首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dysregulation of immune responses to environmental antigens by the intestine leads to the chronic inflammatory disease, inflammatory bowel disease (IBD). Recent studies have thus sought to identify a dietary component that can inhibit lipopolysaccharide (LPS)-induced nuclear factor-kappa beta (NF-κB) signaling to ameliorate IBD. This study assessed if the lactic acid bacteria (LAB) from kimchi, suppresses the expression of tumor necrosis factor-alpha (TNF-α) in peritoneal macrophages induced by LPS. Leuconostoc lactis EJ-1, an isolate from LAB, reduced the expression of interleukin-6 (IL-6) and IL-1β in peritoneal macrophages induced by LPS. The study further tested whether EJ-1 alleviates colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in mice. TNBS significantly increased myeloperoxidase (MPO) expression, macroscopic colitis scores, and colon shortening. Oral administration of L. lactis EJ-1 resulted in an inhibited in TNBS-induced loss in body weight, colon shortening, MPO activity, and NF-κB and inducible nitric oxide synthase expression; it also led to a marked reduction in cyclooxygenase-2 expression. L. lactis EJ-1 also inhibited the TNBS-induced expression of TNF-α, IL-1β, and IL-6; however, it induced the expression of IL-10. The M2 macrophage markers arginase I, IL-10, and CD206 were elevated by EJ-1. Collectively, these results suggest that EJ-1 inhibits the NF-κB signaling and polarizes M1- to M2-macrophage transition, which help in ameliorating colitis.  相似文献   

2.
Adipose derived mesenchymal stem cells (ASCs) transplantation is a novel immunomodulatory therapeutic tool to ameliorate the symptom of inflammatory bowel disease (IBD). The objective of this study was to investigate the therapeutic effects of combined sufasalazine and ASCs therapy in a rat model of IBD. After induction of colitis in rats, ASCs were cultured and intraperitoneally injected (3 × 106cells/kg) into the rats on Days 1 and 5 after inducing colitis, in conjunction with daily oral administration of low dose of sulfasalazine (30 mg/kg). The regenerative effects of combination of ASCs and sulfasalazine on ulcerative colitis were assessed by measuring body weight, colonic weight/length ratio, disease activity index, macroscopic scores, histopathological examinations, cytokine, and inflammation markers profiles. In addition, western blot analysis was used to assess the levels of nuclear factor-kappa B (NF-κB) and apoptosis related proteins in colitis tissues. Simultaneous treatment with ASCs and sulfasalazine was associated with significant amelioration of disease activity index, macroscopic and microscopic colitis scores, as well as inhibition of the proinflammatory cytokines in trinitrobenzene sulfonic acid (TNBS)-induced colitis. Moreover, combined ASCs and sulfasalazine therapy effectively inhibited the NF-κB signaling pathway, reduced the expression of Bax and prevented the loss of Bcl-2 proteins in colon tissue of the rats with TNBS-induced colitis. Furthermore, combined treatment with ASCs and sulfasalazine shifted inflammatory M1 to anti-inflammatory M2 macrophages by decreasing the levels of MCP1, CXCL9 and increasing IL-10, Arg-1 levels. In conclusion, combination of ASCs with conventional IBD therapy is potentially a much more powerful strategy to slow the progression of colitis via reducing inflammatory and apoptotic markers than either therapy alone.  相似文献   

