首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesenchymal stem cells (MSCs) have been shown to be perivascular, occupying a prime location for regulating vessel stability. Here, we focused on the MSC‐contribution of key regulators of the perivascular niche, the matrix metalloproteinases (MMPs) and their inhibitors, the TIMPs. Despite secretion of active forms of MMPs by MSCs, MMP enzyme activity was not detected in MSC‐conditioned medium (MSC‐CM) due to TIMP‐mediated inhibition. By means of bifunctional‐crosslinking to probe endogenous MMP:TIMP interactions, we showed MMP‐2‐inhibition by TIMP‐2. MSCs also inhibited high levels of exogenous MMP‐2 and MMP‐9 through TIMP‐2 and TIMP‐1, respectively. Furthermore, MSC‐CM protected vascular matrix molecules and endothelial cell structures from MMP‐induced disruption. MSCs remained matrix‐protective when exposed to pro‐inflammatory cytokines and hypoxia, countering these stresses with increased TIMP‐1 expression and augmented MMP‐inhibition. Thus, MSCs are revealed as robust sources of TIMP‐mediated MMP‐inhibition, capable of protecting the perivascular niche from high levels of MMPs even under pathological conditions. J. Cell. Physiol. 226: 385–396, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Matrix metalloproteinases (MMPs) are secreted endopeptidases that play an essential role in remodeling the extracellular matrix (ECM). MMPs are primarily active during development, when the majority of ECM remodeling events occurs. In adults, elevated MMP activity has been observed in many pathological conditions such as cancer and osteoarthritis. The proteolytic activity of MMPs is controlled by their natural inhibitors - the tissue inhibitor of metalloproteinases (TIMPs). In addition to blocking MMP-mediated proteolysis, TIMPs have a number of MMP-independent functions including binding to cell surface proteins thereby stimulating signaling cascades. TIMP-2, the most studied member of the family, can both inhibit and activate MMPs directly, as well as inhibit MMP activity indirectly by upregulating expression of RECK, a membrane anchored MMP regulator. While TIMP-2 has been shown to play important roles in breast cancer, we describe how the MMP-independent effects of TIMP-2 can modulate the invasiveness of MCF-7, T47D and MDA-MB-231 breast cancer cells. Using an ALA + TIMP-2 mutant which is devoid of MMP inhibition, but still capable of initiating specific cell signaling cascades, we show that TIMP-2 can differentially affect MMP activity and cellular invasiveness in both an MMP dependent and independent manner. More specifically, MMP activity and invasiveness is increased with the addition of exogenous TIMP-2 in poorly invasive cell lines whereas it is decreased in highly invasive cells lines (MDA-MB-231). Conversely, the addition of ALA + TIMP-2 resulted in decreased invasiveness regardless of cell line.  相似文献   

3.
Endothelial cell (EC)-derived microparticles (MPs) are small membrane vesicles associated with various vascular pathologies. Here, we investigated the role of MPs in matrix remodeling by analyzing their interactions with the extracellular matrix. MPs were shown to bind preferentially to surfaces coated with matrix molecules, and MPs bound fibronectin via integrin α(V) . MPs isolated from EC-conditioned medium (Sup) were significantly enriched for matrix-altering proteases, including matrix metalloproteinases (MMPs). MPs lacked the MMP inhibitors TIMP-1 and TIMP-2 found in the Sup and, while Sup strongly inhibited MMP activities but MPs did not. In fact, MPs were shown to bind and activate both endogenous and exogenous proMMP-2. Taken together, these results indicate that MPs interact with extracellular matrices, where they localize and activate MMP-2 to modify the surrounding matrix molecules. These findings provide insights into the cellular mechanisms of vascular matrix remodeling and identify new targets of vascular pathologies.  相似文献   

