首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Question: Can GIS and GPS technology be used to quantify the hydrological regime of different plant communities on turloughs (groundwater dependent calcareous wetlands)? Location: Skealoghan turlough, County Mayo, Ireland. Methods: Plant communities were mapped and digitised with GIS software and a digital elevation model of the site was constructed from differential GPS data. Together with records of water level fluctuations on the site from May 2001 to May 2004, these data were used to calculate hydrological variables for each plant community. Hierarchical cluster analysis was used to identify groups of plant communities with similar hydrological regimes. Results: 15 plant communities were mapped at Skea loghan, with the Cirsio‐Molinietum and Ranunculo‐Potentilletum anserinae being the dominant phytosociological associations. Skealoghan is subject to large temporal and spatial variation in its hydrological regime and fluctuations in water level are intrinsically linked to rainfall. The spatial variation in flooding can be linked to the vegetation zones. Conclusions: GIS and DGPS technology can be used to quantify the hydrological regime of different plant communities on turloughs. Since the hydrological regime is a major environmental factor controlling the vegetation composition of the site, the maintenance of natural flooding regimes is a vital component for the conservation and management of the diverse vegetation mosaic at Skealoghan turlough.  相似文献   

2.
Turloughs are groundwater dependent grazed wetlands of conservation importance that occur in limestone depressions in the karst landscape, mostly in the west of Ireland. Data on Carabidae, hydrological regime, soils and management (using grazing exclosures) were collected to assess the effects of both hydrological regime and grazing management on ground beetles of Skealoghan turlough. Distinct ground beetle communities have been found associated with different hydrological regimes with carabid beetle community composition sensitive to both changes in hydrological regime and vegetation structure. The hydrological regime is the primary factor controlling the carabid species composition of this grazed wetland. Grazing, particularly selective grazing by animals plays an important but subordinate role to hydrology in providing suitable habitat conditions for many species of conservation importance. This paper provides a detailed assessment of species responses to wetland management and demonstrates the need to maintain a range of hydrological and grazing regimes.  相似文献   

3.
Understanding how plant communities respond to plant invasions is important both for understanding community structure and for predicting future ecosystem change. In a system undergoing intense plant invasion for 25 years, we investigated patterns of community change at a regional scale. Specifically, we sought to quantify how tussock grassland plant community structure had changed and whether changes were related to increases in plant invasion. Frequency data for all vascular plants were recorded on 124, permanent transects in tussock grasslands across the lower eastern South Island of New Zealand measured three times over a period of 25 years. Multivariate analyses of species richness were used to describe spatial and temporal patterns in the vegetation. Linear mixed‐effects models were used to relate temporal changes in community structure to the level and rate of invasion of three dominant invasive species in the genus Hieracium while accounting for relationships with other biotic and abiotic variables. There was a strong compositional gradient from exotic‐ to native‐dominated plant communities that correlated with increasing elevation. Over the 25 years, small‐scale species richness significantly decreased and then increased again; however, these changes differed in different plant communities. Exotic species frequency consistently increased on some transects and consistently declined on others. Species richness changes were correlated with the level of Hieracium invasion and abiotic factors, although the relationship with Hieracium changed from negative to positive over time. Compositional changes were not related to measured predictors. Our results suggest that observed broad‐scale fluctuations in species richness and community composition dynamics were not driven by Hieracium invasion. Given the relatively minor changes in community composition over time, we conclude that there is no evidence for widespread degradation of these grasslands over the last 25 years. However, because of continuing weed invasion, particularly at lower elevations, impacts may emerge in the longer term.  相似文献   