3.
Prostaglandin E2 plays important roles in the maintenance of colonic homeostasis. The recently identified prostaglandin E receptor (EP) 4–associated protein (EPRAP) is essential for an anti-inflammatory function of EP4 signaling in macrophages in vitro. To investigate the in vivo roles of EPRAP, we examined the effects of EPRAP on colitis and colitis-associated tumorigenesis. In mice, EPRAP deficiency exacerbated colitis induced by dextran sodium sulfate (DSS) treatment. Wild-type (WT) or EPRAP-deficient recipients transplanted with EPRAP-deficient bone marrow developed more severe DSS-induced colitis than WT or EPRAP-deficient recipients of WT bone marrow. In the context of colitis-associated tumorigenesis, both systemic EPRAP null mutation and EPRAP-deficiency in the bone marrow enhanced intestinal polyp formation induced by azoxymethane (AOM)/DSS treatment. Administration of an EP4-selective agonist, ONO-AE1-329, ameliorated DSS-induced colitis in WT, but not in EPRAP-deficient mice. EPRAP deficiency increased the levels of the phosphorylated forms of p105, MEK, and ERK, resulting in activation of stromal macrophages in DSS-induced colitis. Macrophages of DSS-treated EPRAP-deficient mice exhibited a marked increase in the expression of pro-inflammatory genes, relative to WT mice. By contrast, forced expression of EPRAP in macrophages ameliorated DSS-induced colitis and AOM/DSS-induced intestinal polyp formation. These data suggest that EPRAP in macrophages functions crucially in suppressing colonic inflammation. Consistently, EPRAP-positive macrophages were also accumulated in the colonic stroma of ulcerative colitis patients. Thus, EPRAP may be a potential therapeutic target for inflammatory bowel disease and associated intestinal tumorigenesis.  相似文献   

4.
5.
Inflammatory bowel disease (IBD) results from dysregulation of intestinal mucosal immune responses to microflora in genetically susceptible hosts. A major challenge for IBD research is to develop new strategies for treating this disease. Berberine, an alkaloid derived from plants, is an alternative medicine for treating bacterial diarrhea and intestinal parasite infections. Recent studies suggest that berberine exerts several other beneficial effects, including inducing anti-inflammatory responses. This study determined the effect of berberine on treating dextran sulfate sodium (DSS)-induced intestinal injury and colitis in mice. Berberine was administered through gavage to mice with established DSS-induced intestinal injury and colitis. Clinical parameters, intestinal integrity, proinflammatory cytokine production, and signaling pathways in colonic macrophages and epithelial cells were determined. Berberine ameliorated DSS-induced body weight loss, myeloperoxidase activity, shortening of the colon, injury, and inflammation scores. DSS-upregulated proinflammatory cytokine levels in the colon, including TNF, IFN-γ, KC, and IL-17 were reduced by berberine. Berberine decreased DSS-induced disruption of barrier function and apoptosis in the colon epithelium. Furthermore, berberine inhibited proinflammatory cytokine production in colonic macrophages and epithelial cells in DSS-treated mice and promoted apoptosis of colonic macrophages. Activation of signaling pathways involved in stimulation of proinflammatory cytokine production, including MAPK and NF-κB, in colonic macrophages and epithelial cells from DSS-treated mice was decreased by berberine. In summary, berberine promotes recovery of DSS-induced colitis and exerts inhibitory effects on proinflammatory responses in colonic macrophages and epithelial cells. Thus berberine may represent a new therapeutic approach for treating gastrointestinal inflammatory disorders.  相似文献   

6.
《Cellular signalling》2014,26(10):2249-2258
Sphingosine 1-phosphate (S1P) has been implicated in anti-atherogenic properties of high-density lipoproteins. However, the roles and signaling of S1P in macrophages, the main contributor to atherosclerosis, have not been well studied. Furthermore, pro-inflammatory M1 and anti-inflammatory M2 macrophage phenotypes may influence the development of atherosclerosis. Therefore, we investigated the effects of S1P on macrophage phenotypes, especially on M2 polarization and its signaling in relation to the anti-atherogenic properties of S1P. It was found that S1P induced anti-inflammatory M2 polarization via IL-4 secretion and its signaling, and induced IL-4Rα and IL-2Rγ. In addition, down-stream signalings, such as, stat-6 phosphorylation, SOCS1 induction, and SOCS3 suppression were also observed in macrophages in response to S1P. Furthermore, S1P-induced ERK activation, and the inhibitions of p38 MAPK and JNK were found to be key signals for IL-4 induction. Moreover, the anti-atherogenic effect of S1P in HDL was confirmed by the observation that oxidized LDL-induced lipid accumulation was attenuated in S1P-treated M2 macrophages. Furthermore, the atheroprotective effect of S1P was demonstrated by its anti-apoptotic effect on S1P-treated macrophages. The present study shows that S1P-induced M2 polarization of macrophages could be mediated via IL-4 signaling, and suggests that M2 polarization by S1P is responsible for the anti-atherogenic and atheroprotective properties of high-density lipoproteins in vivo.  相似文献   