4.
There is strong evidence that matrix metalloproteinases (MMPs) play a crucial role during osteogenesis and bone remodelling. Their synthesis by osteoblasts has been demonstrated during osteoid degradation prior to resorption of mineralised matrix by osteoclasts and their activities are regulated by tissue inhibitors of metalloproteinases (TIMPs). For this study we developed and utilised specific polyclonal antibodies to assess the presence of collagenase (MMP13), stromelysin 1 (MMP3), gelatinase A (MMP2), gelatinase B (MMP9) and TIMP-2 in both freshly isolated neonatal mouse calvariae and tissues cultured with and without bone-resorbing agents. Monensin was added towards the end of the culture period in order to promote intracellular accumulation of proteins and facilitate antigen detection. In addition, bone sections were stained for the osteoclast marker, tartrate-resistant acid phosphatase (TRAP). In uncultured tissues the bone surfaces had isolated foci of collagenase staining, and cartilage matrix stained for gelatinase B (MMP9) and TIMP-2. Calvariae cultured for as little as 3 h with monensin revealed intracellular staining for MMPs and TIMP-2 in mesenchymal tissues, as well as in cells lining the bone plates. The addition of cytokines to stimulate bone resorption resulted in pronounced TRAP activity along bone surfaces, indicating active resorption. There was a marked upregulation of enzyme synthesis, with matrix staining for collagenase and gelatinase B observed in regions of eroded bone. Increased staining for TIMP-2 was also observed in association with increased synthesis of MMPs. The new antibodies to murine MMPs should prove valuable in future studies of matrix degradation.  相似文献   

5.
Reactive oxygen species (ROS) have been implicated in the regulation of matrix metalloproteinases (MMPs). The xanthine/xanthine oxidase (X/XO) reaction has been widely used as a source of exogenous ROS in studying MMPs, but commercial XO has also been known to be contaminated by proteolytic activity, and MMPs are protease sensitive substrate. We have investigated the activation of proMMP-2 by X/XO in cultured vascular smooth muscle cells (SMCs). SMCs were incubated with X/XO (unpurified or purified) or XO alone for 24h. X/XO activated proMMP-2 in a dose-dependent manner. A similar profile was observed using XO. Purified XO produced lower amounts of active MMP-2 compared to unpurified XO. EPR study showed that X/XO, not XO itself, produced superoxide anion, which was completely scavenged by SOD. However, X/XO-induced proMMP-2 activation could not be inhibited by combination of SOD and catalase. Incubation with XO either in cell-free conditioned media or in cells resulted in similar amounts of active MMP-2, suggesting that membrane-type-MMPs were not involved in proMMP-2 activation. This was further confirmed by the lack of inhibitory effect of hydroxamate MMP inhibitor, BB1101. Aprotinin blocked unpurified XO-induced proMMP-2 activation in a dose-dependent manner, demonstrating the proteolytic activity contained in XO is essential. We conclude that proteolytic activity contained in XO, rather the ROS derived from X/XO, is responsible for proMMP-2 activation in cultured SMCs. The results also suggest that caution needs to be taken when interpreting the reported results on activation of MMPs where X/XO had been used as an "authentic" source of superoxide anion.  相似文献   

6.
The matrix metalloproteinases (MMPs) constitute a family of secreted/cell-surface-anchored multidomain zinc endopeptidases, all of which exhibit a catalytic domain of a common metzincin-like topology, and which are involved in degradation of the extracellular matrix but also in a number of other biologic processes. Normally, the proteolytic activity of the MMPs is precisely regulated by their main endogenous protein inhibitors, in particular the tissue inhibitors of metalloproteinases (TIMPs). Disruption of this balance results in serious diseases such as arthritis, tumor growth, and tumor metastasis, rendering the MMPs attractive targets for inhibition therapy. Knowledge of their tertiary structures is crucial for a full understanding of their functional properties and their associations with dysfunctions. Since the reports of the first atomic structures of MMPs and TIMPs in 1994, considerable structural information has become available about both of these families of substances. Many of the MMP structures have been determined as complexes with synthetic inhibitors, facilitating knowledge-based drug design. This review focuses on the currently available 3D structural information about MMPs and TIMPs.  相似文献   

