首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hypoxia not only controls organogenesis, embryogenesis, and wound repair, but also triggers tumor progression and metastasis. Matrix metalloproteinases (MMP), especially gelatinases (MMP-2, MMP-9) regulate the composition and stability of the extracellular matrix (ECM), which affects cell proliferation, migration, and differentiation. This study investigated the effect of hypoxia alone and in combination with ECM compounds and nutrition on MMP-2 and MMP-9 expression, activity, and synthesis in human lung fibroblasts and pulmonary vascular smooth muscle cells (VSMC). We also determined the expression of the tissue inhibitors of MMP (TIMP-1, -2). Cells were grown on plastic, collagen-I, collagen-IV, or gelatin and in either starving medium (0.1% serum) or growth medium (5% serum), and were subjected to normoxia or hypoxia (1% O(2)). Collagenases expression was determined by zymography. TIMP-1, -2 expression was assessed by Western blotting and RT-PCR. Depending on serum concentration human lung cells expressed pro-MMP-2 on all substrates. Hypoxia increased pro-MMP-2 expression, on collagen type I or type IV further via Erk1/2 and p38 MAP kinase signaling. MMP-9 was only expressed when cells were grown on collagen type IV and increased with serum concentration, and by hypoxia. TIMP-1 expression was only expressed when cells were grown on collagen type I and was significantly increased by hypoxia, while TIMP-2 expression was unchanged. We demonstrated that the hypoxia, ECM composition, and nutrition, rather than one of these conditions alone, modulate the expression and activity of collagenases and their inhibitors in primary human lung fibroblasts.  相似文献   

3.
Secreted protein acidic and rich in cysteine (SPARC) and thrombospondin-2 (TSP-2) are structurally unrelated matricellular proteins that have important roles in cell-extracellular matrix (ECM) interactions and tissue repair. SPARC-null mice exhibit accelerated wound closure, and TSP-2-null mice show an overall enhancement in wound healing. To assess potential compensation of one protein for the other, we examined cutaneous wound healing and fibrovascular invasion of subcutaneous sponges in SPARC-TSP-2 (ST) double-null and wild-type (WT) mice. Epidermal closure of cutaneous wounds was found to occur significantly faster in ST-double-null mice, compared with WT animals: histological analysis of dermal wound repair revealed significantly more mature phases of healing at 1, 4, 7, 10, and 14 days after wounding, and electron microscopy showed disrupted ECM at 14 days in these mice. ST-double-null dermal fibroblasts displayed accelerated migration, relative to WT fibroblasts, in a wounding assay in vitro, as well as enhanced contraction of native collagen gels. Zymography indicated that fibroblasts from ST-double-null mice also produced higher levels of matrix metalloproteinase (MMP)-2. These data are consistent with the increased fibrovascular invasion of subcutaneous sponge implants seen in the double-null mice. The generally accelerated wound healing of ST-double-null mice reflects that described for the single-null animals. Importantly, the absence of both proteins results in elevated MMP-2 levels. SPARC and TSP-2 therefore perform similar functions in the regulation of cutaneous wound healing, but fine-tuning with respect to ECM production and remodeling could account for the enhanced response seen in ST-double-null mice.  相似文献   

4.
Tissue remodeling is an important process in many inflammatory and fibrotic lung disorders. RBC may in these conditions interact with extracellular matrix (ECM). Fibroblasts can produce and secrete matrix components, matrix-degrading enzymes (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Imbalance in matrix synthesis/degradation may result in rearrangement of tissue architecture and lead to diseases such as emphysema or fibrosis. Neutrophil elastase (NE), a protease released by neutrophils, is known to activate MMP. We hypothesized that RBC can stimulate secretion of MMPs from human lung fibroblasts and that NE can augment this effect. Human fetal lung fibroblasts were cultured in floating collagen gels with or without RBC. After 4 days, the culture medium was analyzed with gelatin zymography, Western blot, and ELISA for MMP-1, -2, -3 and TIMP-1, -2. RBC augmented NE-induced fibroblast-mediated collagen gel contraction compared with NE alone (18.4+/-1.6%, 23.7+/-1.4% of initial gel area, respectively). A pan-MMP inhibitor (GM-6001) completely abolished the stimulating effect of NE. Gelatin zymography showed that RBC stimulated MMP-2 activity and that NE enhanced conversion to the active form. Addition of GM-6001 completely inhibited MMP-2 activity in controls, whereas it only partially altered RBC-induced MMP activity. Western blot confirmed the presence of MMP-1 and MMP-3 in fibroblasts stimulated with RBC, and ELISA confirmed increased concentrations of pro-MMP-1. We conclude that stimulation of MMP secretion by fibroblasts may explain the ability of RBC to augment fibroblast-mediated collagen gel contraction. This might be a potential mechanism by which hemorrhage in inflammatory conditions leads to ECM remodeling.  相似文献   