4.
Aim Non‐vascular epiphytes have been largely ignored in studies examining the biotic and abiotic determinants of spatial variation in epiphyte diversity. Our aim was to test whether the spatial patterning of species richness, biomass and community composition across geographic regions, among trees within regions, and among branches within trees is consistent between the vascular and non‐vascular components of the temperate rain forest flora. Location Coastal lowland podocarp‐broadleaved forests on the west coast of the South Island of New Zealand. Methods We collected single samples (30 × 25 cm) from 96 epiphyte assemblages located on the inner branches of 40 northern rata (Metrosideros robusta) trees. For each sample, branch characteristics such as branch height, branch diameter, branch angle, branch aspect, and minimum and maximum epiphyte mat depth were recorded. The biomass for each individual epiphyte species was determined. Results Northern rata was host to a total of 157 species, comprising 32 vascular and 125 non‐vascular species, with liverworts representing 41% of all species. Within epiphyte mats, the average total organic biomass of 3.5 kg m?2 of branch surface area consisted largely of non‐living biomass and roots. Vascular and non‐vascular epiphytes showed strikingly different spatial patterns in species richness, biomass and composition between sites, among trees within sites, and among branches within trees, which could not be explained by the branch structural characteristics we measured. The two plant groups had no significant association in community composition (r = 0.04, P = 0.08). However, the species richness of vascular plant seedlings was strongly linked to the presence/absence of lichens. Main conclusions Non‐vascular plants contributed substantially to the high species richness and biomass recorded in this study, which was comparable to that of some tropical rain forests. High variability in community composition among epiphyte mats, and very low correlation with any of the environmental factors measured possibly indicate high levels of stochasticity in seed or spore colonization, establishment success or community assembly among branches in these canopy communities. Although we found some evidence that vascular plant seedling establishment was linked to the presence of lichens and the biomass of non‐living components in the epiphyte mats, there was no correlation in the spatial patterning or determinants of species richness between non‐vascular and vascular plants. Consequently, variation in total epiphyte biodiversity could not be predicted from the measurement of vascular plant diversity alone, which highlights the crucial importance of sampling non‐vascular plants when undertaking epiphyte community studies.  相似文献   

5.
Soil pathogens are believed to be major contributors to negative plant–soil feedbacks that regulate plant community dynamics and plant invasions. While the theoretical basis for pathogen regulation of plant communities is well established within the plant–soil feedback framework, direct experimental evidence for pathogen community responses to plants has been limited, often relying largely on indirect evidence based on above‐ground plant responses. As a result, specific soil pathogen responses accompanying above‐ground plant community dynamics are largely unknown. Here, we examine the oomycete pathogens in soils conditioned by established populations of native noninvasive and non‐native invasive haplotypes of Phragmites australis (European common reed). Our aim was to assess whether populations of invasive plants harbor unique communities of pathogens that differ from those associated with noninvasive populations and whether the distribution of taxa within these communities may help to explain invasive success. We compared the composition and abundance of pathogenic and saprobic oomycete species over a 2‐year period. Despite a diversity of oomycete taxa detected in soils from both native and non‐native populations, pathogen communities from both invaded and noninvaded soils were dominated by species of Pythium. Pathogen species that contributed the most to the differences observed between invaded and noninvaded soils were distributed between invaded and noninvaded soils. However, the specific taxa in invaded soils responsible for community differences were distinct from those in noninvaded soils that contributed to community differences. Our results indicate that, despite the phylogenetic relatedness of native and non‐native P. australis haplotypes, pathogen communities associated with the dominant non‐native haplotype are distinct from those of the rare native haplotype. Pathogen taxa that dominate either noninvaded or invaded soils suggest different potential mechanisms of invasion facilitation. These findings are consistent with the hypothesis that non‐native plant species that dominate landscapes may “cultivate” a different soil pathogen community to their rhizosphere than those of rarer native species.  相似文献   

6.
Field margins are an important component of the agri-environment as they contribute to maintaining ecosystem functions and protecting biodiversity. Field margin structure, landscape attributes, and management practices have been examined as determinants of plant species diversity and composition for mainly cereal field margins; however, relatively little is known about their influence on vegetable field margins. We selected three types of field margins (each n = 4; non-managed connected to forests, non-managed isolated, and isolated and managed margins with mowing and organic herbicide) adjacent to organic vegetable crop fields and recorded the species richness and abundance of all vascular plants. The effects of structural connectivity, weed control management, and margin width on the community composition, species richness, and diversity were examined using multivariate statistical techniques. Plant community composition was clearly explained by structural connectivity between field margin and forest, as well as by weed control management. In contrast, species richness of functional guilds was influenced by connectivity and margin width, but not by weed control management. All communities had similar numbers of summer and fall blooming nectar- and pollen-producing plants, an important source of pollination services. In addition, each community of field margin types, despite different species composition, had similar levels of Shannon diversity and evenness. Our results suggest that habitat arrangement is important for determining community composition in field margins. Management practices may be important in determining dominance patterns of individual species. A combination of various margin types and widths may be beneficial for biodiversity conservation and ecosystem services.  相似文献   