7.
Matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs) need to be finely modulated in physiological processes. However, oxygen tension influences MMP/TIMP balances, potentially leading to pathology. Intriguingly, new 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNDs) have proven effective in abrogating hypoxia-dependent dysregulation of MMP and TIMP secretion by single cell populations. This work explored the effects of different oxygen tensions and dextran-shelled OLNDs on MMP/TIMP production in an organized and multicellular tissue (term human placenta). Chorionic villous explants from normal third-trimester pregnancies were incubated with/without OLNDs in 3 or 20% O2. Explants cultured at higher oxygen tension released constitutive proMMP-2, proMMP-9, TIMP-1, and TIMP-2. Hypoxia significantly altered MMP-2/TIMP-2 and MMP-9/TIMP-1 ratios enhancing TIMP-2 and reducing proMMP-2, proMMP-9, and TIMP-1 levels. Intriguingly, OLNDs effectively counteracted the effects of low oxygen tension. Collectively, these data support OLND potential as innovative, nonconventional, and cost-effective tools to counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human tissues.  相似文献   

8.
The matrix metalloproteinases (MMPs) belong to a growing family of Zn2+-dependent endopeptidases, secreted or membrane-bound (MT-MMP), that regulate or degrade by proteolytic cleavage protein components of the extracellular matrix, cytokines, chemokines, cell adhesion molecules and a variety of membrane receptors. MMP activity is counterbalanced by their physiological inhibitors, the tissue inhibitors of MMPs (TIMPs), a family of 4 secreted multifunctional proteins that have growth promoting activities. In physiological conditions MMP activity is tightly regulated and altered MMP regulation is associated with pathological processes including inflammation, cell proliferation, cell death and tissue remodeling. The MMP/TIMP system is involved in the development and function of cells of the immune system by promoting their differentiation, activation, migration across basement membranes and tissues. In the last years, data has accumulated indicating that the MMP/TIMP system is expressed in the nervous system where it regulates neuro-immune interactions and plays a major role in pathophysiological processes. In this review, we present recent in vivo and in vitro studies that highlight the contribution of the MMP/TIMP system to various diseases of the nervous system, involving blood brain barrier breakdown, neuroinflammation, glial reactivity, neuronal death, reactive plasticity, and to developmental and physiological processes including cell migration, axonal sprouting and neuronal plasticity. This review also alludes to the beneficial effects of synthetic MMP inhibitors in different animal models of neuropathology. In all, a further understanding of the role of MMPs and TIMPs in the nervous system should contribute to unravel mechanisms of neuronal plasticity and pathology and set the basis of new therapeutic strategies in nervous system disorders based on the development of synthetic MMP inhibitors.  相似文献   

9.
The matrix metalloproteinases (MMPs) constitute a family of multidomain zinc endopeptidases with a metzincin-like catalytic domain, which are involved in extracellular matrix degradation but also in a number of other important biological processes. Under healthy conditions, their proteolytic activity is precisely regulated by their main endogenous protein inhibitors, the tissue inhibitors of metalloproteinases. Disruption of this balance results in pathophysiological processes such as arthritis, tumor growth and metastasis, rendering the MMPs attractive targets for inhibition therapy. Knowledge of their tertiary structures is crucial for a full understanding of their functional properties and for rational drug design. Since the first appearance of atomic MMP structures in 1994, a large amount of structural information has become available on the catalytic domains of MMPs and their substrate specificity, interaction with synthetic inhibitors and the TIMPs, the domain organization, and on complex formation with other proteins. This review will outline our current structural knowledge of the MMPs and the TIMPs.  相似文献   

10.
Maskos K 《Biochimie》2005,87(3-4):249-263
Matrix Metalloproteinases (MMPs) are a family of multidomain zinc endopeptidases that function in the extracellular space or attached to the cell membrane. Their proteolytic activity is controlled by the presence of endogenous inhibitors, the tissue inhibitors of matrix metalloproteinases (TIMPs), alpha-macroglobulin and others. Disruption of the proteinase-inhibitor balance is observed in serious diseases such as arthritis, tumor growth and metastasis, rendering the MMPs attractive targets for drug intervention by pharmacological inhibitors. The determination of MMP structures is of critical importance in order to understand their substrate preferences, dimerization events, and their association with matrix components and inhibitors. Thus, MMP structures may contribute significantly to the development of specific MMP inhibitors, which should allow precise control of individual members of the MMP family without affecting all members or the closely related metalloproteinases such as ADAMs and ADAMTSs.  相似文献   