5.
Fibrosis is defined as a fibroproliferative or abnormal fibroblast activation-related disease. Deregulation of wound healing leads to hyperactivation of fibroblasts and excessive accumulation of extracellular matrix (ECM) proteins in the wound area, the pathological manifestation of fibrosis. The accumulation of excessive levels of collagen in the ECM depends on two factors: an increased rate of collagen synthesis and or decreased rate of collagen degradation by cellular proteolytic activities. The urokinase/tissue type plasminogen activator (uPA/tPA) and plasmin play significant roles in the cellular proteolytic degradation of ECM proteins and the maintenance of tissue homeostasis. The activities of uPA/tPA/plasmin and plasmin-dependent MMPs rely mostly on the activity of a potent inhibitor of uPA/tPA, plasminogen activator inhibitor-1 (PAI-1). Under normal physiologic conditions, PAI-1 controls the activities of uPA/tPA/plasmin/MMP proteolytic activities and thus maintains the tissue homeostasis. During wound healing, elevated levels of PAI-1 inhibit uPA/tPA/plasmin and plasmin-dependent MMP activities, and, thus, help expedite wound healing. In contrast to this scenario, under pathologic conditions, excessive PAI-1 contributes to excessive accumulation of collagen and other ECM protein in the wound area, and thus preserves scarring. While the level of PAI-1 is significantly elevated in fibrotic tissues, lack of PAI-1 protects different organs from fibrosis in response to injury-related profibrotic signals. Thus, PAI-1 is implicated in the pathology of fibrosis in different organs including the heart, lung, kidney, liver, and skin. Paradoxically, PAI-1 deficiency promotes spontaneous cardiac-selective fibrosis. In this review, we discuss the significance of PAI-1 in the pathogenesis of fibrosis in multiple organs.  相似文献   

6.
Chronic hypoxia is implicated in lung fibrosis, which is characterized by enhanced deposition of extracellular matrix (ECM) molecules. Transforming growth factor-beta (TGF-beta) plays a key role in fibroblast homeostasis and is involved in disease states characterized by excessive fibrosis, such as pulmonary fibrosis. In this study, we investigated if hypoxia modulates the effects of TGF-beta on the expression of gelatinases: matrix metalloproteinase (MMP)-2 and MMP-9, interstitial collagenases: MMP-1 and MMP-13, tissue inhibitors of MMP (TIMP), collagen type I and interleukin-6 (IL-6). Primary human lung fibroblasts, established from tissue biopsies, were cultivated under normoxia or hypoxia in the presence of TGF-beta1, TGF-beta2 or TGF-beta3. Gelatinases were assessed by gelatin zymography and collagenases, TIMP, collagen type I and IL-6 by ELISA. Under normoxia fibroblasts secreted MMP-2, collagenases, TIMP, collagen type I and IL-6. TGF-betas significantly decreased MMP-1 and increased TIMP-1, IL-6 and collagen type I. Hypoxia significantly enhanced MMP-2, and collagenases. Compared to normoxia, the combination of TGF-beta and hypoxia reduced MMP-1, and further amplified the level of TIMP, IL-6, and collagen type I. Thus, in human lung fibroblasts hypoxia significantly increases the TGF-betas-induced secretion of collagen type I and may be associated to the accumulation of ECM observed in lung fibrosis.  相似文献   

7.
The circulating enzyme, α2-antiplasmin cleaving enzyme (APCE), has very similar sequence homology and proteolytic specificity as fibroblast activation protein (FAP), a membrane-bound proteinase. FAP is expressed on activated fibroblasts associated with rapid tissue growth as in embryogenesis, wound healing, and epithelial-derived malignancies, but not in normal tissues. Its presence on stroma suggests that FAP functions to remodel extracellular matrix (ECM) during neoplastic growth. Precise biologic substrates have not been defined for FAP, although like APCE, it cleaves α2-antiplasmin to a derivative more easily cross-linked to fibrin. While FAP has been shown to cleave gelatin, evidence for cleavage of native collagen, the major ECM component, remains indistinct. We examined the potential proteolytic effects of FAP or APCE alone and in concert with selected matrix metalloproteinases (MMPs) on collagens I, III, and IV. SDS-PAGE analyses demonstrated that neither FAP nor APCE cleaves collagen I. Following collagen I cleavage by MMP-1, however, FAP or APCE digested collagen I into smaller peptides. These peptides were analogous to, yet different from, those produced by MMP-9 following MMP-1 cleavage. Amino-terminal sequencing and mass spectrometry analyses of digestion mixtures identified several peptide fragments within the sequences of the two collagen chains. The proteolytic synergy of APCE in the cleavage of collagen I and III was not observed with collagen IV. We conclude that FAP works in synchrony with other proteinases to cleave partially degraded or denatured collagen I and III as ECM is excavated, and that derivative peptides might function to regulate malignant cell growth and motility.  相似文献   