7.
Angiopoietin (Ang) -1 and -2 and their receptor Tie2 play critical roles in regulating angiogenic processes during development, homeostasis, tumorigenesis, inflammation and tissue repair. Tie2 signaling is best characterized in endothelial cells, but a subset of human and murine circulating monocytes/macrophages essential to solid tumor formation express Tie2 and display immunosuppressive properties consistent with M2 macrophage polarization. However, we have recently shown that Tie2 is strongly activated in pro-inflammatory macrophages present in rheumatoid arthritis patient synovial tissue. Here we examined the relationship between Tie2 expression and function during human macrophage polarization. Tie2 expression was observed under all polarization conditions, but was highest in IFN-γ and IL-10 –differentiated macrophages. While TNF enhanced expression of a common restricted set of genes involved in angiogenesis and inflammation in GM-CSF, IFN-γ and IL-10 –differentiated macrophages, expression of multiple chemokines and cytokines, including CXCL3, CXCL5, CXCL8, IL6, and IL12B was further augmented in the presence of Ang-1 and Ang-2, via Tie2 activation of JAK/STAT signaling. Conditioned medium from macrophages stimulated with Ang-1 or Ang-2 in combination with TNF, sustained monocyte recruitment. Our findings suggest a general role for Tie2 in cooperatively promoting the inflammatory activation of macrophages, independently of polarization conditions.  相似文献   

8.
Schistosomiasis is a tropical parasitic disease that damages the liver and poses a serious threat to human health. Macrophages play a key role in the development of liver granulomas and fibrosis by undergoing polarization from M1 to M2 type during schistosomiasis. Therefore, regulating macrophage polarization is important for controlling pathological changes that occur during this disease. Triggering receptor expressed on myeloid cells 2 (TREM2) expressed on the surface of macrophages, dendritic cells and other immune cells has been shown to play a role in inhibiting inflammatory responses and regulating M2 macrophage polarization, however its role in macrophage polarization in schistosomiasis has not been investigated. In this study, we confirmed that TREM2 expression was upregulated in the livers and peritoneal macrophages of mice infected with Schistosoma japonicum. Moreover, the TREM2 expression trend correlated with the expression of M2 macrophage polarization-related molecules in the liver tissues of S. japonicum-infected mice. Using Trem2−/− mice, we also showed that Trem2 deletion inhibited Arg1 and Ym1 expression in liver tissues. Trem2 deletion also increased the number of F4/80 + CD86+ cells in peritoneal macrophages of infected mice. In summary, our study suggests that TREM2 may be involved in M2 macrophage polarization during schistosomiasis.  相似文献   

9.
10.
11.
Selenium (Se) is an essential micronutrient that exerts its functions via selenoproteins. Little is known about the role of Se in inflammatory bowel disease (IBD). Epidemiological studies have inversely correlated nutritional Se status with IBD severity and colon cancer risk. Moreover, molecular studies have revealed that Se deficiency activates WNT signaling, a pathway essential to intestinal stem cell programs and pivotal to injury recovery processes in IBD that is also activated in inflammatory neoplastic transformation. In order to better understand the role of Se in epithelial injury and tumorigenesis resulting from inflammatory stimuli, we examined colonic phenotypes in Se-deficient or -sufficient mice in response to dextran sodium sulfate (DSS)-induced colitis, and azoxymethane (AOM) followed by cyclical administration of DSS, respectively. In response to DSS alone, Se-deficient mice demonstrated increased morbidity, weight loss, stool scores, and colonic injury with a concomitant increase in DNA damage and increases in inflammation-related cytokines. As there was an increase in DNA damage as well as expression of several EGF and TGF-β pathway genes in response to inflammatory injury, we sought to determine if tumorigenesis was altered in the setting of inflammatory carcinogenesis. Se-deficient mice subjected to AOM/DSS treatment to model colitis-associated cancer (CAC) had increased tumor number, though not size, as well as increased incidence of high grade dysplasia. This increase in tumor initiation was likely due to a general increase in colonic DNA damage, as increased 8-OHdG staining was seen in Se-deficient tumors and adjacent, non-tumor mucosa. Taken together, our results indicate that Se deficiency worsens experimental colitis and promotes tumor development and progression in inflammatory carcinogenesis.  相似文献   