7.
Question: Does the vegetation of restored salt marshes increasingly resemble natural reference communities over time? Location: The Essex estuaries, southeast England. Methods: Abandoned reclamations, where coastal defences had been breached in storm events, and current salt marsh recreation schemes were surveyed giving a chronosequence of salt marsh regeneration from 2 to 107 years. The presence, abundance and height of plant species were recorded and comparisons were made with adjacent reference salt marsh communities at equivalent elevations. Results: Of the 18 paired sites surveyed, 13 regenerated marshes had fewer species than their adjacent reference marsh, three had an equal number and two had more. The plant communities of only two de‐embankment sites matched that of the reference community. 0–50 year old sites and 51–100 year old sites had fewer species per quadrat than the 101+ year sites and the reference salt marshes. There was a weak relationship between differences in species richness for regenerated and reference marshes and the time since sites were first re‐exposed to tidal inundation. Cover values for the invasive and recently evolved Spartina anglica were greater within regenerated than reference marshes. Conclusions: Salt marsh plants will colonise formerly reclaimed land relatively quickly on resumption of tidal flooding. However, even after 100 years regenerated salt marshes differ in species richness, composition and structure from reference communities.  相似文献   

8.
Question: In relation to a single fire, do repeated wildfires in Mediterranean type ecosystems (1) reduce plant species richness or diversity; (2) modify patterns of abundance or dominance of plant species or (3) alter plant composition? Location: Pinus halepensis dominated communities of Catalonia, northeastern Iberian Peninsula, western Mediterranean Basin. Methods: Regional, paired design with 14 study sites, each consisting of a once burnt area (1994) and a twice burnt area (1975–1993 and 1994). Ten years after the last fire, we recorded all vascular plant species present in nested plots and quantified their relative abundances on transects. We compared species richness, diversity, dominance and relative abundance and species‐area correlations between paired once and twice burnt areas and assessed their floristic composition similarity. Results: No statistically significant differences were found in species richness or diversity. Slopes of species‐area correlations were higher in once burnt areas. In twice burnt areas, dominance by one or two species was higher. P. halepensis showed lower relative abundance and nanophanerophytes showed higher relative abundance. No differences were found for resprouter, seeder or resprouter‐seeder species. Floristic composition similarity between paired areas tended to be higher in less productive sites. Conclusions: Fire recurrence had contrasting effects on species richness at different spatial scales. Repeated burning reduced the relative abundance of the dominant tree species, which resulted in a higher relative abundance of shrubs. It also promoted the dominance of herbs, particularly Brachypodium retusum. However, it did not change the relative abundance of regenerative groups. Paired areas were more similar as they were more Mediterranean in terms of climatic conditions.  相似文献   

9.
Community structures of aphids and their parasitoids were studied in fruit crop habitats of eastern Belgium in 2014 and 2015. Quantitative food webs of these insects were constructed separately for each year, and divided into subwebs on three host‐plant categories, fruit crop plants, non‐crop woody and shrub plants and non‐crop herbaceous plants. The webs were analyzed using the standard food web statistics designed for binary data. During the whole study period, 78 plant species were recorded as host plants of 71 aphid species, from which 48 parasitoid species emerged. The community structure, aphid / parasitoid species‐richness ratio and trophic link number varied between the two years, whereas the realized connectance between parasitoids and aphids was relatively constant. A new plant–aphid–parasitoid association for Europe was recorded. Dominant parasitoid species in the study sites were Ephedrus persicae, Binodoxys angelicae and Praon volucre: the first species was frequently observed on non‐crop trees and shrubs, but the other two on non‐crop herbaceous plants. The potential influence, through indirect interactions, of parasitoids on aphid communities was assessed with quantitative parasitoid‐overlap diagrams. Symmetrical links were uncommon, and abundant aphid species seemed to have large indirect effects on less abundant species. These results show that trophic indirect interactions through parasitoids may govern aphid populations in fruit crop habitats with various non‐crop plants, implying the importance for landscape management and biological control of aphid pests in fruit agroecosystems.  相似文献   