8.
Epidermal wound healing is a complex and highly coordinated process where several different cell types and molecules, such as growth factors and extracellular matrix (ECM) components, play an important role. Among the many proteins that are essential for the restoration of tissue integrity is the metalloproteinase (MMP) family. MMPs can act on ECM and non-ECM components affecting degradation and modulation of the ECM, growth-factor activation and cell–cell and cell–matrix signalling. MMPs are secreted by different cell types such as keratinocytes, fibroblasts and inflammatory cells at different stages and locations during wound healing, thereby regulating this process in a very coordinated and controlled way. In this article, we review the role of MMPs and their inhibitors (TIMPs), as well as the disintegrin and metalloproteinase with the thrombospondin motifs (ADAMs) family, in epithelial wound repair.  相似文献   

9.
Of the many processes that affect the outcome of wound repair, epidermal-dermal interactions are essential to extracellular matrix (ECM) remodeling and in particular, soluble factors released by keratinocytes are known to have a direct impact on the production of ECM by dermal fibroblasts. Aminopeptidase N (APN) has recently been proposed as a cell-surface receptor for stratifin and is responsible for the stratifin-mediated matrix metalloproteinase-1 (MMP-1) upregulation in fibroblasts. The present study examines whether modulation of APN gene expression has any impact on the fibroblast ECM gene expression profile. The result reveals that in the presence of keratinocyte-derived soluble factors, transient knockdown of APN in dermal fibroblasts affects the expression of key ECM components such as fibronectin, tenascin-C, MMP-1, MMP-3, and MMP-12. The regulatory effects of APN on fibronectin and selective MMPs appear to be associated with receptor-mediated signal transduction independently of its peptidase activity. On the contrary, inhibition of the APN enzymatic activity by bestatin significantly reduces the tenascin-C expression and enhances the contraction of fibroblast-populated collagen gel, suggesting an activity-dependent regulation of fibroblast contractility by APN. The overall effects of APN on the expression of fibronectin, tenascin-C, and MMPs in fibroblasts propose an important role for APN in the regulation of keratinocyte-mediated ECM remodeling and fibroblast contractile activity.  相似文献   

10.
Extracellular matrix components play a key role during the angiogenic process for a correct development of blood vessels: fibroblasts are the main cell type involved in the regulation of ECM protein production. In this study we characterize H. medicinalis fibroblasts and demonstrate that they take part to the regulation of angiogenesis that occurs during wound healing process. Massive proliferation and phenotypic modification are two distinctive markers of fibroblast activation. These cells, that are usually responsible for collagen production and function as an energy reservoir, are recruited during wound healing to form a collagen scaffold through a direct mechanic action and through secretion of specific proteoglycans. In addition we show that the activity of fibroblasts is modulated by EGF, a growth factor involved in wound healing in vertebrates. The formation of bundles of collagen fibrils by fibroblasts is fundamental for the development and migration of new blood vessels in lesioned areas during wound repair: administration of lovastatin in explanted leeches affects fibroblasts, damages collagen "scaffold" and indirectly causes the reduction of neo-capillary formation.  相似文献   

11.
Extracellular matrix alters PDGF regulation of fibroblast integrins   总被引:11,自引:3,他引:8       下载免费PDF全文
  相似文献   

12.
13.
Immobilized patients, diabetics, and the elderly suffer from impaired wound healing. The 43-amino acid angiogenic peptide thymosin beta4 (Tbeta4) has previously been found to accelerate dermal wound repair in rats, aged mice, and db/db diabetic mice. It also promotes corneal repair in both normal rats and mice. Because proteinases are important in wound repair, we hypothesized that Tbeta4 may regulate matrix metalloproteinase (MMP) expression in cells that are involved in wound repair. Analysis by RT-PCR of whole excised mouse dermal wounds on days 1, 2, and 3 after wounding showed that Tbeta4 increased several metalloproteinases, including MMP-2 and -9 expression by several-fold over control on day 2 after wounding. We further analyzed the metalloproteinases secreted in response to exogenous Tbeta4 by cells normally present in the wound. Western blot analysis of cultured keratinocytes, endothelial cells, and fibroblasts that were treated with increasing concentrations of Tbeta4 showed increases in the levels of MMP-1, -2, and -9 in a cell-specific manner. Tbeta4 also enhanced the secretion of MMP-1 and MMP-9 by activated monocytes. The central actin-binding domain, amino acids 17-23, had all of the activity for metalloproteinase induction. We conclude that part of the wound healing activity of Tbeta4 resides in its ability to increase proteinase activity via its central actin-binding domain. Thus, Tbeta4 may play a pivotal role in extracellular matrix remodeling during wound repair.  相似文献   

