首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
AimsTo investigate whether haematopoietic TLR4 deletion attenuates perivascular brown adipose tissue inflammation in atherosclerotic mice.Methods and ResultsExperiments were performed using irradiated LDL receptor-deficient (LDLR−/−) mice with marrow from either TLR4-deficient (TLR4−/−) or age-matched wild-type (WT) mice. After 12 weeks of being fed a high-cholesterol diet, TLR4−/−  LDLR−/− mice developed fewer atherosclerotic lesions in the aorta compared to WT  LDLR−/− mice. This effect was associated with an increase in multilocular lipid droplets and mitochondria in perivascular adipose tissue (PVAT). Immunofluorescence analysis confirmed that there was an increase in capillary density and M2 macrophage infiltration, accompanied by a decrease in tumour necrosis factor (TNF)-α expression in the localized PVAT of TLR4−/−  LDLR−/− mice. In vitro studies indicated that bone marrow-derived macrophages (BMDMs) from WT mice demonstrated an M1-like phenotype and expression of inflammatory cytokines induced by palmitate. These effects were attenuated in BMDMs isolated from TLR4−/− mice. Furthermore, brown adipocytes incubated with conditioned medium (CM) derived from palmitate-treated BMDMs, exhibited larger and more unilocular lipid droplets, and reduced expression of brown adipocyte-specific markers and perilipin-1 compared to those observed in brown adipocytes exposed to CM from palmitate-treated BMDMs of TLR4−/− mice. This decreased potency was primarily due to TNF-α, as demonstrated by the capacity of the TNF-α neutralizing antibody to reverse these effects.ConclusionsThese results suggest that haematopoietic-specific deletion of TLR4 promotes PVAT homeostasis, which is involved in reducing macrophage-induced TNF-α secretion and increasing mitochondrial biogenesis in brown adipocytes.  相似文献   

2.
Neuropeptides may play an important role in the healing process of osteoporotic fractures. The objective of this study was to determine the role of substance P during osteoporotic fracture healing.One hundred ninety-two mice were randomized into ovariectomy (OVX) and control (CON) group (n = 96, respectively). Femoral shaft fracture was created 3 weeks after OVX. Bone mineral density (BMD), micro-CT (µCT) analysis of fracture callus formation and mineralization, µCT analysis of fracture site neovascularization and biomechanical property as well as substance P levels were evaluated 1, 2, 4, and 8 weeks after fracture and compared with CON group.Following OVX-induced bone loss, fracture healing in OVX mice was significantly poorer than that in CON mice, with a significant decrease of substance P at the fracture site at all time points and with the level at early stage (1 and 2 weeks) higher than later stage (4 and 8 weeks). Impaired angiogenesis was also noted in OVX mice. No significant change of substance P level in serum was found between different groups or time points.In conclusion, fracture healing is inferior in OVX-induced bone loss and associated with a significant decrease of substance P. Substance P may play an important role during osteoporotic fracture healing.  相似文献   

3.
《Cytokine》2014,65(1):4-9
Hyperoxia exposure can inhibit alveolar growth in the neonatal lung through induction of p21/p53 pathways and is a risk factor for the development of bronchopulmonary dysplasia (BPD) in preterm infants. We previously found that activation of nuclear factor erythroid 2 p45-related factor (Nrf2) improved survival in neonatal mice exposed to hyperoxia likely due to increased expression of anti-oxidant response genes. It is not known however, whether hyperoxic induced Nrf2 activation attenuates the growth impairment caused by hyperoxia in neonatal lung. To determine if Nrf2 activation modulates cell cycle regulatory pathway genes associated with growth arrest we examined the gene expression in the lungs of Nrf2−/− and Nrf2+/+ neonatal mice at one and 3 days of hyperoxia exposure.MethodsMicroarray analysis was performed in neonatal Nrf2+/+ and Nrf2−/− lungs exposed to one and 3 days of hyperoxia. Sulforaphane, an inducer of Nrf2 was given to timed pregnant mice to determine if in utero exposure attenuated p21 and IL-6 gene expression in wildtype neonatal mice exposed to hyperoxia.ResultsCell cycle regulatory genes were induced in Nrf2−/− lung at 1 day of hyperoxia. At 3 days of hyperoxia, induction of cell cycle regulatory genes was similar in Nrf2+/+ and Nrf2−/− lungs, despite higher inflammatory gene expression in Nrf2−/− lung.Conclusionp21/p53 pathways gene expression was not attenuated by Nrf2 activation in neonatal lung. In utero SUL did not attenuate p21 expression in wildtype neonatal lung exposed to hyperoxia. These findings suggest that although Nrf2 activation induces expression of anti-oxidant genes, it does not attenuate alveolar growth arrest caused by exposure to hyperoxia.  相似文献   