11.
12.
Proteolysis of vascular basement membranes and surrounding extracellular matrix is a critical early step in neovascularization. It requires alteration of the balance between matrix metalloproteinases (MMPs) and proteins that bind to and inactivate MMPs, tissue inhibitors of metalloproteinases (TIMPs). TIMP-1 has been demonstrated to inhibit neovascularization in chick chorioallantoic membranes. However, TIMP-1 has also been shown to either promote or inhibit cell proliferation and migration in different settings. To determine whether genetic alteration of the MMP/TIMP-1 ratio would alter retinal neovascularization, we crossed mice that express vascular endothelial growth factor (VEGF) in photoreceptors with TIMP-1-deficient mice or mice that overexpress TIMP-1. Compared to VEGF transgene-positive/TIMP-1-sufficient mice, VEGF transgene-positive/TIMP-1-deficient mice showed smaller neovascular lesions. There was also no difference between the two groups of mice in the appearance of the neovascularization by light or electron microscopy. Compound VEGF/TIMP-1 transgenic mice had increased expression of both VEGF and TIMP-1 in the retina, and had more neovascularization than mice that had increased expression of VEGF alone. These gain- and loss-of-function data suggest that alteration of the TIMP-1/MMP ratio modulates retinal neovascularization in a complex manner and not simply by altering the proteolytic activity and thereby invasiveness of endothelial cells.  相似文献   

13.
The matrix metalloproteinases (MMPs) constitute a family of multidomain zinc endopeptidases which contain a catalytic domain with a common metzincin-like topology. The MMPs are involved not only in extracellular matrix degradation, but also in a number of other biological processes. Normally, their proteolytic activity is regulated precisely by their main endogenous protein inhibitors, in particular the tissue inhibitors of metalloproteinases (TIMPs). Disruption of this balance results in serious diseases, such as arthritis, tumour growth and metastasis, rendering the MMPs attractive targets for inhibition therapy. Knowledge of their tertiary structures is crucial for a full understanding of their functional properties. Since the first publication of atomic MMP structures in 1994, much more structural information has become available on details of the catalytic domain, on its interaction with synthetic and protein inhibitors, on domain organization and on the formation of complexes with other proteins. This review will outline our current knowledge of MMP structure.  相似文献   

14.
Matrix metalloproteinases (MMPs) and their endogenous inhibitors TIMPs (tissue inhibitors of MMPs), are two protein families that work together to remodel the extracellular matrix (ECM). TIMPs serve not only to inhibit MMP activity, but also aid in the activation of MMPs that are secreted as inactive zymogens. Xenopus laevis metamorphosis is an ideal model for studying MMP and TIMP expression levels because all tissues are remodeled under the control of one molecule, thyroid hormone. Here, using RT-PCR analysis, we examine the metamorphic RNA levels of two membrane-type MMPs (MT1-MMP, MT3-MMP), two TIMPs (TIMP-2, TIMP-3) and a potent gelatinase (Gel-A) that can be activated by the combinatory activity of a MT-MMP and a TIMP. In the metamorphic tail and intestine the RNA levels of TIMP-2 and MT1-MMP mirror each other, and closely resemble that of Gel-A as all three are elevated during periods of cell death and proliferation. Conversely, MT3-MMP and TIMP-3 do not have similar RNA level patterns nor do they mimic the RNA levels of the other genes examined. Intriguingly, TIMP-3, which has been shown to have anti-apoptotic activity, is found at low levels in tissues during periods of apoptosis.  相似文献   