14.
Early gestation mammalian fetuses possess the remarkable ability to heal cutaneous wounds in a scarless fashion. Over the past 20 years, scientists have been working to decipher the mechanisms underlying this phenomenon. Much of the research to date has focused on fetal correlates of adult wound healing that promote fibrosis and granulation tissue formation. It is important to remember, however, that wound repair consists of a balance between tissue synthesis, deposition, and degradation. Relatively little attention has been paid to this latter component of the fetal wound healing process.In this study, we examined the ontogeny of ten matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in nonwounded fetal rat skin and fibroblasts as a function of gestational age. We used a semiquantitative polymerase chain reaction protocol to analyze these important enzymes at time points that represent both the scarless and scar-forming periods of rat gestation. The enzymes evaluated were collagenase-1 (MMP-1), stromelysin-1 (MMP-3), gelatinase A (MMP-2), gelatinase B (MMP-9), membrane-type matrix metalloproteinases (MT-MMPs) 1, 2, and 3, and TIMPs 1, 2, and 3.Results demonstrated marked increases in gene expression for MMP-1, MMP-3 and MMP-9 that correlated with the onset of scar formation in nonwounded fetal skin. Similar results were noted in terms of MMP-9 gene expression in fetal fibroblasts. These results suggest that differences in the expression of these matrix metalloproteinases may have a role in the scarless wound healing phenotype observed early in fetal rat gestation. Furthermore, our data suggest that the differential expression of gelatinase B (MMP-9) may be mediated by the fetal fibroblasts themselves.  相似文献   

15.
Hyaluronic acid (HA) is a component of the extracellular matrix (ECM) in most vertebrate tissues and is thought to play a significant role during development, wound healing, and regeneration. In vitro studies have shown that HA enhances muscle progenitor cell recruitment and inhibits premature myotube fusion, implicating a role for this glycosaminoglycan in functional repair. However, the spatiotemporal distribution of HA during muscle growth and repair was unknown. We hypothesized that inducing hypertrophy via synergist ablation would increase the expression of HA and the HA synthases (HAS1-HAS3). We found that HA and HAS1-HAS3 were significantly upregulated within the plantaris muscle in response to Achilles tenectomy. HA concentration significantly increased 2.8-fold after 2 days but decreased towards levels comparable to age-matched controls by 14 days. Using immunohistochemistry, we found the colocalization of HAS1-HAS3 with macrophages, blood vessel epithelia, and fibroblasts varied in response to time and/or tenectomy. At the level of gene expression, only HAS1 and HAS2 significantly increased with respect to both time and tenectomy. The profiles of additional genes that influence ECM composition during muscle repair, tenascin-C, type I collagen, the HA-degrading hyaluronidases (Hyal) and matrix metalloproteinases (MMP) were also investigated. Hyal1 and Hyal2 were highly expressed in skeletal muscle but did not change after tenectomy; however, indicators of hypertrophy, MMP-2 and MMP-14, were significantly upregulated from 2 to 14 days. These results indicate that HA levels dynamically change in response to a hypertrophic stimulus and various cells may participate in this mechanism of skeletal muscle adaptation.  相似文献   

16.
We investigated the effect of synthetic antimicrobial decapeptide KSL-W (KKVVFWVKFK) on normal human gingival fibroblast growth, migration, collagen gel contraction, and α-smooth muscle actin protein expression. Results show that in addition to promoting fibroblast adhesion by increasing F-actin production, peptide KSL-W promoted cell growth by increasing the S and G2/M cell cycle phases, and enhanced the secretion of metalloproteinase (MMP)-1 and MMP-2 by upregulating MMP inhibitors, such as tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 in fibroblasts. An in vitro wound healing assay confirmed that peptide KSL-W promoted fibroblast migration and contraction of a collagen gel matrix. We also demonstrated a high expression of α-smooth muscle actin by gingival fibroblasts being exposed to KSL-W. This work shows that peptide KSL-W enhances gingival fibroblast growth, migration, and metalloproteinase secretion, and the expression of α-smooth muscle actin, thus promoting wound healing.  相似文献   