4.
PurposeThe aim of the present study was to evaluate the systemic biological effect of increased exercise on bone repair after stable fracture fixation.MethodsTwo groups of SKH-1 h mice were studied. Animals of the first group (n=36) were housed in cages supplied with a running wheel, while mice of the second group (n=37) were housed in standard cages for control. Using a closed femur fracture model, bone repair was analysed by histomorphometry and biomechanical testing at 2 and 5 weeks. At 2 weeks, we additionally evaluated the expression of the proliferation marker PCNA (proliferating cell nuclear antigen) and the angiogenic and osteogenic growth factor VEGF (vascular endothelial growth factor). To standardise the mechanical conditions in the fracture gap, we used an intramedullary compression screw for stable fracture fixation.ResultsEach mouse of the exercise group run a mean total distance of 23.5 km after 2 weeks and 104.3 km after 5 weeks. Histomorphometric analysis of the size and tissue composition of the callus could not reveal significant differences between mice undergoing exercise and controls. Accordingly, biomechanical testing showed a comparable torsional stiffness, peak rotation angle, and load at failure of the healing bones in the two groups. The expression of PCNA and VEGF did also not differ between mice of the exercise group and controls.ConclusionWe conclude that increased exercise does not affect bone repair after stable fracture fixation.  相似文献   

5.
Matrix proteoglycans such as biglycan (Bgn) dominate skeletal tissue and yet its exact role in regulating bone function is still unclear. In this paper we describe the potential role of (Bgn) in the fracture healing process. We hypothesized that Bgn could regulate fracture healing because of previous work showing that it can affect normal bone formation. To test this hypothesis, we created fractures in femurs of 6-week-old male wild type (WT or Bgn+/0) and Bgn-deficient (Bgn-KO or Bgn-/0) mice using a custom-made standardized fracture device, and analyzed the process of healing over time. The formation of a callus around the fracture site was observed at both 7 and 14 days post-fracture in WT and Bgn-deficient mice and immunohistochemistry revealed that Bgn was highly expressed in the fracture callus of WT mice, localizing within woven bone and cartilage. Micro-computed tomography (μCT) analysis of the region surrounding the fracture line showed that the Bgn-deficient mice had a smaller callus than WT mice. Histology of the same region also showed the presence of less cartilage and woven bone in the Bgn-deficient mice compared to WT mice. Picrosirius red staining of the callus visualized under polarized light showed that there was less fibrillar collagen in the Bgn-deficient mice, a finding confirmed by immunohistochemistry using antibodies to type I collagen. Interestingly, real time RT-PCR of the callus at 7 days post-fracture showed a significant decrease in relative vascular endothelial growth factor A (VEGF) gene expression by Bgn-deficient mice as compared to WT. Moreover, VEGF was shown to bind directly to Bgn through a solid-phase binding assay. The inability of Bgn to directly enhance VEGF-induced signaling suggests that Bgn has a unique role in regulating vessel formation, potentially related to VEGF storage or stabilization in the matrix. Taken together, these results suggest that Bgn has a regulatory role in the process of bone formation during fracture healing, and further, that reduced angiogenesis could be the molecular basis.  相似文献   

