivirus enhanced osteogenesis in hBMSCs, whereas knockdown of USP53 by lentivirus inhibited osteogenesis in hBMSCs. In addition, USP53 overexpression increased the level of active β-catenin and enhanced the osteogenic differentiation of hBMSCs. This effect was reversed by the Wnt/β-catenin inhibitor DKK1. Mass spectrometry showed that USP53 interacted with F-box only protein 31 (FBXO31) to promote proteasomal degradation of β-catenin. Inhibition of the osteogenic differentiation of hBMSCs by FBXO31 was partially rescued by USP53 overexpression. Animal studies showed that hBMSCs with USP53 overexpression significantly promoted bone regeneration in mice with calvarial defects. These results suggested that USP53 may be a target for gene therapy for bone regeneration.Subject terms: Cell signalling, Mesenchymal stem cells  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号