12.
13.
The anti-inflammatory effects of globular adiponectin (gAcrp) are mediated by IL-10/heme oxygenase 1 (HO-1)-dependent pathways. Although full-length (flAcrp) adiponectin also suppresses LPS-induced pro-inflammatory signaling, its signaling mechanisms are not yet understood. The aim of this study was to examine the differential mechanisms by which gAcrp and flAcrp suppress pro-inflammatory signaling in macrophages. Chronic ethanol feeding increased LPS-stimulated TNF-α expression by Kupffer cells, associated with a shift to an M1 macrophage polarization. Both gAcrp and flAcrp suppressed TNF-α expression in Kupffer cells; however, only the effect of gAcrp was dependent on IL-10. Similarly, inhibition of HO-1 activity or siRNA knockdown of HO-1 in RAW264.7 macrophages only partially attenuated the suppressive effects of flAcrp on MyD88-dependent and -independent cytokine signatures. Instead, flAcrp, acting via the adiponectin R2 receptor, potently shifted the polarization of Kupffer cells and RAW264.7 macrophages to an M2 phenotype. gAcrp, acting via the adiponectin R1 receptor, was much less effective at eliciting an M2 pattern of gene expression. M2 polarization was also partially dependent on AMP-activated kinase. flAcrp polarized RAW264.7 macrophages to an M2 phenotype in an IL-4/STAT6-dependent mechanism. flAcrp also increased the expression of genes involved in oxidative phosphorylation in RAW264.7 macrophages, similar to the effect of flAcrp on hepatocytes. In summary, these data demonstrate that gAcrp and flAcrp utilize differential signaling strategies to decrease the sensitivity of macrophages to activation by TLR4 ligands, with flAcrp utilizing an IL-4/STAT6-dependent mechanism to shift macrophage polarization to the M2/anti-inflammatory phenotype.  相似文献   

14.
Mucosal changes in inflammatory bowel disease (IBD) are characterized by ulcerative lesions accompanied by a prominent infiltrate of inflammatory cells including lymphocytes, macrophages, and neutrophils and alterations in 5-hydroxytryptamine (5-HT)-producing enterochromaffin (EC) cells. Mechanisms involved in recruiting and activating these cells are thought to involve a complex interplay of inflammatory mediators. Studies in clinical and experimental IBD have shown the upregulation of various chemokines including monocyte chemoattractant protein (MCP)-1 in mucosal tissues. However, precise information on the roles of this chemokine or the mechanisms by which it takes part in the pathogenesis of IBD are not clear. In this study, we investigated the role of MCP-1 in the development of hapten-induced experimental colitis in mice deficient in MCP-1. Our results showed a significant reduction in the severity of colitis both macroscopically and histologically along with a decrease in mortality in MCP-1-deficient mice compared with wild-type control mice. This was correlated with a downregulation of myeloperoxidase activity, IL-1beta, IL-12p40, and IFN-gamma production, and infiltration of CD3+ T cells and macrophages in the colonic mucosa. In addition, we observed significantly lower numbers of 5-HT-expressing EC cells in the colon of MCP-1-deficient mice compared with those in wild-type mice after dinitrobenzenesulfonic acid. These results provide evidence for a critical role of MCP-1 in the development of colonic inflammation in this model in the context of immune and enteric endocrine cells.  相似文献   