17.
The restoration of functional connective tissue is a major goal of the wound healing process. This regenerative event requires the deposition and accumulation of collagenous and noncollagenous matrix molecules as well as the remodelling of extracellular matrix (ECM) by matrix metalloproteinases (MMPs). In this study, we have utilized substrate gel electrophoresis, radiometric enzyme assays, and Western blot analyses to determine the temporal pattern of appearance and activity of active and latent MMPs and their inhibitors during the entire healing process in a partial thickness wound model. Through the use of substrate gel electrophoresis, we studied the appearance of proteolytic bands whose molecular weight was consistent with their being members of the MMP family of enzymes. Proteolytic bands whose molecular weight is consistent with both the active and latent forms of MMP-2 (72 kDa, Type IV gelatinase) were detected in wound fluid of days 1–7 after wounding. The number of active MMP-2 species detectable in wound fluid was greatest during days 4–6 after wounding. The most prominent proteolytic band detected each day migrated with a molecular weight consistent with it being the latent form of MMP-9 (92 kDa, Type V pro-collagenase). In contrast to MMP-2, the active form of this enzyme was never detected. The presence of MMP-1 (interstitial collagenase) was detected by immunoblot in the wound fluid from days 1–6 post-injury. Using a radiometric enzyme assay for collagenase inhibitory activity we have also determined the time course of activity of endogenous matrix metalloproteinase inhibitors. We have correlated these data to the known cellular events occurring in the wound during this time period as well. This study establishes a prototypical pattern of MMP appearance in normal wound healing. It may also provide potential intervention sites for the therapeutic use of inhibitors of aberrant MMP activities which characterize chronic wounds. © 1996 Wiley-Liss, Inc.  相似文献   

18.
Glycyl-histidyl-lysine-Cu2+ (GHK-Cu) is a tripeptide-copper complex known to be a potent wound healing agent. We previously showed its ability to stimulate in vitro and in vivo the synthesis of extracellular matrix components. The aim of this study was to determine the effects of GHK-Cu on MMP-2 synthesis by dermal fibroblasts in culture. We showed that GHK-Cu increased MMP-2 levels in conditioned media of cultured fibroblasts. This effect was reproduced by copper ions but not by the tripeptide GHK alone. This stimulation was accompanied by an increase of MMP-2 mRNA level. We also showed that GHK-Cu increased the secretion of the tissue inhibitors of metalloproteinases, TIMP-1 and TIMP-2. Taken together, our results underline that GHK-Cu is not only an activator of connective tissue production but also of the remodeling of the extracellular matrix. It is able to modulate MMP expression by acting directly on wound fibroblasts.  相似文献   

19.
We have shown that osteopontin (OPN), an extracellular matrix protein, plays an important role in post myocardial infarction (MI) remodeling by promoting collagen synthesis and accumulation. Interleukin-1beta (IL-1beta), increased in the heart following MI, increases matrix metalloproteinase (MMP) activity in cardiac fibroblasts in vitro. Here, we show that OPN alone has no effect on MMP activity or expression. However, it reduces IL-1beta-stimulated increases in MMP activity and expression in adult rat cardiac fibroblasts. Pretreatment with bovine serum albumin had no effect on MMP activity or protein content, whereas GRGDS (glycine-arginine-glycine-aspartic acid-serine)-pentapeptide (which interrupts binding of RGD-containing proteins to cell surface integrins) and monoclonal antibody m7E3 (a rat beta3 integrins antagonist) inhibited the effects of OPN. Inhibition of PKC using chelerythrine inhibited the activities of both MMP-2 and MMP-9. Stimulation of cells using IL-1beta increased phosphorylation and translocation of PKC to membrane fractions, which was inhibited by OPN. OPN inhibited IL-1beta-stimulated increases in translocation of PKC-zeta from cytosolic to membrane fractions. Furthermore, the levels of phospho-PKC-zeta were lower in the cytosolic fractions of OPN knock-out mice hearts as compared with wild type 6 days post-MI. Inhibition of PKC-zeta using PKC-zeta pseudosubstrate inhibited IL-1beta-stimulated increases in MMP-2 and MMP-9 activities. These observations suggest that OPN, acting via beta3 integrins, inhibits IL-1beta-stimulated increases in MMP-2 and MMP-9 activity, at least in part, via the involvement of PKC-zeta. Thus, OPN may play a key role in collagen deposition during myocardial remodeling following MI by modulating cytokine-stimulated MMP activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号