6.
During cold-exposure ‘beige’ adipocytes with increased mitochondrial content are activated in white adipose tissue (WAT). These cells, similarly to brown adipose tissue (BAT), dissipate stored chemical energy in the form of heat with the help of uncoupling protein 1 (UCP1). We investigated the effect of tissue transglutaminase (TG2) ablation on the function of ATs in mice. Although TG2+/+ and TG2−/− mice had the same amount of WAT and BAT, we found that TG2+/+ animals could tolerate acute cold exposure for 4 h, whereas TG2−/− mice only for 3 h. Both TG2−/− and TG2+/+ animals used up half of the triacylglycerol content of subcutaneous WAT (SCAT) after 3 h treatment; however, TG2−/− mice still possessed markedly whiter and higher amount of gonadal WAT (GONAT) as reflected in the larger size of adipocytes and lower free fatty acid levels in serum. Furthermore, lower expression of ‘beige’ marker genes such as UCP1, TBX1 and TNFRFS9 was observed after cold exposure in GONAT of TG2−/− mice, paralleled with a lower level of UCP1 protein and a decreased mitochondrial content. The detected changes in gene expression of Resistin and Adiponectin did not provoke glucose intolerance in the investigated TG2−/− mice, and TG2 deletion did not influence adrenaline, noradrenaline, glucagon and insulin production. Our data suggest that TG2 has a tissue-specific role in GONAT function and browning, which becomes apparent under acute cold exposure.  相似文献   

7.
AimThe aim of this study was to compare the effectiveness of two radiotherapy schedules in patients with bone metastases.BackgroundWe analyzed the need for re-irradiation, rates of pain control, pathological fractures, and functionality in patients randomized to single-fraction (8 Gy 1×) or multiple-fraction radiotherapy (3 Gy 10×) with at least 12 months follow-up, during five years. The hypothesis was that the two radiotherapy schedules are equally effective.Materials and methodsNinety patients with painful skeletal metastases were randomized to receive single fraction (8 Gy) or multiple fraction (3 Gy 10×) radiotherapy.ResultsIn the single-fraction group, seven pathological fractures occurred (15.5%) versus two (4.4%) in the multiple-fraction group. There was no statistically significant difference between the time it took to suffer a pathological fracture in both groups (p = 0.099). Patients in the single-fraction group received twelve re-irradiations (26.6%), four in the multiple-fraction group (8.8%), with no significant difference between time elapsed before the first re-irradiation (p = 0.438).ConclusionThis study shows no difference between the two groups for the majority of patients with painful bone metastases. Patients were followed up during five years, and the trial showed no disadvantage for 8 Gy 1× compared to 3 Gy 10×. Despite the fact that the pathological fracture rate is 3.75 times higher in the single-fraction group, this schedule is considered more convenient for patients and more cost-effective for radiotherapy departments.  相似文献   

8.
Amelogenin is the most abundant enamel protein involved in enamel mineralization. Our goal was to determine whether all three regions of amelogenin (N-terminus, C-terminus, central core) are required for enamel formation. Amelogenin RNA is alternatively spliced, resulting in at least 16 different amelogenin isoforms in mice, with M180 and LRAP expressed most abundantly. Soon after secretion by ameloblasts, M180 is cleaved by MMP20 resulting in C-terminal truncated (CTRNC) amelogenin. We aimed to determine whether the 2 transgenes (Tg), LRAP and CTRNC together, can improve LRAPTg/Amelx −/− and CTRNCTg/Amelx −/− enamel thickness and prism organization, which were not rescued in Amelx −/− enamel. We generated CTRNCTg/LRAPTg/Amelx −/− mice and analyzed developing and mature incisor and molar enamel histologically, by microCT, SEM and microhardness testing. CTRNCTg and LRAPTg overexpression together significantly improved the enamel phenotype of LRAPTg/Amelx −/− and CTRNCTg/Amelx −/− mouse enamel, however enamel microhardness was recovered only when M180Tg was expressed, alone or with LRAPTg. We determined that both LRAP and CTRNC, which together express all three regions of the amelogenin protein (N-terminus, C-terminus and hydrophobic core) contribute to the final enamel thickness and prism organization in mice.  相似文献   