15.
Inflammatory bowel disease (IBD) is driven by multiple genetic and environmental risk factors. Patients with mutations in Bruton’s tyrosine kinase (BTK) is known to manifest high prevalence of intestinal disorders including IBD. Although BTK mediates the signaling of various immune receptors, little is known how BTK maintains the homeostasis of the gut immune system. Here, we show that BTK-deficiency promotes IBD progression in a mouse model of colitis. Interestingly, the increased colitis susceptibility of BTK-deficient mice is not caused by gut microbiota changes but rather arises from enhanced pro-inflammatory Th1 response. More importantly, we find the heightened Th1 response in BTK-deficient mice to result from both T cell-extrinsic and -intrinsic mechanisms. BTK-deficient dendritic cells secret elevated levels of the Th1-polarizing cytokine IL-12 and BTK-deficient T cells are inherently more prone to Th1 differentiation. Thus, BTK plays critical roles in maintaining gut immune homeostasis and preventing inflammation via regulating T-cell polarization.Subject terms: Inflammatory bowel disease, Inflammation, Mucosal immunology, Inflammation  相似文献   

16.

Background and Aims

Systemic inflammatory response syndrome (SIRS), a major process of severe acute pancreatitis (SAP), usually occurs after various activated proinflammatory cytokines, which are produced by macrophages such as liver macrophages. Macrophages can secrete not only proinflammatory mediators but also inhibitory inflammatory cytokines such as IL-10, leading to two different functional states defined as “polarization”. The main purpose of this study was to demonstrate the polarization of liver macrophages during severe acute pancreatitis and to explore whether the polarization of these activated Liver macrophages could be reversed in vitro.

Methods

Liver macrophages were isolated from rats with acute pancreatitis. These primary culture macrophages were treated with IL-4 or regulatory T cells in vitro to reverse their polarization and was evaluated by measuring M1/M2 marker expression using real time PCR and immunofluorescence staining.

Results

Acute pancreatitis was induced successfully by intra-pancreatic ductal injection of 5% sodium taurocholate. The liver macrophages demonstrated M1 polarization from 4 h to 16 h after the onset of acute pancreatitis. However, after IL-4 or Treg treatment, the polarization of the liver macrophages was reversed as indicated by increased expression of M2 markers and reduced expression of M1 markers. Furthermore, the effect of Treg on modulating macrophage polarization was slightly better than that of IL-4 in vitro.

Conclusion

Liver macrophages, a pivotal cell type in the pathogenesis of SAP, become M1 polarized during pancreatic inflammation. Treatment of these cells with IL-4 and Treg can reverse this activation in vitro. This method of altering macrophage polarization could be a prospective therapy for SAP.  相似文献   

17.

Background

Osteopontin (OPN) is a multifunctional protein expressed in a variety of tissues and cells. Recent studies revealed increased OPN expression in the inflamed intestinal tissues of patients with inflammatory bowel disease (IBD). The role of OPN in the pathophysiology of IBD, however, remains unclear.

Aims

To investigate the role of OPN in the development of intestinal inflammation using a murine model of IBD, interleukin-10 knock out (IL-10 KO) mice.

Methods

We compared the development of colitis between IL-10 KO and OPN/IL-10 double KO (DKO) mice. OPN expression in the colonic tissues of IL-10 KO mice was examined by fluorescence in situ hybridization (FISH) analysis. Enteric microbiota were compared between IL-10 KO and OPN/IL-10 DKO mice by terminal restriction fragment length polymorphism analysis. The effect of OPN on macrophage phagocytic function was evaluated by phagocytosis assay.