10.
Questions: How is seedling regeneration of woody species of semi‐deciduous rain forests affected by (a) historical management for combinations of logging, arboricide treatment or no treatment, (b) forest community type and (c) environmental gradients of topography, light and soil nutrients? Location: Budongo Forest Reserve, Uganda. Methods: Seedling regeneration patterns of trees and shrubs in relation to environmental factors and historical management types were studied using 32 0.5‐ha plots laid out in transects along a topographic gradient. We compared seedling species diversity, composition and distribution patterns along topographic gradients and within types of historical management regimes and forest communities to test whether environmental factors contributed to differences in species composition of seedlings. Results: A total of 85 624 woody seedlings representing 237 species and 46 families were recorded in this rain forest. Cynometra alexandri C.H. Wright and Lasiodiscus mildbraedii Engl. had high seedling densities and were widely distributed throughout the plots. The most species‐rich families were Euphorbiaceae, Fabaceae, Rubiaceae, Meliaceae, Moraceae and Rutaceae. Only total seedling density was significantly different between sites with different historical management, with densities highest in logged, intermediate in logged/arboricided and lowest in the nature reserve. Forest communities differed significantly in terms of seedling diversity and density. Seedling composition differed significantly between transects and forest communities, but not between topographic positions or historical management types. Both Chao‐Jaccard and Chao‐Sørensen abundance‐based similarity estimators were relatively high in the plot, forest community and in terms of historical management levels, corroborating the lack of significant differences in species richness within these groups. The measured environmental variables explained 59.4% of variance in seedling species distributions, with the three most important being soil organic matter, total soil titanium and leaf area index (LAI). Total seedling density was positively correlated with LAI. Differences in diversity of >2.0 cm dbh plants (juveniles and adults) also explained variations in seedling species diversity. Conclusions: The seedling bank is the major route for regeneration in this semi‐deciduous tropical rain forest, with the wide distribution of many species suggesting that these species regenerate continuously. Seedling diversity, density and distribution are largely a function of adult diversity, historical management type and environmental gradients in factors such as soil nutrient content and LAI. The species richness of seedlings was higher in soils both rich in titanium and with low exchangeable cations, as well as in logged areas that were more open and had a low LAI.  相似文献   

11.
1. Studies have shown that plant diversity plays a major role in influencing arthropod community composition. However, the effects of increasing plant species diversity on arthropod abundance at multiple trophic levels in the presence of aromatic plants have not been well documented. 2. To explore the potential of using aromatic plants to biocontrol arthropods at multiple trophic levels, three aromatic plant species – French marigold (Tagetes patula L.), Ageratum (Ageratum houstonianum Mill.) and Catnip (Nepeta cataria L.) – were introduced into an apple orchard to increase ground plant species composition. 3. The aromatic plants influenced the structure of arthropod communities at multiple trophic levels, particularly the herbivores in the tree canopy and predators in ground covers. Aromatic plants negatively influenced total arthropod community abundance. Compared with the control treatment, the total arthropod community abundance in the treated areas declined 24.99–33.84% and 14.35–24.65% in the tree canopy and ground covers, respectively. 4. Aromatic plants negatively influenced herbivore abundance, both overall and relative to the total community. By contrast, aromatic plants positively influenced predator abundance, both overall and relative to the total community, in the treatments containing both ageratum and catnip. However, aromatic plants had no effect on species richness at each trophic level or on parasitoid abundance. 5. These results suggest that increasing ground plant species diversity by introducing aromatic plants into apple orchards may considerably affect arthropod community composition, and that aromatic plants are potentially effective for the biocontrol of herbivore pests in agroforestry ecosystems.  相似文献   

12.
分别采用物种丰富度、物种多样性指数和群落均匀度等指标对浙江省大雷山夏蜡梅群落植物物种多样性进行测定,并通过相关分析对各种指数与土壤因子的关系进行研究。据10个样地统计,共有维管植物74科、165属、193种。从种子植物属的地理成分来看,温带分布的类型居多。不同群落木本植物的物种丰富度和多样性指数以杉木+木荷林最高,群落均匀度以杉木林最高,毛竹林的各项指数最低。草本植物的物种丰富度以杉木+马尾松林最高,杉木林最低;多样性指数和群落均匀度以竹林最高,短柄枹+格药柃林最低。在不同群落的垂直结构中,乔木层的物种丰富度和多样性指数均小于灌木层,草本层的物种多样性在不同群落间变化较大。相关分析表明,夏蜡梅群落物种多样性与土壤有机质含量相关性较大,其中,木本植物物种多样性与有机质含量显著正相关,草本植物与有机质含量显著负相关。  相似文献   