15.
16.
17.
The balance between matrix metalloproteinases (MMPs) and their natural inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), plays a critical role in cardiac remodeling. Although a number of studies have characterized the pathophysiological role of MMPs in the heart, very little is known with respect to the role of TIMPs in the heart. To delineate the role of TIMPs in the heart we examined the effects of adenovirus-mediated overexpression of TIMP-1, -2, -3, and -4 in cardiac fibroblasts. Infection of cardiac fibroblasts with adenoviral constructs containing human recombinant TIMP (AdTIMP-1, -2, -3, and -4) provoked a significant (P < 0.0001) 1.3-fold in increase in bromodeoxyuridine (BrdU) incorporation. Similarly, treatment of cardiac fibroblasts with AdTIMP-1-, -2-, -3-, and -4-conditioned medium led to a 1.2-fold increase in BrdU incorporation (P < 0.0001) that was abolished by pretreatment with anti-TIMP-1, -2, -3, and -4 antibodies. The effects of TIMPs were not mimicked by treating the cells with RS-130830, a broad-based MMP inhibitor, suggesting that the effects of TIMPs were independent of their ability to inhibit MMPs. Infection with AdTIMP-1, -2, -3, and -4 led to a significant increase in alpha-smooth muscle actin staining, consistent with TIMP-induced phenotypic differentiation into myofibroblasts. Finally, infection with AdTIMP-2 resulted in a significant increase in collagen synthesis, whereas infection with AdTIMP-3 resulted in a significant increase in fibroblast apoptosis. TIMPs exert overlapping as well as diverse effects on isolated cardiac fibroblasts. The observation that TIMPs stimulate fibroblast proliferation as well as phenotypic differentiation into myofibroblasts suggests that TIMPs may play an important role in tissue repair in the heart that extends beyond their traditional role as MMP inhibitors.  相似文献   

18.
Bone-marrow-derived mesenchymal stem cells (MSCs) are candidates for regeneration applications in musculoskeletal tissue such as cartilage and bone. Various soluble factors in the form of growth factors and cytokines have been widely studied for directing the chondrogenic and osteogenic differentiation of MSCs, but little is known about the way that the composition of extracellular matrix (ECM) components in three-dimensional microenvironments plays a role in regulating the differentiation of MSCs. To define whether ECM components influence the regulation of osteogenic and chondrogenic differentiation by MSCs, we encapsulated MSCs in poly-(ethylene glycol)-based (PEG-based) hydrogels containing exogenous type I collagen, type II collagen, or hyaluronic acids (HA) and cultured them for up to 6 weeks in chondrogenic medium containing transforming growth factor-β1 (10 ng/ml) or osteogenic medium. Actin cytoskeleton organization and cellular morphology were strongly dependent on which ECM components were added to the PEG-based hydrogels. Additionally, chondrogenic differentiation of MSCs was marginally enhanced in collagen-matrix-based hydrogels, whereas osteogenic differentiation, as measured by calcium accumulation, was induced in HA-containing hydrogels. Thus, the microenvironments created by exogenous ECM components seem to modulate the fate of MSC differentiation.  相似文献   

19.
20.
The ratio of matrix metalloproteinases (MMPs) to the tissue inhibitors of metalloproteinases (TIMPs) in wounded tissues strictly control the protease activity of MMPs, and therefore regulate the progress of wound closure, tissue regeneration and scar formation. Some amphibians (i.e. axolotl/newt) demonstrate complete regeneration of missing or wounded digits and even limbs; MMPs play a critical role during amphibian regeneration. Conversely, mammalian wound healing re-establishes tissue integrity, but at the expense of scar tissue formation. The differences between amphibian regeneration and mammalian wound healing can be attributed to the greater ratio of MMPs to TIMPs in amphibian tissue. Previous studies have demonstrated the ability of MMP1 to effectively promote skeletal muscle regeneration by favoring extracellular matrix (ECM) remodeling to enhance cell proliferation and migration. In this study, MMP1 was administered to the digits amputated at the mid-second phalanx of adult mice to observe its effect on digit regeneration. Results indicated that the regeneration of soft tissue and the rate of wound closure were significantly improved by MMP1 administration, but the elongation of the skeletal tissue was insignificantly affected. During digit regeneration, more mutipotent progenitor cells, capillary vasculature and neuromuscular-related tissues were observed in MMP1 treated tissues; moreover, there was less fibrotic tissue formed in treated digits. In summary, MMP1 was found to be effective in promoting wound healing in amputated digits of adult mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号