9.
Pituitary Adenylate-Cyclase Activating Polypeptide (PACAP) and Tac1 gene-encoded tachykinins (substance P: SP, neurokinin A: NKA) are expressed in capsaicin-sensitive nerves, but their role in nociception, inflammation and vasoregulation is unclear. Therefore, we investigated the function of these neuropeptides and the NK1 tachykinin receptor (from Tacr1 gene) in the partial sciatic nerve ligation-induced traumatic mononeuropathy model using gene deficient (PACAP−/−, Tac1−/−, and Tacr1−/−) mice. Mechanonociceptive threshold of the paw was measured with dynamic plantar aesthesiometry, motor coordination with Rota-Rod and cutaneous microcirculation with laser Doppler imaging. Neurogenic vasodilation was evoked by mustard oil stimulating sensory nerves. In wildtype mice 30–40% mechanical hyperalgesia developed one week after nerve ligation, which was not altered in Tac1−/− and Tacr1−/− mice, but was absent in PACAP−/− animals. Motor coordination of the PACAP−/− and Tac1−/− groups was significantly worse both before and after nerve ligation compared to their wildtypes, but it did not change in Tacr1−/− mice. Basal postoperative microcirculation on the plantar skin of PACAP−/− mice did not differ from the wildtypes, but was significantly lower in Tac1−/− and Tacr1−/− ones. In contrast, mustard oil-induced neurogenic vasodilation was significantly smaller in PACAP−/− mice, but not in Tacr1−/− and Tac1−/− animals. Both PACAP and SP/NKA, but not NK1 receptors participate in normal motor coordination. Tachykinins maintain basal cutaneous microcirculation. PACAP is a crucial mediator of neuropathic mechanical hyperalgesia and neurogenic vasodilation. Therefore identifying its target and developing selective, potent antagonists, might open promising new perspectives for the treatment of neuropathic pain and vascular complications.  相似文献   

10.
Hepatic stellate cells (HSCs) play an important role in liver physiology and under healthy conditions they have a quiescent and lipid-storing phenotype. Upon liver injury, HSCs are activated and rapidly lose their retinyl ester-containing lipid droplets. To investigate the role of lecithin:retinol acyltransferase (LRAT) and acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) in retinyl ester synthesis and lipid droplet dynamics, we modified LC–MS/MS procedures by including multiple reaction monitoring allowing unambiguous identification and quantification of all major retinyl ester species. Quiescent primary HSCs contain predominantly retinyl palmitate. Exogenous fatty acids are a major determinant in the retinyl ester species synthesized by activated HSCs and LX-2 cells, indicating that HSCs shift their retinyl ester synthesizing capacity from LRAT to DGAT1 during activation. Quiescent LRAT−/− HSCs retain the capacity to synthesize retinyl esters and to store neutral lipids in lipid droplets ex vivo. The median lipid droplet size in LRAT−/− HSCs (1080 nm) is significantly smaller than in wild type HSCs (1618 nm). This is a consequence of an altered lipid droplet size distribution with 50.5 ± 9.0% small (≤ 700 nm) lipid droplets in LRAT−/− HSCs and 25.6 ± 1.4% large (1400–2100 nm) lipid droplets in wild type HSC cells. Upon prolonged (24 h) incubation, the amounts of small (≤ 700 nm) lipid droplets strongly increased both in wild type and in LRAT−/− HSCs, indicating a dynamic behavior in both cell types. The absence of retinyl esters and reduced number of lipid droplets in LRAT-deficient HSCs in vivo will be discussed.  相似文献   

11.
Transglutaminase activity has been widely implicated in bone deposition. A predominant role has been proposed for factor (F)XIII-A and a subsidiary role suggested for the homologous protein, transglutaminase 2. Full-length FXIII-A is an 83 kDa protransglutaminase that is present both in plasma and also in haematopoietic and connective tissue lineages. Several studies have reported expression in murine cells, including osteocytes, of a 37 kDa protein that reacts with the monoclonal anti-FXIII-A antibody AC-1A1. This protein was presumed to be a catalytically active fragment of FXIII-A-83 and to play a major role in bone deposition. We detected a 37 kDa AC-1A1 reactive protein in FXIII-A mRNA negative cell lines and in tissues from FXIII-A−/− mice. By mass spectrometric sequencing of AC-1A1 immunoprecipitates, we identified this protein as transaldolase-1, and confirmed that recombinant transaldolase-1 is recognised by AC-1A1. We have also shown that bone deposition is normal in FXIII-A−/−.TG2−/− double knockout mice, casting doubt on the role of transglutaminases in bone mineralisation. Various studies have used antibody AC-1A1 for immunohistochemistry or immunofluorescence. We observe strong FXIII-A dependent staining in paraffin embedded mouse heart sections, with relatively low background in non-expressing mouse cells. In contrast, FXIII-A independent staining predominates in cultured human cells using a standard immunofluorescence procedure. Immunofluorescence is present in membrane compartments that are expected to lack transaldolase, indicating that other off-target antigens are recognised by AC-1A1. This has significant implications for studies that have used this approach to define the subcellular trafficking of FXIII-A in osteocytes.  相似文献   