Results

OPN/IL-10 DKO mice had an accelerated onset of colitis compared to IL-10 KO mice. FISH analysis revealed enhanced OPN synthesis in the colonic epithelial cells of IL-10 KO mice. OPN/IL-10 DKO mice had a distinctly different enteric bacterial profile with a significantly lower abundance of Clostridium subcluster XIVa and a greater abundance of Clostridium cluster XVIII compared to IL-10 KO mice. Intracellular OPN deletion in macrophages impaired phagocytosis of fluorescence particle-conjugated Escherichia coli in vitro. Exogenous OPN enhanced phagocytosis by OPN-deleted macrophages when administered at doses of 1 to 100 ng/ml, but not 1000 ng/ml.

Conclusions

OPN deficiency accelerated the spontaneous development of colitis in mice with disrupted gut microbiota and macrophage phagocytic activity.  相似文献   

18.
Development of alternatively activated (M2) macrophage phenotypes is a complex process that is coordinately regulated by a plethora of pathways and factors. Here, we report that RBP-J, a DNA-binding protein that integrates signals from multiple pathways including the Notch pathway, is critically involved in polarization of M2 macrophages. Mice deficient in RBP-J in the myeloid compartment exhibited impaired M2 phenotypes in vivo in a chitin-induced model of M2 polarization. Consistent with the in vivo findings, M2 polarization was partially compromised in vitro in Rbpj-deficient macrophages as demonstrated by reduced expression of a subset of M2 effector molecules including arginase 1. Functionally, myeloid Rbpj deficiency impaired M2 effector functions including recruitment of eosinophils and suppression of T cell proliferation. Collectively, we have identified RBPJ as an essential regulator of differentiation and function of alternatively activated macrophages.  相似文献   

19.
We found that the expression of microRNA (miRNA)-9a-5p decreased in inflammatory bowel diseases (IBD; ulcerative colitis and Crohn's disease). Further, we revealed the effects and mechanisms of miRNA-9a-5p for regulating IBD progression. In C57BL/6N mice, IBD was induced with dextran sodium sulfate (DSS), and the effects of endogenous miRNA-9a-5p were mimicked/antagonized through intraperitoneal injection of miRNA-9a-5p agomir and antagomir. In animal experimentation, agomir could inhibit intestinal inflammation and tissue damage, and reduce the mucosal barrier permeability. Antagomir, on the other hand, could promote barrier damage, whose effect was associated with the M1 macrophage polarization. This study finds that miRNA-9a-5p targets NOX4 to suppress ROS production, which plays an important role in mucosal barrier damage in IBD.  相似文献   

20.
Inflammatory bowel disease (IBD) is an immunologically mediated disorder that is characterized by chronic, relapsing, and inflammatory responses. Dextran sulfate sodium (DSS)-induced experimental colitis in mice has been recognized as a useful model for human IBD and interleukin (IL)-1beta is a key cytokine in the onset of IBD. The purpose of the present study was to clarify which pro-inflammatory mediators are targeted by IL-1beta in mice with DSS-induced colitis. First, we found that DSS markedly induced IL-1beta production in both dose- and time-dependent manners (P < 0.05 and P < 0.01, respectively) in murine peritoneal macrophages (pMphi), while that of tumor necrosis factor-alpha was insignificant. Further, the expressions of mRNA and protein for IL-1beta were increased in colonic mucosa and pMphi from mice that received drinking water containing 5% DSS for 7 days (P < 0.01, each). In addition, the expressions of IL-6, granulocyte macrophage-colony stimulating factor, inducible nitric oxide synthase, and cyclooxygenase-2 mRNA were also time dependently increased (P < 0.01, each). Furthermore, administration of rIL-1beta (10 microg/kg, i.p.) significantly induced the expressions of IL-1beta and IL-6 mRNA in colonic mucosa from non-treated mice (P < 0.01). Anti-mIL-1beta antibody treatments (50 microg/kg, i.p.) attenuated DSS-induced body weight reduction and shortening of the colorectum (P < 0.05, each), and abrogated the expressions of IL-1beta and IL-6 mRNA in colonic mucosa (P < 0.01, each). Our results evidently support the previous findings that IL-1beta is involved in the development of DSS-induced experimental colitis in mice, and strongly suggest that IL-1beta targets itself and IL-6 for progressing colonic inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号