13.
Turloughs, which are classified as priority habitats under the European Habitats Directive, are seasonally flooded depressions found almost exclusively in Ireland. In 2001, three adjacent fields with different stocking densities were selected and plant/dipteran communities within the same vegetation zone of each field (site) were investigated using quadrats and sweep netting, respectively. There was a significant positive relationship between Diptera morphospecies richness/Diptera abundance and mean vegetation height (P < 0.001). However, no significant relationship between Diptera morphospecies richness and plant species richness was found. Median Diptera morphospecies richness per sweep was lower at the site with the highest stocking density (17) than at the other two sites (22 and 31, respectively). Total species richness of Sciomyzidae was greater at the least grazed site (7) than at the more heavily grazed sites (2 and 1, respectively). The results suggest that an evaluation of turlough management practices based on plant communities alone is not sufficient and that at least some areas within the turlough basin remain ungrazed on a rotational basis to ensure maximum diversity of Diptera.  相似文献   

14.
Arbuscular mycorrhizal fungi (AMF) are globally distributed, monophyletic root symbionts with ancient origins. Their contribution to carbon cycling and nutrient dynamics is ecologically important, given their obligate association with over 70% of vascular plant species. Current understanding of AMF species richness and community structure is based primarily on studies of grasses, herbs and agricultural crops, typically in disturbed environments. Few studies have considered AMF interactions with long‐lived woody perennial species in undisturbed ecosystems. Here we examined AMF communities associated with roots and soils of young, mature and old western redcedar (Thuja plicata) at two sites in the old‐growth temperate rainforests of British Columbia. Due to the unique biology of AMF, community richness and structure were assessed using a conservative, clade‐based approach. We found 91 AMF OTUs across all samples, with significantly greater AMF richness in the southern site, but no differences in richness along the host chronosequence at either site. All host age classes harboured AMF communities that were overdispersed (more different to each other than expected by chance), with young tree communities most resembling old tree communities. A comparison with similar clade richness data obtained from the literature indicates that western redcedar AMF communities are as rich as those of grasses, tropical trees and palms. Our examination of undisturbed temperate old‐growth rainforests suggests that priority effects, rather than succession, are an important aspect of AMF community assembly in this ecosystem.  相似文献   

15.
We compare species richness of bryophytes and vascular plants in Estonian moist forests and mires. The material was collected from two wetland nature reserves. Bryophyte and vascular plant species were recorded in 338 homogeneous stands of approximately 1 ha in nine forest and two mire types. Regional species pools for bryophytes and vascular plants were significantly correlated. The correlations between the species richnesses of bryophytes and vascular plants per stand were positive in all community types. The relative richnesses (local richness divided by the regional species pool size) were similar for bryophyte species and for vascular plant species. This shows that on larger scales, conservation of the communities rich in species of one taxonomic plant group, maintains also the species richness of the other. The minimum number of stands needed for the maintenance of the regional species pool of typical species for the every community type was calculated using the species richness accumulation curves. Less stands are needed to maintain the bryophyte species pools (300–5300 for bryophytes and 400–35 000 for vascular plants).  相似文献   

16.
Effects of simulated environmental change on bryophyte and lichen species richness and diversity in alpine tundra were investigated in a 5-year experiment at Latnjajaure, northern Sweden. The experiment had a factorial design including fertilisation and temperature enhancement in one meadow and one heath plant community. Responses in species richness, biodiversity, and species composition of bryophytes and lichens to experimental treatments were compared to the observed variation in six naturally occurring plant communities. The combination of fertilisation and enhanced temperature resulted in a species impoverishment, for bryophytes in the bryophyte-dominated community, and for lichens in the lichen-dominated communities, but the species composition stayed within the observed natural variation. During the course of the study, no species new to the investigated mid-alpine landscape were recorded, but that scenario is realistic within a decade when comparing with the processes seen in vascular plants.  相似文献   