12.
AimsPrevious studies reported that FK506 influences bone mineralizing and hypomagnesemia, and also has immune modifying properties. This study examined whether or not the function of Mg2+ in bone metabolism plays a role in the loss of bone volume caused by immunosuppressants.Main methodsThe effects of the FK506 treatment on the intracellular magnesium and lactate dehydrogenase (LDH) activity were examined in cultured human osteoblasts (HOB) cells. The magnesium concentration was determined using microfluorescence techniques and atomic absorption spectrophotometry. Western blotting was used to measure the level of extracellular signal-regulated kinases 1/2 (ERK 1/2) activation.Key findingsFK506 (0.1 μM) did not affect cell death in HOB cells after a 24 hour treatment but decreased the level of ERK 1/2 activation. In HOB cells, the mean [Mg2+]i after exposure to a 1 mM extracellular Mg2+ ([Mg2+]o) buffer was 0.53 ± 0.01 mM (n = 25). Exposure to 100 nM FK506 produced a significant decrease in [Mg2+]i (0.41 ± 0.01 mM). The ERK inhibitor (PD98059) and FK506 produced similar effects but they were not cumulative.SignificanceThis study examined the role of ERK1/2 activation on the regulation of magnesium in HOB. These results suggest that the inhibition of ERK phosphorylation is an essential intermediate in the effects of FK506 on magnesium. Overall, FK506 causes bone disorders partly by decreasing [Mg2+]i accompanied by the inhibition of ERK 1/2.  相似文献   

13.
The fracture healing research, which has been performed in mammalian models not only for clinical application but also for bone metabolism, revealed that generally osteoblasts are induced to enter the fracture site before the induction of osteoclasts for bone remodeling. However, it remains unknown how and where osteoclasts and osteoblasts are induced, because it is difficult to observe osteoclasts and osteoblasts in a living animal. To answer these questions, we developed a new fracture healing model by using medaka. We fractured one side of lepidotrichia in a caudal fin ray without injuring the other soft tissues including blood vessels. Using the transgenic medaka in which osteoclasts and osteoblasts were visualized by GFP and DsRed, respectively, we found that two different types of functional osteoclasts were induced before and after osteoblast callus formation. The early-induced osteoclasts resorbed the bone fragments and the late-induced osteoclasts remodeled the callus. Both types of osteoclasts were induced near the surface on the blood vessels, while osteoblasts migrated from adjacent fin ray. Transmission electron microscopy revealed that no significant ruffled border and clear zone were observed in early-induced osteoclasts, whereas the late-induced osteoclasts had clear zones but did not have the typical ruffled border. In the remodeling of the callus, the expression of cox2 mRNA was up-regulated at the fracture site around vessels, and the inhibition of Cox2 impaired the induction of the late-induced osteoclasts, resulting in abnormal fracture healing. Finally, our developed medaka fracture healing model brings a new insight into the molecular mechanism for controlling cellular behaviors during the fracture healing.  相似文献   

14.
15.
Biphenylketones were identified as novel inhibitors of NFκB activation. Structure–activity studies led to the identification of compound 4c, which had good potency against osteoclasts (IC50 = 0.8 μM), showed oral activity, and was able to completely prevent inflammation and bone loss in vivo.  相似文献   

16.
17.
A series of hesperidin derivatives were prepared and identified by IR, 1H NMR, and MS spectra. These compounds were evaluated in vitro and in vivo based on α-glucosidase inhibition, glucose consumption of HepG2 cells, and blood glucose level in streptozotocin-induced diabetic mice. The results revealed that all the compounds exhibited anti-hyperglycemic activities. The inhibition at 10?3 M of compounds 3 and 7a on α-glucosidase were 55.02% and 53.34%, respectively, as compared to 54.80% by acarbose. Treated by compound 3 and the reference drug metformin, glucose consumption of HepG2 cell were 1.78 and 2.11 mM, respectively. After the streptozotocin-induced diabetic mice were oral administrated with compound 3 at 100 mg kg?1 d?1 for 10 days, the blood glucose level of 3 treated mice (13.23 mM, P <0.05) showed significant difference when compared to model control (23.03 mM). Thus, compound 3 exhibited promising anti-hyperglycemic activity.  相似文献   