17.
Most plant communities support a diverse assemblage of arbuscular mycorrhizal fungi (AMF). AMF communities have the potential to affect plant community structure and vice versa. We examined AMF sporulation in a 4.5‐ha reconstructed prairie in Eau Claire County, Wisconsin. In fall 2003, the site was planted with varied numbers and combinations of native prairie species from four functional guilds: C3 grasses/sedges, C4 grasses, legume, and nonleguminous forbs. We hypothesized that more diverse plant seeding mixtures would promote AMF diversity. To examine the interaction between plant and fungal communities, plots were divided and subplots treated with the fungicide chlorothalonil to suppress AMF, enriched with ammonium nitrate fertilizer, treated with both fungicide and nitrogen, or remained untreated (control). Soil samples were collected during the summers of 2004, 2006, and 2007 from each subplot. Spores of AMF were extracted, identified to species, and enumerated. Initial plant seeding diversity did not significantly influence spore abundance, fungal diversity, plant productivity, or plant richness 4 years after establishment. Fungal species richness was positively, but weakly, correlated with plant productivity (r2 = 0.11) and plant richness (r2 = 0.09). Fungal community composition changed significantly over time; nitrogen addition, fungicide application, and site characteristics also shaped community composition. After 4 years of treatment, nitrogen and fungicide reduced AMF richness, changed sporulation patterns among AMF taxa, and reduced diversity and productivity in plant communities. Divergence in AMF community is being mirrored by changes in the plant community independent of initial seeding treatments, though causation could not be determined.  相似文献   

18.
Question: What is the disturbance response of low‐arctic plant communities two to three decades after seismic exploration. Location: Mackenzie River Delta, low‐arctic, northwestern Canada. Methods: Plant communities in two upland tundra vegetation types were compared between winter seismic lines, created between 1970 and 1986, and adjacent “reference” tundra. Also, we used aerial surveys to quantify the total area impacted by visible linear features. Results: Vascular plant cover was significantly higher, and lichen cover significantly lower, on seismic lines than in reference tundra. The increase in vascular plant cover was attributable to deciduous shrubs and graminoids. There were significant differences in plant community composition between seismic lines and reference tundra but no differences in species diversity or richness. Betula glandulosa and Arctagrostis latifolia were significant indicator species for seismic lines, while Saussurea angustifolia was a significant indicator for reference tundra. Based on the aerial surveys, these effects apply to at least 90% of seismic lines from two‐dimensional programs in these habitat types during the 1970s. Conclusions: Vegetation composition and structure on 20‐30‐year‐old seismic lines differs from reference upland tundra despite no persistent differences in organic layer depth or depth to permafrost. We propose that this reflects: (1) successional redevelopment following changes in soil conditions and nutrient availability arising from the disturbance, and/or (2) disturbance‐initiated succession towards a community reflecting current climatic conditions.  相似文献   

19.
20.
It is well‐known that pistes have adverse effects on alpine ecosystems. Previous studies urged that pistes should be installed and managed in the ways to minimize negative impacts on natural habitats. However, the impacts of this type of management on the plant communities are not widely studied. The aim of this study was to examine species composition and biodiversity changes in an environmentally friendly managed piste in northeast Iran. This piste has been established in a previously degraded alpine landscape. For the vegetation survey, we sampled 44 within and 28 off‐piste plots. Except for the piste management, other environmental factors were similar between the piste and off‐piste plots. Dominant species were determined, and variation in community composition of the two areas was visualized. Also, native species, phylogenetic, and functional Hill diversity of the two areas were compared. The results showed that there was a moderate differentiation in the species composition of the piste and off‐piste. Two palatable species (i.e., Bupleurum falcatum and Melica persica) were dominant in the piste and were not recorded in the off‐piste. The diversity calculations results showed that the species diversity of the piste was higher than that of the off‐piste. Phylogenetic diversity at the level of frequent and dominant plants showed a similar result. The piste had a higher functional diversity in terms of functional richness, and functional diversity of frequent and dominant plants. Our findings imply, after 10 years, species, phylogenetic, and functional diversity of the piste is significantly improved. Environmentally friendly piste management (EFPM) induced species composition change that led to emerging species that were absent in the off‐piste. We can conclude that EFPM led to restoration of a degraded landscape. Long‐term impacts of EFPM are still unknown, therefore, caution should be undertaken regarding the installation of new environmentally friendly pistes in other areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号