18.
Triaylsulfonamides were identified as novel anti-inflammatory agents, acting by inhibition of RANKL and TNFα signaling. Structure-activity studies led to the identification of compounds with in vitro potencies of <100 nM against J774 macrophages and osteoclasts, but with little activity against osteoblasts or hepatocytes (IC50 >50 μM). A representative compound (4k, ABD455) was able to completely prevent inflammation in vivo in a prevention model and was highly effective at controlling inflammation in a treatment model.  相似文献   

19.
Innate immune and inflammatory responses mediated by Toll like receptors (TLRs) have been implicated in myocardial ischemia/reperfusion (I/R) injury. This study examined the role of TLR3 in myocardial injury induced by two models, namely, myocardial infarction (MI) and I/R. First, we examined the role of TLR3 in MI. TLR3 deficient (TLR3−/−) and wild type (WT) mice were subjected to MI induced by permanent ligation of the left anterior descending (LAD) coronary artery for 21 days. Cardiac function was measured by echocardiography. Next, we examined whether TLR3 contributes to myocardial I/R injury. TLR3−/− and WT mice were subjected to myocardial ischemia (45 min) followed by reperfusion for up to 3 days. Cardiac function and myocardial infarct size were examined. We also examined the effect of TLR3 deficiency on I/R-induced myocardial apoptosis and inflammatory cytokine production. TLR3−/− mice showed significant attenuation of cardiac dysfunction after MI or I/R. Myocardial infarct size and myocardial apoptosis induced by I/R injury were significantly attenuated in TLR3−/− mice. TLR3 deficiency increases B-cell lymphoma 2 (BCL2) levels and attenuates I/R-increased Fas, Fas ligand or CD95L (FasL), Fas-Associated protein with Death Domain (FADD), Bax and Bak levels in the myocardium. TLR3 deficiency also attenuates I/R-induced myocardial nuclear factor KappaB (NF-κB) binding activity, Tumor necrosis factor alpha (TNF-α) and Interleukin-1 beta (IL-1β) production as well as I/R-induced infiltration of neutrophils and macrophages into the myocardium. TLR3 plays an important role in myocardial injury induced by MI or I/R. The mechanisms involve activation of apoptotic signaling and NF-κB binding activity. Modulation of TLR3 may be an effective approach for ameliorating heart injury in heart attack patients.  相似文献   

20.
Granulocyte colony-stimulating factor (G-CSF) is a pleiotropic cytokine best known for its role in promoting the generation and function of neutrophils. G-CSF is also found to be involved in macrophage generation and immune regulation; however, its in vivo role in immune homeostasis is largely unknown. Here, we examined the role of G-CSF in dextran sulfate sodium (DSS)-induced acute colitis using G-CSF receptor-deficient (G-CSFR−/−) mice. Mice were administered with 1.5% DSS in drinking water for 5 days, and the severity of colitis was measured for the next 5 days. GCSFR−/− mice were more susceptible to DSS-induced colitis than G-CSFR+/+ or G-CSFR−/+ mice. G-CSFR−/− mice harbored less F4/80+ macrophages, but a similar number of neutrophils, in the intestine. In vitro, bone marrow-derived macrophages prepared in the presence of both G-CSF and macrophage colony-stimulating factor (M-CSF) (G-BMDM) expressed higher levels of regulatory macrophage markers such as programmed death ligand 2 (PDL2), CD71 and CD206, but not in arginase I, transforming growth factor (TGF)-β, Ym1 (chitinase-like 3) and FIZZ1 (found in inflammatory zone 1), and lower levels of inducible nitric oxide synthase (iNOS), CD80 and CD86 than bone marrow-derived macrophages prepared in the presence of M-CSF alone (BMDM), in response to interleukin (IL)-4/IL-13 and lipopolysaccharide (LPS)/interferon (IFN)-γ, respectively. Adoptive transfer of G-BMDM, but not BMDM, protected G-CSFR−/− mice from DSS-induced colitis, and suppressed expression of tumor necrosis factor (TNF)-α, IL-1β and iNOS in the intestine. These results suggest that G-CSF plays an important role in preventing colitis, likely through populating immune regulatory macrophages in the intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号